mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-09 22:50:41 +00:00
0c04f5eb0d
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1918 lines
47 KiB
C
1918 lines
47 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Code for manipulating bucket marks for garbage collection.
|
|
*
|
|
* Copyright 2014 Datera, Inc.
|
|
*
|
|
* Bucket states:
|
|
* - free bucket: mark == 0
|
|
* The bucket contains no data and will not be read
|
|
*
|
|
* - allocator bucket: owned_by_allocator == 1
|
|
* The bucket is on a free list, or it is an open bucket
|
|
*
|
|
* - cached bucket: owned_by_allocator == 0 &&
|
|
* dirty_sectors == 0 &&
|
|
* cached_sectors > 0
|
|
* The bucket contains data but may be safely discarded as there are
|
|
* enough replicas of the data on other cache devices, or it has been
|
|
* written back to the backing device
|
|
*
|
|
* - dirty bucket: owned_by_allocator == 0 &&
|
|
* dirty_sectors > 0
|
|
* The bucket contains data that we must not discard (either only copy,
|
|
* or one of the 'main copies' for data requiring multiple replicas)
|
|
*
|
|
* - metadata bucket: owned_by_allocator == 0 && is_metadata == 1
|
|
* This is a btree node, journal or gen/prio bucket
|
|
*
|
|
* Lifecycle:
|
|
*
|
|
* bucket invalidated => bucket on freelist => open bucket =>
|
|
* [dirty bucket =>] cached bucket => bucket invalidated => ...
|
|
*
|
|
* Note that cache promotion can skip the dirty bucket step, as data
|
|
* is copied from a deeper tier to a shallower tier, onto a cached
|
|
* bucket.
|
|
* Note also that a cached bucket can spontaneously become dirty --
|
|
* see below.
|
|
*
|
|
* Only a traversal of the key space can determine whether a bucket is
|
|
* truly dirty or cached.
|
|
*
|
|
* Transitions:
|
|
*
|
|
* - free => allocator: bucket was invalidated
|
|
* - cached => allocator: bucket was invalidated
|
|
*
|
|
* - allocator => dirty: open bucket was filled up
|
|
* - allocator => cached: open bucket was filled up
|
|
* - allocator => metadata: metadata was allocated
|
|
*
|
|
* - dirty => cached: dirty sectors were copied to a deeper tier
|
|
* - dirty => free: dirty sectors were overwritten or moved (copy gc)
|
|
* - cached => free: cached sectors were overwritten
|
|
*
|
|
* - metadata => free: metadata was freed
|
|
*
|
|
* Oddities:
|
|
* - cached => dirty: a device was removed so formerly replicated data
|
|
* is no longer sufficiently replicated
|
|
* - free => cached: cannot happen
|
|
* - free => dirty: cannot happen
|
|
* - free => metadata: cannot happen
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc_background.h"
|
|
#include "bset.h"
|
|
#include "btree_gc.h"
|
|
#include "btree_update.h"
|
|
#include "buckets.h"
|
|
#include "ec.h"
|
|
#include "error.h"
|
|
#include "movinggc.h"
|
|
#include "replicas.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/preempt.h>
|
|
|
|
/*
|
|
* Clear journal_seq_valid for buckets for which it's not needed, to prevent
|
|
* wraparound:
|
|
*/
|
|
void bch2_bucket_seq_cleanup(struct bch_fs *c)
|
|
{
|
|
u64 journal_seq = atomic64_read(&c->journal.seq);
|
|
u16 last_seq_ondisk = c->journal.last_seq_ondisk;
|
|
struct bch_dev *ca;
|
|
struct bucket_array *buckets;
|
|
struct bucket *g;
|
|
struct bucket_mark m;
|
|
unsigned i;
|
|
|
|
if (journal_seq - c->last_bucket_seq_cleanup <
|
|
(1U << (BUCKET_JOURNAL_SEQ_BITS - 2)))
|
|
return;
|
|
|
|
c->last_bucket_seq_cleanup = journal_seq;
|
|
|
|
for_each_member_device(ca, c, i) {
|
|
down_read(&ca->bucket_lock);
|
|
buckets = bucket_array(ca);
|
|
|
|
for_each_bucket(g, buckets) {
|
|
bucket_cmpxchg(g, m, ({
|
|
if (!m.journal_seq_valid ||
|
|
bucket_needs_journal_commit(m, last_seq_ondisk))
|
|
break;
|
|
|
|
m.journal_seq_valid = 0;
|
|
}));
|
|
}
|
|
up_read(&ca->bucket_lock);
|
|
}
|
|
}
|
|
|
|
void bch2_fs_usage_initialize(struct bch_fs *c)
|
|
{
|
|
struct bch_fs_usage *usage;
|
|
unsigned i;
|
|
|
|
percpu_down_write(&c->mark_lock);
|
|
usage = c->usage_base;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
|
|
bch2_fs_usage_acc_to_base(c, i);
|
|
|
|
for (i = 0; i < BCH_REPLICAS_MAX; i++)
|
|
usage->reserved += usage->persistent_reserved[i];
|
|
|
|
for (i = 0; i < c->replicas.nr; i++) {
|
|
struct bch_replicas_entry *e =
|
|
cpu_replicas_entry(&c->replicas, i);
|
|
|
|
switch (e->data_type) {
|
|
case BCH_DATA_BTREE:
|
|
usage->btree += usage->replicas[i];
|
|
break;
|
|
case BCH_DATA_USER:
|
|
usage->data += usage->replicas[i];
|
|
break;
|
|
case BCH_DATA_CACHED:
|
|
usage->cached += usage->replicas[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
percpu_up_write(&c->mark_lock);
|
|
}
|
|
|
|
void bch2_fs_usage_scratch_put(struct bch_fs *c, struct bch_fs_usage_online *fs_usage)
|
|
{
|
|
if (fs_usage == c->usage_scratch)
|
|
mutex_unlock(&c->usage_scratch_lock);
|
|
else
|
|
kfree(fs_usage);
|
|
}
|
|
|
|
struct bch_fs_usage_online *bch2_fs_usage_scratch_get(struct bch_fs *c)
|
|
{
|
|
struct bch_fs_usage_online *ret;
|
|
unsigned bytes = sizeof(struct bch_fs_usage_online) + sizeof(u64) *
|
|
READ_ONCE(c->replicas.nr);
|
|
ret = kzalloc(bytes, GFP_NOWAIT|__GFP_NOWARN);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mutex_trylock(&c->usage_scratch_lock))
|
|
goto out_pool;
|
|
|
|
ret = kzalloc(bytes, GFP_NOFS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&c->usage_scratch_lock);
|
|
out_pool:
|
|
ret = c->usage_scratch;
|
|
memset(ret, 0, bytes);
|
|
return ret;
|
|
}
|
|
|
|
struct bch_dev_usage bch2_dev_usage_read(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
struct bch_dev_usage ret;
|
|
|
|
memset(&ret, 0, sizeof(ret));
|
|
acc_u64s_percpu((u64 *) &ret,
|
|
(u64 __percpu *) ca->usage[0],
|
|
sizeof(ret) / sizeof(u64));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline struct bch_fs_usage *fs_usage_ptr(struct bch_fs *c,
|
|
unsigned journal_seq,
|
|
bool gc)
|
|
{
|
|
return this_cpu_ptr(gc
|
|
? c->usage_gc
|
|
: c->usage[journal_seq & 1]);
|
|
}
|
|
|
|
u64 bch2_fs_usage_read_one(struct bch_fs *c, u64 *v)
|
|
{
|
|
ssize_t offset = v - (u64 *) c->usage_base;
|
|
unsigned seq;
|
|
u64 ret;
|
|
|
|
BUG_ON(offset < 0 || offset >= fs_usage_u64s(c));
|
|
percpu_rwsem_assert_held(&c->mark_lock);
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&c->usage_lock);
|
|
ret = *v +
|
|
percpu_u64_get((u64 __percpu *) c->usage[0] + offset) +
|
|
percpu_u64_get((u64 __percpu *) c->usage[1] + offset);
|
|
} while (read_seqcount_retry(&c->usage_lock, seq));
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct bch_fs_usage_online *bch2_fs_usage_read(struct bch_fs *c)
|
|
{
|
|
struct bch_fs_usage_online *ret;
|
|
unsigned seq, i, u64s;
|
|
|
|
percpu_down_read(&c->mark_lock);
|
|
|
|
ret = kmalloc(sizeof(struct bch_fs_usage_online) +
|
|
sizeof(u64) + c->replicas.nr, GFP_NOFS);
|
|
if (unlikely(!ret)) {
|
|
percpu_up_read(&c->mark_lock);
|
|
return NULL;
|
|
}
|
|
|
|
ret->online_reserved = percpu_u64_get(c->online_reserved);
|
|
|
|
u64s = fs_usage_u64s(c);
|
|
do {
|
|
seq = read_seqcount_begin(&c->usage_lock);
|
|
memcpy(&ret->u, c->usage_base, u64s * sizeof(u64));
|
|
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
|
|
acc_u64s_percpu((u64 *) &ret->u, (u64 __percpu *) c->usage[i], u64s);
|
|
} while (read_seqcount_retry(&c->usage_lock, seq));
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch2_fs_usage_acc_to_base(struct bch_fs *c, unsigned idx)
|
|
{
|
|
unsigned u64s = fs_usage_u64s(c);
|
|
|
|
BUG_ON(idx >= ARRAY_SIZE(c->usage));
|
|
|
|
preempt_disable();
|
|
write_seqcount_begin(&c->usage_lock);
|
|
|
|
acc_u64s_percpu((u64 *) c->usage_base,
|
|
(u64 __percpu *) c->usage[idx], u64s);
|
|
percpu_memset(c->usage[idx], 0, u64s * sizeof(u64));
|
|
|
|
write_seqcount_end(&c->usage_lock);
|
|
preempt_enable();
|
|
}
|
|
|
|
void bch2_fs_usage_to_text(struct printbuf *out,
|
|
struct bch_fs *c,
|
|
struct bch_fs_usage_online *fs_usage)
|
|
{
|
|
unsigned i;
|
|
|
|
pr_buf(out, "capacity:\t\t\t%llu\n", c->capacity);
|
|
|
|
pr_buf(out, "hidden:\t\t\t\t%llu\n",
|
|
fs_usage->u.hidden);
|
|
pr_buf(out, "data:\t\t\t\t%llu\n",
|
|
fs_usage->u.data);
|
|
pr_buf(out, "cached:\t\t\t\t%llu\n",
|
|
fs_usage->u.cached);
|
|
pr_buf(out, "reserved:\t\t\t%llu\n",
|
|
fs_usage->u.reserved);
|
|
pr_buf(out, "nr_inodes:\t\t\t%llu\n",
|
|
fs_usage->u.nr_inodes);
|
|
pr_buf(out, "online reserved:\t\t%llu\n",
|
|
fs_usage->online_reserved);
|
|
|
|
for (i = 0;
|
|
i < ARRAY_SIZE(fs_usage->u.persistent_reserved);
|
|
i++) {
|
|
pr_buf(out, "%u replicas:\n", i + 1);
|
|
pr_buf(out, "\treserved:\t\t%llu\n",
|
|
fs_usage->u.persistent_reserved[i]);
|
|
}
|
|
|
|
for (i = 0; i < c->replicas.nr; i++) {
|
|
struct bch_replicas_entry *e =
|
|
cpu_replicas_entry(&c->replicas, i);
|
|
|
|
pr_buf(out, "\t");
|
|
bch2_replicas_entry_to_text(out, e);
|
|
pr_buf(out, ":\t%llu\n", fs_usage->u.replicas[i]);
|
|
}
|
|
}
|
|
|
|
#define RESERVE_FACTOR 6
|
|
|
|
static u64 reserve_factor(u64 r)
|
|
{
|
|
return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR);
|
|
}
|
|
|
|
static u64 avail_factor(u64 r)
|
|
{
|
|
return (r << RESERVE_FACTOR) / ((1 << RESERVE_FACTOR) + 1);
|
|
}
|
|
|
|
u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage_online *fs_usage)
|
|
{
|
|
return min(fs_usage->u.hidden +
|
|
fs_usage->u.btree +
|
|
fs_usage->u.data +
|
|
reserve_factor(fs_usage->u.reserved +
|
|
fs_usage->online_reserved),
|
|
c->capacity);
|
|
}
|
|
|
|
static struct bch_fs_usage_short
|
|
__bch2_fs_usage_read_short(struct bch_fs *c)
|
|
{
|
|
struct bch_fs_usage_short ret;
|
|
u64 data, reserved;
|
|
|
|
ret.capacity = c->capacity -
|
|
bch2_fs_usage_read_one(c, &c->usage_base->hidden);
|
|
|
|
data = bch2_fs_usage_read_one(c, &c->usage_base->data) +
|
|
bch2_fs_usage_read_one(c, &c->usage_base->btree);
|
|
reserved = bch2_fs_usage_read_one(c, &c->usage_base->reserved) +
|
|
percpu_u64_get(c->online_reserved);
|
|
|
|
ret.used = min(ret.capacity, data + reserve_factor(reserved));
|
|
ret.free = ret.capacity - ret.used;
|
|
|
|
ret.nr_inodes = bch2_fs_usage_read_one(c, &c->usage_base->nr_inodes);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct bch_fs_usage_short
|
|
bch2_fs_usage_read_short(struct bch_fs *c)
|
|
{
|
|
struct bch_fs_usage_short ret;
|
|
|
|
percpu_down_read(&c->mark_lock);
|
|
ret = __bch2_fs_usage_read_short(c);
|
|
percpu_up_read(&c->mark_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int is_unavailable_bucket(struct bucket_mark m)
|
|
{
|
|
return !is_available_bucket(m);
|
|
}
|
|
|
|
static inline int is_fragmented_bucket(struct bucket_mark m,
|
|
struct bch_dev *ca)
|
|
{
|
|
if (!m.owned_by_allocator &&
|
|
m.data_type == BCH_DATA_USER &&
|
|
bucket_sectors_used(m))
|
|
return max_t(int, 0, (int) ca->mi.bucket_size -
|
|
bucket_sectors_used(m));
|
|
return 0;
|
|
}
|
|
|
|
static inline enum bch_data_type bucket_type(struct bucket_mark m)
|
|
{
|
|
return m.cached_sectors && !m.dirty_sectors
|
|
? BCH_DATA_CACHED
|
|
: m.data_type;
|
|
}
|
|
|
|
static bool bucket_became_unavailable(struct bucket_mark old,
|
|
struct bucket_mark new)
|
|
{
|
|
return is_available_bucket(old) &&
|
|
!is_available_bucket(new);
|
|
}
|
|
|
|
int bch2_fs_usage_apply(struct bch_fs *c,
|
|
struct bch_fs_usage_online *src,
|
|
struct disk_reservation *disk_res,
|
|
unsigned journal_seq)
|
|
{
|
|
struct bch_fs_usage *dst = fs_usage_ptr(c, journal_seq, false);
|
|
s64 added = src->u.data + src->u.reserved;
|
|
s64 should_not_have_added;
|
|
int ret = 0;
|
|
|
|
percpu_rwsem_assert_held(&c->mark_lock);
|
|
|
|
/*
|
|
* Not allowed to reduce sectors_available except by getting a
|
|
* reservation:
|
|
*/
|
|
should_not_have_added = added - (s64) (disk_res ? disk_res->sectors : 0);
|
|
if (WARN_ONCE(should_not_have_added > 0,
|
|
"disk usage increased by %lli more than reservation of %llu",
|
|
added, disk_res ? disk_res->sectors : 0)) {
|
|
atomic64_sub(should_not_have_added, &c->sectors_available);
|
|
added -= should_not_have_added;
|
|
ret = -1;
|
|
}
|
|
|
|
if (added > 0) {
|
|
disk_res->sectors -= added;
|
|
src->online_reserved -= added;
|
|
}
|
|
|
|
this_cpu_add(*c->online_reserved, src->online_reserved);
|
|
|
|
preempt_disable();
|
|
acc_u64s((u64 *) dst, (u64 *) &src->u, fs_usage_u64s(c));
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void account_bucket(struct bch_fs_usage *fs_usage,
|
|
struct bch_dev_usage *dev_usage,
|
|
enum bch_data_type type,
|
|
int nr, s64 size)
|
|
{
|
|
if (type == BCH_DATA_SB || type == BCH_DATA_JOURNAL)
|
|
fs_usage->hidden += size;
|
|
|
|
dev_usage->buckets[type] += nr;
|
|
}
|
|
|
|
static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca,
|
|
struct bch_fs_usage *fs_usage,
|
|
struct bucket_mark old, struct bucket_mark new,
|
|
bool gc)
|
|
{
|
|
struct bch_dev_usage *dev_usage;
|
|
|
|
percpu_rwsem_assert_held(&c->mark_lock);
|
|
|
|
bch2_fs_inconsistent_on(old.data_type && new.data_type &&
|
|
old.data_type != new.data_type, c,
|
|
"different types of data in same bucket: %s, %s",
|
|
bch2_data_types[old.data_type],
|
|
bch2_data_types[new.data_type]);
|
|
|
|
preempt_disable();
|
|
dev_usage = this_cpu_ptr(ca->usage[gc]);
|
|
|
|
if (bucket_type(old))
|
|
account_bucket(fs_usage, dev_usage, bucket_type(old),
|
|
-1, -ca->mi.bucket_size);
|
|
|
|
if (bucket_type(new))
|
|
account_bucket(fs_usage, dev_usage, bucket_type(new),
|
|
1, ca->mi.bucket_size);
|
|
|
|
dev_usage->buckets_ec += (int) new.stripe - (int) old.stripe;
|
|
dev_usage->buckets_unavailable +=
|
|
is_unavailable_bucket(new) - is_unavailable_bucket(old);
|
|
|
|
dev_usage->sectors[old.data_type] -= old.dirty_sectors;
|
|
dev_usage->sectors[new.data_type] += new.dirty_sectors;
|
|
dev_usage->sectors[BCH_DATA_CACHED] +=
|
|
(int) new.cached_sectors - (int) old.cached_sectors;
|
|
dev_usage->sectors_fragmented +=
|
|
is_fragmented_bucket(new, ca) - is_fragmented_bucket(old, ca);
|
|
preempt_enable();
|
|
|
|
if (!is_available_bucket(old) && is_available_bucket(new))
|
|
bch2_wake_allocator(ca);
|
|
}
|
|
|
|
void bch2_dev_usage_from_buckets(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
struct bucket_mark old = { .v.counter = 0 };
|
|
struct bucket_array *buckets;
|
|
struct bucket *g;
|
|
unsigned i;
|
|
int cpu;
|
|
|
|
c->usage_base->hidden = 0;
|
|
|
|
for_each_member_device(ca, c, i) {
|
|
for_each_possible_cpu(cpu)
|
|
memset(per_cpu_ptr(ca->usage[0], cpu), 0,
|
|
sizeof(*ca->usage[0]));
|
|
|
|
buckets = bucket_array(ca);
|
|
|
|
for_each_bucket(g, buckets)
|
|
bch2_dev_usage_update(c, ca, c->usage_base,
|
|
old, g->mark, false);
|
|
}
|
|
}
|
|
|
|
#define bucket_data_cmpxchg(c, ca, fs_usage, g, new, expr) \
|
|
({ \
|
|
struct bucket_mark _old = bucket_cmpxchg(g, new, expr); \
|
|
\
|
|
bch2_dev_usage_update(c, ca, fs_usage, _old, new, gc); \
|
|
_old; \
|
|
})
|
|
|
|
static inline void update_replicas(struct bch_fs *c,
|
|
struct bch_fs_usage *fs_usage,
|
|
struct bch_replicas_entry *r,
|
|
s64 sectors)
|
|
{
|
|
int idx = bch2_replicas_entry_idx(c, r);
|
|
|
|
BUG_ON(idx < 0);
|
|
BUG_ON(!sectors);
|
|
|
|
switch (r->data_type) {
|
|
case BCH_DATA_BTREE:
|
|
fs_usage->btree += sectors;
|
|
break;
|
|
case BCH_DATA_USER:
|
|
fs_usage->data += sectors;
|
|
break;
|
|
case BCH_DATA_CACHED:
|
|
fs_usage->cached += sectors;
|
|
break;
|
|
}
|
|
fs_usage->replicas[idx] += sectors;
|
|
}
|
|
|
|
static inline void update_cached_sectors(struct bch_fs *c,
|
|
struct bch_fs_usage *fs_usage,
|
|
unsigned dev, s64 sectors)
|
|
{
|
|
struct bch_replicas_padded r;
|
|
|
|
bch2_replicas_entry_cached(&r.e, dev);
|
|
|
|
update_replicas(c, fs_usage, &r.e, sectors);
|
|
}
|
|
|
|
static struct replicas_delta_list *
|
|
replicas_deltas_realloc(struct btree_trans *trans, unsigned more)
|
|
{
|
|
struct replicas_delta_list *d = trans->fs_usage_deltas;
|
|
unsigned new_size = d ? (d->size + more) * 2 : 128;
|
|
|
|
if (!d || d->used + more > d->size) {
|
|
d = krealloc(d, sizeof(*d) + new_size, GFP_NOIO|__GFP_ZERO);
|
|
BUG_ON(!d);
|
|
|
|
d->size = new_size;
|
|
trans->fs_usage_deltas = d;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
static inline void update_replicas_list(struct btree_trans *trans,
|
|
struct bch_replicas_entry *r,
|
|
s64 sectors)
|
|
{
|
|
struct replicas_delta_list *d;
|
|
struct replicas_delta *n;
|
|
unsigned b = replicas_entry_bytes(r) + 8;
|
|
|
|
d = replicas_deltas_realloc(trans, b);
|
|
|
|
n = (void *) d->d + d->used;
|
|
n->delta = sectors;
|
|
memcpy((void *) n + offsetof(struct replicas_delta, r),
|
|
r, replicas_entry_bytes(r));
|
|
d->used += b;
|
|
}
|
|
|
|
static inline void update_cached_sectors_list(struct btree_trans *trans,
|
|
unsigned dev, s64 sectors)
|
|
{
|
|
struct bch_replicas_padded r;
|
|
|
|
bch2_replicas_entry_cached(&r.e, dev);
|
|
|
|
update_replicas_list(trans, &r.e, sectors);
|
|
}
|
|
|
|
void bch2_replicas_delta_list_apply(struct bch_fs *c,
|
|
struct bch_fs_usage *fs_usage,
|
|
struct replicas_delta_list *r)
|
|
{
|
|
struct replicas_delta *d = r->d;
|
|
struct replicas_delta *top = (void *) r->d + r->used;
|
|
|
|
acc_u64s((u64 *) fs_usage,
|
|
(u64 *) &r->fs_usage, sizeof(*fs_usage) / sizeof(u64));
|
|
|
|
while (d != top) {
|
|
BUG_ON((void *) d > (void *) top);
|
|
|
|
update_replicas(c, fs_usage, &d->r, d->delta);
|
|
|
|
d = (void *) d + replicas_entry_bytes(&d->r) + 8;
|
|
}
|
|
}
|
|
|
|
#define do_mark_fn(fn, c, pos, flags, ...) \
|
|
({ \
|
|
int gc, ret = 0; \
|
|
\
|
|
percpu_rwsem_assert_held(&c->mark_lock); \
|
|
\
|
|
for (gc = 0; gc < 2 && !ret; gc++) \
|
|
if (!gc == !(flags & BCH_BUCKET_MARK_GC) || \
|
|
(gc && gc_visited(c, pos))) \
|
|
ret = fn(c, __VA_ARGS__, gc); \
|
|
ret; \
|
|
})
|
|
|
|
static int __bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t b, struct bucket_mark *ret,
|
|
bool gc)
|
|
{
|
|
struct bch_fs_usage *fs_usage = fs_usage_ptr(c, 0, gc);
|
|
struct bucket *g = __bucket(ca, b, gc);
|
|
struct bucket_mark old, new;
|
|
|
|
old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({
|
|
BUG_ON(!is_available_bucket(new));
|
|
|
|
new.owned_by_allocator = true;
|
|
new.dirty = true;
|
|
new.data_type = 0;
|
|
new.cached_sectors = 0;
|
|
new.dirty_sectors = 0;
|
|
new.gen++;
|
|
}));
|
|
|
|
if (old.cached_sectors)
|
|
update_cached_sectors(c, fs_usage, ca->dev_idx,
|
|
-((s64) old.cached_sectors));
|
|
|
|
if (!gc)
|
|
*ret = old;
|
|
return 0;
|
|
}
|
|
|
|
void bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t b, struct bucket_mark *old)
|
|
{
|
|
do_mark_fn(__bch2_invalidate_bucket, c, gc_phase(GC_PHASE_START), 0,
|
|
ca, b, old);
|
|
|
|
if (!old->owned_by_allocator && old->cached_sectors)
|
|
trace_invalidate(ca, bucket_to_sector(ca, b),
|
|
old->cached_sectors);
|
|
}
|
|
|
|
static int __bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t b, bool owned_by_allocator,
|
|
bool gc)
|
|
{
|
|
struct bch_fs_usage *fs_usage = fs_usage_ptr(c, 0, gc);
|
|
struct bucket *g = __bucket(ca, b, gc);
|
|
struct bucket_mark old, new;
|
|
|
|
old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({
|
|
new.owned_by_allocator = owned_by_allocator;
|
|
}));
|
|
|
|
BUG_ON(!gc &&
|
|
!owned_by_allocator && !old.owned_by_allocator);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t b, bool owned_by_allocator,
|
|
struct gc_pos pos, unsigned flags)
|
|
{
|
|
preempt_disable();
|
|
|
|
do_mark_fn(__bch2_mark_alloc_bucket, c, pos, flags,
|
|
ca, b, owned_by_allocator);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static int bch2_mark_alloc(struct bch_fs *c, struct bkey_s_c k,
|
|
struct bch_fs_usage *fs_usage,
|
|
u64 journal_seq, unsigned flags)
|
|
{
|
|
bool gc = flags & BCH_BUCKET_MARK_GC;
|
|
struct bkey_alloc_unpacked u;
|
|
struct bch_dev *ca;
|
|
struct bucket *g;
|
|
struct bucket_mark old, m;
|
|
|
|
/*
|
|
* alloc btree is read in by bch2_alloc_read, not gc:
|
|
*/
|
|
if ((flags & BCH_BUCKET_MARK_GC) &&
|
|
!(flags & BCH_BUCKET_MARK_BUCKET_INVALIDATE))
|
|
return 0;
|
|
|
|
ca = bch_dev_bkey_exists(c, k.k->p.inode);
|
|
|
|
if (k.k->p.offset >= ca->mi.nbuckets)
|
|
return 0;
|
|
|
|
g = __bucket(ca, k.k->p.offset, gc);
|
|
u = bch2_alloc_unpack(k);
|
|
|
|
old = bucket_cmpxchg(g, m, ({
|
|
m.gen = u.gen;
|
|
m.data_type = u.data_type;
|
|
m.dirty_sectors = u.dirty_sectors;
|
|
m.cached_sectors = u.cached_sectors;
|
|
|
|
if (journal_seq) {
|
|
m.journal_seq_valid = 1;
|
|
m.journal_seq = journal_seq;
|
|
}
|
|
}));
|
|
|
|
if (!(flags & BCH_BUCKET_MARK_ALLOC_READ))
|
|
bch2_dev_usage_update(c, ca, fs_usage, old, m, gc);
|
|
|
|
g->io_time[READ] = u.read_time;
|
|
g->io_time[WRITE] = u.write_time;
|
|
g->oldest_gen = u.oldest_gen;
|
|
g->gen_valid = 1;
|
|
|
|
/*
|
|
* need to know if we're getting called from the invalidate path or
|
|
* not:
|
|
*/
|
|
|
|
if ((flags & BCH_BUCKET_MARK_BUCKET_INVALIDATE) &&
|
|
old.cached_sectors) {
|
|
update_cached_sectors(c, fs_usage, ca->dev_idx,
|
|
-old.cached_sectors);
|
|
trace_invalidate(ca, bucket_to_sector(ca, k.k->p.offset),
|
|
old.cached_sectors);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define checked_add(a, b) \
|
|
({ \
|
|
unsigned _res = (unsigned) (a) + (b); \
|
|
bool overflow = _res > U16_MAX; \
|
|
if (overflow) \
|
|
_res = U16_MAX; \
|
|
(a) = _res; \
|
|
overflow; \
|
|
})
|
|
|
|
static int __bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t b, enum bch_data_type type,
|
|
unsigned sectors, bool gc)
|
|
{
|
|
struct bucket *g = __bucket(ca, b, gc);
|
|
struct bucket_mark old, new;
|
|
bool overflow;
|
|
|
|
BUG_ON(type != BCH_DATA_SB &&
|
|
type != BCH_DATA_JOURNAL);
|
|
|
|
old = bucket_cmpxchg(g, new, ({
|
|
new.dirty = true;
|
|
new.data_type = type;
|
|
overflow = checked_add(new.dirty_sectors, sectors);
|
|
}));
|
|
|
|
bch2_fs_inconsistent_on(overflow, c,
|
|
"bucket sector count overflow: %u + %u > U16_MAX",
|
|
old.dirty_sectors, sectors);
|
|
|
|
if (c)
|
|
bch2_dev_usage_update(c, ca, fs_usage_ptr(c, 0, gc),
|
|
old, new, gc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t b, enum bch_data_type type,
|
|
unsigned sectors, struct gc_pos pos,
|
|
unsigned flags)
|
|
{
|
|
BUG_ON(type != BCH_DATA_SB &&
|
|
type != BCH_DATA_JOURNAL);
|
|
|
|
preempt_disable();
|
|
|
|
if (likely(c)) {
|
|
do_mark_fn(__bch2_mark_metadata_bucket, c, pos, flags,
|
|
ca, b, type, sectors);
|
|
} else {
|
|
__bch2_mark_metadata_bucket(c, ca, b, type, sectors, 0);
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static s64 ptr_disk_sectors_delta(struct extent_ptr_decoded p,
|
|
s64 delta)
|
|
{
|
|
if (delta > 0) {
|
|
/*
|
|
* marking a new extent, which _will have size_ @delta
|
|
*
|
|
* in the bch2_mark_update -> BCH_EXTENT_OVERLAP_MIDDLE
|
|
* case, we haven't actually created the key we'll be inserting
|
|
* yet (for the split) - so we don't want to be using
|
|
* k->size/crc.live_size here:
|
|
*/
|
|
return __ptr_disk_sectors(p, delta);
|
|
} else {
|
|
BUG_ON(-delta > p.crc.live_size);
|
|
|
|
return (s64) __ptr_disk_sectors(p, p.crc.live_size + delta) -
|
|
(s64) ptr_disk_sectors(p);
|
|
}
|
|
}
|
|
|
|
static void bucket_set_stripe(struct bch_fs *c,
|
|
const struct bch_stripe *v,
|
|
struct bch_fs_usage *fs_usage,
|
|
u64 journal_seq,
|
|
unsigned flags)
|
|
{
|
|
bool enabled = !(flags & BCH_BUCKET_MARK_OVERWRITE);
|
|
bool gc = flags & BCH_BUCKET_MARK_GC;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < v->nr_blocks; i++) {
|
|
const struct bch_extent_ptr *ptr = v->ptrs + i;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
struct bucket *g = PTR_BUCKET(ca, ptr, gc);
|
|
struct bucket_mark new, old;
|
|
|
|
old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({
|
|
new.dirty = true;
|
|
new.stripe = enabled;
|
|
if (journal_seq) {
|
|
new.journal_seq_valid = 1;
|
|
new.journal_seq = journal_seq;
|
|
}
|
|
}));
|
|
|
|
/*
|
|
* XXX write repair code for these, flag stripe as possibly bad
|
|
*/
|
|
if (old.gen != ptr->gen)
|
|
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
|
|
"stripe with stale pointer");
|
|
#if 0
|
|
/*
|
|
* We'd like to check for these, but these checks don't work
|
|
* yet:
|
|
*/
|
|
if (old.stripe && enabled)
|
|
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
|
|
"multiple stripes using same bucket");
|
|
|
|
if (!old.stripe && !enabled)
|
|
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
|
|
"deleting stripe but bucket not marked as stripe bucket");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static bool bch2_mark_pointer(struct bch_fs *c,
|
|
struct extent_ptr_decoded p,
|
|
s64 sectors, enum bch_data_type data_type,
|
|
struct bch_fs_usage *fs_usage,
|
|
u64 journal_seq, unsigned flags)
|
|
{
|
|
bool gc = flags & BCH_BUCKET_MARK_GC;
|
|
struct bucket_mark old, new;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
|
|
struct bucket *g = PTR_BUCKET(ca, &p.ptr, gc);
|
|
bool overflow;
|
|
u64 v;
|
|
|
|
v = atomic64_read(&g->_mark.v);
|
|
do {
|
|
new.v.counter = old.v.counter = v;
|
|
|
|
new.dirty = true;
|
|
|
|
/*
|
|
* Check this after reading bucket mark to guard against
|
|
* the allocator invalidating a bucket after we've already
|
|
* checked the gen
|
|
*/
|
|
if (gen_after(new.gen, p.ptr.gen)) {
|
|
/* XXX write repair code for this */
|
|
if (!p.ptr.cached &&
|
|
test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
|
|
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
|
|
"stale dirty pointer");
|
|
return true;
|
|
}
|
|
|
|
if (!p.ptr.cached)
|
|
overflow = checked_add(new.dirty_sectors, sectors);
|
|
else
|
|
overflow = checked_add(new.cached_sectors, sectors);
|
|
|
|
if (!new.dirty_sectors &&
|
|
!new.cached_sectors) {
|
|
new.data_type = 0;
|
|
|
|
if (journal_seq) {
|
|
new.journal_seq_valid = 1;
|
|
new.journal_seq = journal_seq;
|
|
}
|
|
} else {
|
|
new.data_type = data_type;
|
|
}
|
|
|
|
if (flags & BCH_BUCKET_MARK_NOATOMIC) {
|
|
g->_mark = new;
|
|
break;
|
|
}
|
|
} while ((v = atomic64_cmpxchg(&g->_mark.v,
|
|
old.v.counter,
|
|
new.v.counter)) != old.v.counter);
|
|
|
|
bch2_fs_inconsistent_on(overflow, c,
|
|
"bucket sector count overflow: %u + %lli > U16_MAX",
|
|
!p.ptr.cached
|
|
? old.dirty_sectors
|
|
: old.cached_sectors, sectors);
|
|
|
|
bch2_dev_usage_update(c, ca, fs_usage, old, new, gc);
|
|
|
|
BUG_ON(!gc && bucket_became_unavailable(old, new));
|
|
|
|
return false;
|
|
}
|
|
|
|
static int bch2_mark_stripe_ptr(struct bch_fs *c,
|
|
struct bch_extent_stripe_ptr p,
|
|
enum bch_data_type data_type,
|
|
struct bch_fs_usage *fs_usage,
|
|
s64 sectors, unsigned flags)
|
|
{
|
|
bool gc = flags & BCH_BUCKET_MARK_GC;
|
|
struct stripe *m;
|
|
unsigned old, new, nr_data;
|
|
int blocks_nonempty_delta;
|
|
s64 parity_sectors;
|
|
|
|
BUG_ON(!sectors);
|
|
|
|
m = genradix_ptr(&c->stripes[gc], p.idx);
|
|
|
|
spin_lock(&c->ec_stripes_heap_lock);
|
|
|
|
if (!m || !m->alive) {
|
|
spin_unlock(&c->ec_stripes_heap_lock);
|
|
bch_err_ratelimited(c, "pointer to nonexistent stripe %llu",
|
|
(u64) p.idx);
|
|
return -1;
|
|
}
|
|
|
|
BUG_ON(m->r.e.data_type != data_type);
|
|
|
|
nr_data = m->nr_blocks - m->nr_redundant;
|
|
|
|
parity_sectors = DIV_ROUND_UP(abs(sectors) * m->nr_redundant, nr_data);
|
|
|
|
if (sectors < 0)
|
|
parity_sectors = -parity_sectors;
|
|
sectors += parity_sectors;
|
|
|
|
old = m->block_sectors[p.block];
|
|
m->block_sectors[p.block] += sectors;
|
|
new = m->block_sectors[p.block];
|
|
|
|
blocks_nonempty_delta = (int) !!new - (int) !!old;
|
|
if (blocks_nonempty_delta) {
|
|
m->blocks_nonempty += blocks_nonempty_delta;
|
|
|
|
if (!gc)
|
|
bch2_stripes_heap_update(c, m, p.idx);
|
|
}
|
|
|
|
m->dirty = true;
|
|
|
|
spin_unlock(&c->ec_stripes_heap_lock);
|
|
|
|
update_replicas(c, fs_usage, &m->r.e, sectors);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bch2_mark_extent(struct bch_fs *c, struct bkey_s_c k,
|
|
s64 sectors, enum bch_data_type data_type,
|
|
struct bch_fs_usage *fs_usage,
|
|
unsigned journal_seq, unsigned flags)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
struct bch_replicas_padded r;
|
|
s64 dirty_sectors = 0;
|
|
unsigned i;
|
|
int ret;
|
|
|
|
r.e.data_type = data_type;
|
|
r.e.nr_devs = 0;
|
|
r.e.nr_required = 1;
|
|
|
|
BUG_ON(!sectors);
|
|
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
|
|
s64 disk_sectors = data_type == BCH_DATA_BTREE
|
|
? sectors
|
|
: ptr_disk_sectors_delta(p, sectors);
|
|
bool stale = bch2_mark_pointer(c, p, disk_sectors, data_type,
|
|
fs_usage, journal_seq, flags);
|
|
|
|
if (p.ptr.cached) {
|
|
if (disk_sectors && !stale)
|
|
update_cached_sectors(c, fs_usage, p.ptr.dev,
|
|
disk_sectors);
|
|
} else if (!p.ec_nr) {
|
|
dirty_sectors += disk_sectors;
|
|
r.e.devs[r.e.nr_devs++] = p.ptr.dev;
|
|
} else {
|
|
for (i = 0; i < p.ec_nr; i++) {
|
|
ret = bch2_mark_stripe_ptr(c, p.ec[i],
|
|
data_type, fs_usage,
|
|
disk_sectors, flags);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
r.e.nr_required = 0;
|
|
}
|
|
}
|
|
|
|
if (dirty_sectors)
|
|
update_replicas(c, fs_usage, &r.e, dirty_sectors);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bch2_mark_stripe(struct bch_fs *c, struct bkey_s_c k,
|
|
struct bch_fs_usage *fs_usage,
|
|
u64 journal_seq, unsigned flags)
|
|
{
|
|
bool gc = flags & BCH_BUCKET_MARK_GC;
|
|
struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k);
|
|
size_t idx = s.k->p.offset;
|
|
struct stripe *m = genradix_ptr(&c->stripes[gc], idx);
|
|
unsigned i;
|
|
|
|
spin_lock(&c->ec_stripes_heap_lock);
|
|
|
|
if (!m || ((flags & BCH_BUCKET_MARK_OVERWRITE) && !m->alive)) {
|
|
spin_unlock(&c->ec_stripes_heap_lock);
|
|
bch_err_ratelimited(c, "error marking nonexistent stripe %zu",
|
|
idx);
|
|
return -1;
|
|
}
|
|
|
|
if (!(flags & BCH_BUCKET_MARK_OVERWRITE)) {
|
|
m->sectors = le16_to_cpu(s.v->sectors);
|
|
m->algorithm = s.v->algorithm;
|
|
m->nr_blocks = s.v->nr_blocks;
|
|
m->nr_redundant = s.v->nr_redundant;
|
|
|
|
bch2_bkey_to_replicas(&m->r.e, k);
|
|
|
|
/*
|
|
* XXX: account for stripes somehow here
|
|
*/
|
|
#if 0
|
|
update_replicas(c, fs_usage, &m->r.e, stripe_sectors);
|
|
#endif
|
|
|
|
/* gc recalculates these fields: */
|
|
if (!(flags & BCH_BUCKET_MARK_GC)) {
|
|
for (i = 0; i < s.v->nr_blocks; i++) {
|
|
m->block_sectors[i] =
|
|
stripe_blockcount_get(s.v, i);
|
|
m->blocks_nonempty += !!m->block_sectors[i];
|
|
}
|
|
}
|
|
|
|
if (!gc)
|
|
bch2_stripes_heap_update(c, m, idx);
|
|
m->alive = true;
|
|
} else {
|
|
if (!gc)
|
|
bch2_stripes_heap_del(c, m, idx);
|
|
memset(m, 0, sizeof(*m));
|
|
}
|
|
|
|
spin_unlock(&c->ec_stripes_heap_lock);
|
|
|
|
bucket_set_stripe(c, s.v, fs_usage, 0, flags);
|
|
return 0;
|
|
}
|
|
|
|
int bch2_mark_key_locked(struct bch_fs *c,
|
|
struct bkey_s_c k, s64 sectors,
|
|
struct bch_fs_usage *fs_usage,
|
|
u64 journal_seq, unsigned flags)
|
|
{
|
|
int ret = 0;
|
|
|
|
preempt_disable();
|
|
|
|
if (!fs_usage || (flags & BCH_BUCKET_MARK_GC))
|
|
fs_usage = fs_usage_ptr(c, journal_seq,
|
|
flags & BCH_BUCKET_MARK_GC);
|
|
|
|
switch (k.k->type) {
|
|
case KEY_TYPE_alloc:
|
|
ret = bch2_mark_alloc(c, k, fs_usage, journal_seq, flags);
|
|
break;
|
|
case KEY_TYPE_btree_ptr:
|
|
sectors = !(flags & BCH_BUCKET_MARK_OVERWRITE)
|
|
? c->opts.btree_node_size
|
|
: -c->opts.btree_node_size;
|
|
|
|
ret = bch2_mark_extent(c, k, sectors, BCH_DATA_BTREE,
|
|
fs_usage, journal_seq, flags);
|
|
break;
|
|
case KEY_TYPE_extent:
|
|
ret = bch2_mark_extent(c, k, sectors, BCH_DATA_USER,
|
|
fs_usage, journal_seq, flags);
|
|
break;
|
|
case KEY_TYPE_stripe:
|
|
ret = bch2_mark_stripe(c, k, fs_usage, journal_seq, flags);
|
|
break;
|
|
case KEY_TYPE_inode:
|
|
if (!(flags & BCH_BUCKET_MARK_OVERWRITE))
|
|
fs_usage->nr_inodes++;
|
|
else
|
|
fs_usage->nr_inodes--;
|
|
break;
|
|
case KEY_TYPE_reservation: {
|
|
unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas;
|
|
|
|
sectors *= replicas;
|
|
replicas = clamp_t(unsigned, replicas, 1,
|
|
ARRAY_SIZE(fs_usage->persistent_reserved));
|
|
|
|
fs_usage->reserved += sectors;
|
|
fs_usage->persistent_reserved[replicas - 1] += sectors;
|
|
break;
|
|
}
|
|
}
|
|
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bch2_mark_key(struct bch_fs *c, struct bkey_s_c k,
|
|
s64 sectors,
|
|
struct bch_fs_usage *fs_usage,
|
|
u64 journal_seq, unsigned flags)
|
|
{
|
|
int ret;
|
|
|
|
percpu_down_read(&c->mark_lock);
|
|
ret = bch2_mark_key_locked(c, k, sectors,
|
|
fs_usage, journal_seq, flags);
|
|
percpu_up_read(&c->mark_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
inline int bch2_mark_overwrite(struct btree_trans *trans,
|
|
struct btree_iter *iter,
|
|
struct bkey_s_c old,
|
|
struct bkey_i *new,
|
|
struct bch_fs_usage *fs_usage,
|
|
unsigned flags)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree *b = iter->l[0].b;
|
|
s64 sectors = 0;
|
|
|
|
if (btree_node_is_extents(b)
|
|
? bkey_cmp(new->k.p, bkey_start_pos(old.k)) <= 0
|
|
: bkey_cmp(new->k.p, old.k->p))
|
|
return 0;
|
|
|
|
if (btree_node_is_extents(b)) {
|
|
switch (bch2_extent_overlap(&new->k, old.k)) {
|
|
case BCH_EXTENT_OVERLAP_ALL:
|
|
sectors = -((s64) old.k->size);
|
|
break;
|
|
case BCH_EXTENT_OVERLAP_BACK:
|
|
sectors = bkey_start_offset(&new->k) -
|
|
old.k->p.offset;
|
|
break;
|
|
case BCH_EXTENT_OVERLAP_FRONT:
|
|
sectors = bkey_start_offset(old.k) -
|
|
new->k.p.offset;
|
|
break;
|
|
case BCH_EXTENT_OVERLAP_MIDDLE:
|
|
sectors = old.k->p.offset - new->k.p.offset;
|
|
BUG_ON(sectors <= 0);
|
|
|
|
bch2_mark_key_locked(c, old, sectors,
|
|
fs_usage, trans->journal_res.seq,
|
|
BCH_BUCKET_MARK_INSERT|flags);
|
|
|
|
sectors = bkey_start_offset(&new->k) -
|
|
old.k->p.offset;
|
|
break;
|
|
}
|
|
|
|
BUG_ON(sectors >= 0);
|
|
}
|
|
|
|
return bch2_mark_key_locked(c, old, sectors, fs_usage,
|
|
trans->journal_res.seq,
|
|
BCH_BUCKET_MARK_OVERWRITE|flags) ?: 1;
|
|
}
|
|
|
|
int bch2_mark_update(struct btree_trans *trans,
|
|
struct btree_insert_entry *insert,
|
|
struct bch_fs_usage *fs_usage,
|
|
unsigned flags)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_iter *iter = insert->iter;
|
|
struct btree *b = iter->l[0].b;
|
|
struct btree_node_iter node_iter = iter->l[0].iter;
|
|
struct bkey_packed *_k;
|
|
int ret = 0;
|
|
|
|
if (!btree_node_type_needs_gc(iter->btree_id))
|
|
return 0;
|
|
|
|
if (!(trans->flags & BTREE_INSERT_NOMARK_INSERT))
|
|
bch2_mark_key_locked(c, bkey_i_to_s_c(insert->k),
|
|
bpos_min(insert->k->k.p, b->key.k.p).offset -
|
|
bkey_start_offset(&insert->k->k),
|
|
fs_usage, trans->journal_res.seq,
|
|
BCH_BUCKET_MARK_INSERT|flags);
|
|
|
|
if (unlikely(trans->flags & BTREE_INSERT_NOMARK_OVERWRITES))
|
|
return 0;
|
|
|
|
/*
|
|
* For non extents, we only mark the new key, not the key being
|
|
* overwritten - unless we're actually deleting:
|
|
*/
|
|
if ((iter->btree_id == BTREE_ID_ALLOC ||
|
|
iter->btree_id == BTREE_ID_EC) &&
|
|
!bkey_deleted(&insert->k->k))
|
|
return 0;
|
|
|
|
while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
|
|
KEY_TYPE_discard))) {
|
|
struct bkey unpacked;
|
|
struct bkey_s_c k = bkey_disassemble(b, _k, &unpacked);
|
|
|
|
ret = bch2_mark_overwrite(trans, iter, k, insert->k,
|
|
fs_usage, flags);
|
|
if (ret <= 0)
|
|
break;
|
|
|
|
bch2_btree_node_iter_advance(&node_iter, b);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch2_trans_fs_usage_apply(struct btree_trans *trans,
|
|
struct bch_fs_usage_online *fs_usage)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_insert_entry *i;
|
|
static int warned_disk_usage = 0;
|
|
u64 disk_res_sectors = trans->disk_res ? trans->disk_res->sectors : 0;
|
|
char buf[200];
|
|
|
|
if (!bch2_fs_usage_apply(c, fs_usage, trans->disk_res,
|
|
trans->journal_res.seq) ||
|
|
warned_disk_usage ||
|
|
xchg(&warned_disk_usage, 1))
|
|
return;
|
|
|
|
pr_err("disk usage increased more than %llu sectors reserved", disk_res_sectors);
|
|
|
|
trans_for_each_update_iter(trans, i) {
|
|
struct btree_iter *iter = i->iter;
|
|
struct btree *b = iter->l[0].b;
|
|
struct btree_node_iter node_iter = iter->l[0].iter;
|
|
struct bkey_packed *_k;
|
|
|
|
pr_err("while inserting");
|
|
bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(i->k));
|
|
pr_err("%s", buf);
|
|
pr_err("overlapping with");
|
|
|
|
node_iter = iter->l[0].iter;
|
|
while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
|
|
KEY_TYPE_discard))) {
|
|
struct bkey unpacked;
|
|
struct bkey_s_c k;
|
|
|
|
k = bkey_disassemble(b, _k, &unpacked);
|
|
|
|
if (btree_node_is_extents(b)
|
|
? bkey_cmp(i->k->k.p, bkey_start_pos(k.k)) <= 0
|
|
: bkey_cmp(i->k->k.p, k.k->p))
|
|
break;
|
|
|
|
bch2_bkey_val_to_text(&PBUF(buf), c, k);
|
|
pr_err("%s", buf);
|
|
|
|
bch2_btree_node_iter_advance(&node_iter, b);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* trans_mark: */
|
|
|
|
static int trans_get_key(struct btree_trans *trans,
|
|
enum btree_id btree_id, struct bpos pos,
|
|
struct btree_iter **iter,
|
|
struct bkey_s_c *k)
|
|
{
|
|
unsigned i;
|
|
int ret;
|
|
|
|
for (i = 0; i < trans->nr_updates; i++)
|
|
if (!trans->updates[i].deferred &&
|
|
trans->updates[i].iter->btree_id == btree_id &&
|
|
!bkey_cmp(pos, trans->updates[i].iter->pos)) {
|
|
*iter = trans->updates[i].iter;
|
|
*k = bkey_i_to_s_c(trans->updates[i].k);
|
|
return 0;
|
|
}
|
|
|
|
*iter = __bch2_trans_get_iter(trans, btree_id, pos,
|
|
BTREE_ITER_SLOTS|BTREE_ITER_INTENT, 0);
|
|
if (IS_ERR(*iter))
|
|
return PTR_ERR(*iter);
|
|
|
|
bch2_trans_iter_free_on_commit(trans, *iter);
|
|
|
|
*k = bch2_btree_iter_peek_slot(*iter);
|
|
ret = bkey_err(*k);
|
|
if (ret)
|
|
bch2_trans_iter_put(trans, *iter);
|
|
return ret;
|
|
}
|
|
|
|
static void *trans_update_key(struct btree_trans *trans,
|
|
struct btree_iter *iter,
|
|
unsigned u64s)
|
|
{
|
|
struct bkey_i *new_k;
|
|
unsigned i;
|
|
|
|
new_k = bch2_trans_kmalloc(trans, u64s * sizeof(u64));
|
|
if (IS_ERR(new_k))
|
|
return new_k;
|
|
|
|
bkey_init(&new_k->k);
|
|
new_k->k.p = iter->pos;
|
|
|
|
for (i = 0; i < trans->nr_updates; i++)
|
|
if (!trans->updates[i].deferred &&
|
|
trans->updates[i].iter == iter) {
|
|
trans->updates[i].k = new_k;
|
|
return new_k;
|
|
}
|
|
|
|
bch2_trans_update(trans, ((struct btree_insert_entry) {
|
|
.iter = iter,
|
|
.k = new_k,
|
|
.triggered = true,
|
|
}));
|
|
|
|
return new_k;
|
|
}
|
|
|
|
static int bch2_trans_mark_pointer(struct btree_trans *trans,
|
|
struct extent_ptr_decoded p,
|
|
s64 sectors, enum bch_data_type data_type)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
|
|
struct btree_iter *iter;
|
|
struct bkey_s_c k;
|
|
struct bkey_alloc_unpacked u;
|
|
struct bkey_i_alloc *a;
|
|
bool overflow;
|
|
int ret;
|
|
|
|
ret = trans_get_key(trans, BTREE_ID_ALLOC,
|
|
POS(p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr)),
|
|
&iter, &k);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (k.k->type != KEY_TYPE_alloc) {
|
|
bch_err_ratelimited(c, "pointer to nonexistent bucket %u:%zu",
|
|
p.ptr.dev,
|
|
PTR_BUCKET_NR(ca, &p.ptr));
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
u = bch2_alloc_unpack(k);
|
|
|
|
if (gen_after(u.gen, p.ptr.gen)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (!p.ptr.cached)
|
|
overflow = checked_add(u.dirty_sectors, sectors);
|
|
else
|
|
overflow = checked_add(u.cached_sectors, sectors);
|
|
|
|
u.data_type = u.dirty_sectors || u.cached_sectors
|
|
? data_type : 0;
|
|
|
|
bch2_fs_inconsistent_on(overflow, c,
|
|
"bucket sector count overflow: %u + %lli > U16_MAX",
|
|
!p.ptr.cached
|
|
? u.dirty_sectors
|
|
: u.cached_sectors, sectors);
|
|
|
|
a = trans_update_key(trans, iter, BKEY_ALLOC_U64s_MAX);
|
|
ret = PTR_ERR_OR_ZERO(a);
|
|
if (ret)
|
|
goto out;
|
|
|
|
bkey_alloc_init(&a->k_i);
|
|
a->k.p = iter->pos;
|
|
bch2_alloc_pack(a, u);
|
|
out:
|
|
bch2_trans_iter_put(trans, iter);
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_trans_mark_stripe_ptr(struct btree_trans *trans,
|
|
struct bch_extent_stripe_ptr p,
|
|
s64 sectors, enum bch_data_type data_type)
|
|
{
|
|
struct bch_replicas_padded r;
|
|
struct btree_iter *iter;
|
|
struct bkey_i *new_k;
|
|
struct bkey_s_c k;
|
|
struct bkey_s_stripe s;
|
|
unsigned nr_data;
|
|
s64 parity_sectors;
|
|
int ret = 0;
|
|
|
|
BUG_ON(!sectors);
|
|
|
|
ret = trans_get_key(trans, BTREE_ID_EC, POS(0, p.idx), &iter, &k);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (k.k->type != KEY_TYPE_stripe) {
|
|
bch_err_ratelimited(trans->c,
|
|
"pointer to nonexistent stripe %llu",
|
|
(u64) p.idx);
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
new_k = trans_update_key(trans, iter, k.k->u64s);
|
|
ret = PTR_ERR_OR_ZERO(new_k);
|
|
if (ret)
|
|
goto out;
|
|
|
|
bkey_reassemble(new_k, k);
|
|
s = bkey_i_to_s_stripe(new_k);
|
|
|
|
nr_data = s.v->nr_blocks - s.v->nr_redundant;
|
|
|
|
parity_sectors = DIV_ROUND_UP(abs(sectors) * s.v->nr_redundant, nr_data);
|
|
|
|
if (sectors < 0)
|
|
parity_sectors = -parity_sectors;
|
|
|
|
stripe_blockcount_set(s.v, p.block,
|
|
stripe_blockcount_get(s.v, p.block) +
|
|
sectors + parity_sectors);
|
|
|
|
bch2_bkey_to_replicas(&r.e, s.s_c);
|
|
|
|
update_replicas_list(trans, &r.e, sectors);
|
|
out:
|
|
bch2_trans_iter_put(trans, iter);
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_trans_mark_extent(struct btree_trans *trans,
|
|
struct bkey_s_c k,
|
|
s64 sectors, enum bch_data_type data_type)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
struct bch_replicas_padded r;
|
|
s64 dirty_sectors = 0;
|
|
bool stale;
|
|
unsigned i;
|
|
int ret;
|
|
|
|
r.e.data_type = data_type;
|
|
r.e.nr_devs = 0;
|
|
r.e.nr_required = 1;
|
|
|
|
BUG_ON(!sectors);
|
|
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
|
|
s64 disk_sectors = data_type == BCH_DATA_BTREE
|
|
? sectors
|
|
: ptr_disk_sectors_delta(p, sectors);
|
|
|
|
ret = bch2_trans_mark_pointer(trans, p, disk_sectors,
|
|
data_type);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
stale = ret > 0;
|
|
|
|
if (p.ptr.cached) {
|
|
if (disk_sectors && !stale)
|
|
update_cached_sectors_list(trans, p.ptr.dev,
|
|
disk_sectors);
|
|
} else if (!p.ec_nr) {
|
|
dirty_sectors += disk_sectors;
|
|
r.e.devs[r.e.nr_devs++] = p.ptr.dev;
|
|
} else {
|
|
for (i = 0; i < p.ec_nr; i++) {
|
|
ret = bch2_trans_mark_stripe_ptr(trans, p.ec[i],
|
|
disk_sectors, data_type);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
r.e.nr_required = 0;
|
|
}
|
|
}
|
|
|
|
if (dirty_sectors)
|
|
update_replicas_list(trans, &r.e, dirty_sectors);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bch2_trans_mark_key(struct btree_trans *trans, struct bkey_s_c k,
|
|
s64 sectors, unsigned flags)
|
|
{
|
|
struct replicas_delta_list *d;
|
|
struct bch_fs *c = trans->c;
|
|
|
|
switch (k.k->type) {
|
|
case KEY_TYPE_btree_ptr:
|
|
sectors = !(flags & BCH_BUCKET_MARK_OVERWRITE)
|
|
? c->opts.btree_node_size
|
|
: -c->opts.btree_node_size;
|
|
|
|
return bch2_trans_mark_extent(trans, k, sectors,
|
|
BCH_DATA_BTREE);
|
|
case KEY_TYPE_extent:
|
|
return bch2_trans_mark_extent(trans, k, sectors,
|
|
BCH_DATA_USER);
|
|
case KEY_TYPE_inode:
|
|
d = replicas_deltas_realloc(trans, 0);
|
|
|
|
if (!(flags & BCH_BUCKET_MARK_OVERWRITE))
|
|
d->fs_usage.nr_inodes++;
|
|
else
|
|
d->fs_usage.nr_inodes--;
|
|
return 0;
|
|
case KEY_TYPE_reservation: {
|
|
unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas;
|
|
|
|
d = replicas_deltas_realloc(trans, 0);
|
|
|
|
sectors *= replicas;
|
|
replicas = clamp_t(unsigned, replicas, 1,
|
|
ARRAY_SIZE(d->fs_usage.persistent_reserved));
|
|
|
|
d->fs_usage.reserved += sectors;
|
|
d->fs_usage.persistent_reserved[replicas - 1] += sectors;
|
|
return 0;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int bch2_trans_mark_update(struct btree_trans *trans,
|
|
struct btree_iter *iter,
|
|
struct bkey_i *insert)
|
|
{
|
|
struct btree *b = iter->l[0].b;
|
|
struct btree_node_iter node_iter = iter->l[0].iter;
|
|
struct bkey_packed *_k;
|
|
int ret;
|
|
|
|
if (!btree_node_type_needs_gc(iter->btree_id))
|
|
return 0;
|
|
|
|
ret = bch2_trans_mark_key(trans,
|
|
bkey_i_to_s_c(insert),
|
|
bpos_min(insert->k.p, b->key.k.p).offset -
|
|
bkey_start_offset(&insert->k),
|
|
BCH_BUCKET_MARK_INSERT);
|
|
if (ret)
|
|
return ret;
|
|
|
|
while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
|
|
KEY_TYPE_discard))) {
|
|
struct bkey unpacked;
|
|
struct bkey_s_c k;
|
|
s64 sectors = 0;
|
|
|
|
k = bkey_disassemble(b, _k, &unpacked);
|
|
|
|
if (btree_node_is_extents(b)
|
|
? bkey_cmp(insert->k.p, bkey_start_pos(k.k)) <= 0
|
|
: bkey_cmp(insert->k.p, k.k->p))
|
|
break;
|
|
|
|
if (btree_node_is_extents(b)) {
|
|
switch (bch2_extent_overlap(&insert->k, k.k)) {
|
|
case BCH_EXTENT_OVERLAP_ALL:
|
|
sectors = -((s64) k.k->size);
|
|
break;
|
|
case BCH_EXTENT_OVERLAP_BACK:
|
|
sectors = bkey_start_offset(&insert->k) -
|
|
k.k->p.offset;
|
|
break;
|
|
case BCH_EXTENT_OVERLAP_FRONT:
|
|
sectors = bkey_start_offset(k.k) -
|
|
insert->k.p.offset;
|
|
break;
|
|
case BCH_EXTENT_OVERLAP_MIDDLE:
|
|
sectors = k.k->p.offset - insert->k.p.offset;
|
|
BUG_ON(sectors <= 0);
|
|
|
|
ret = bch2_trans_mark_key(trans, k, sectors,
|
|
BCH_BUCKET_MARK_INSERT);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sectors = bkey_start_offset(&insert->k) -
|
|
k.k->p.offset;
|
|
break;
|
|
}
|
|
|
|
BUG_ON(sectors >= 0);
|
|
}
|
|
|
|
ret = bch2_trans_mark_key(trans, k, sectors,
|
|
BCH_BUCKET_MARK_OVERWRITE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bch2_btree_node_iter_advance(&node_iter, b);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Disk reservations: */
|
|
|
|
#define SECTORS_CACHE 1024
|
|
|
|
int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res,
|
|
unsigned sectors, int flags)
|
|
{
|
|
struct bch_fs_pcpu *pcpu;
|
|
u64 old, v, get;
|
|
s64 sectors_available;
|
|
int ret;
|
|
|
|
percpu_down_read(&c->mark_lock);
|
|
preempt_disable();
|
|
pcpu = this_cpu_ptr(c->pcpu);
|
|
|
|
if (sectors <= pcpu->sectors_available)
|
|
goto out;
|
|
|
|
v = atomic64_read(&c->sectors_available);
|
|
do {
|
|
old = v;
|
|
get = min((u64) sectors + SECTORS_CACHE, old);
|
|
|
|
if (get < sectors) {
|
|
preempt_enable();
|
|
goto recalculate;
|
|
}
|
|
} while ((v = atomic64_cmpxchg(&c->sectors_available,
|
|
old, old - get)) != old);
|
|
|
|
pcpu->sectors_available += get;
|
|
|
|
out:
|
|
pcpu->sectors_available -= sectors;
|
|
this_cpu_add(*c->online_reserved, sectors);
|
|
res->sectors += sectors;
|
|
|
|
preempt_enable();
|
|
percpu_up_read(&c->mark_lock);
|
|
return 0;
|
|
|
|
recalculate:
|
|
mutex_lock(&c->sectors_available_lock);
|
|
|
|
percpu_u64_set(&c->pcpu->sectors_available, 0);
|
|
sectors_available = avail_factor(__bch2_fs_usage_read_short(c).free);
|
|
|
|
if (sectors <= sectors_available ||
|
|
(flags & BCH_DISK_RESERVATION_NOFAIL)) {
|
|
atomic64_set(&c->sectors_available,
|
|
max_t(s64, 0, sectors_available - sectors));
|
|
this_cpu_add(*c->online_reserved, sectors);
|
|
res->sectors += sectors;
|
|
ret = 0;
|
|
} else {
|
|
atomic64_set(&c->sectors_available, sectors_available);
|
|
ret = -ENOSPC;
|
|
}
|
|
|
|
mutex_unlock(&c->sectors_available_lock);
|
|
percpu_up_read(&c->mark_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Startup/shutdown: */
|
|
|
|
static void buckets_free_rcu(struct rcu_head *rcu)
|
|
{
|
|
struct bucket_array *buckets =
|
|
container_of(rcu, struct bucket_array, rcu);
|
|
|
|
kvpfree(buckets,
|
|
sizeof(struct bucket_array) +
|
|
buckets->nbuckets * sizeof(struct bucket));
|
|
}
|
|
|
|
int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
|
|
{
|
|
struct bucket_array *buckets = NULL, *old_buckets = NULL;
|
|
unsigned long *buckets_nouse = NULL;
|
|
unsigned long *buckets_written = NULL;
|
|
alloc_fifo free[RESERVE_NR];
|
|
alloc_fifo free_inc;
|
|
alloc_heap alloc_heap;
|
|
copygc_heap copygc_heap;
|
|
|
|
size_t btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
|
|
ca->mi.bucket_size / c->opts.btree_node_size);
|
|
/* XXX: these should be tunable */
|
|
size_t reserve_none = max_t(size_t, 1, nbuckets >> 9);
|
|
size_t copygc_reserve = max_t(size_t, 2, nbuckets >> 7);
|
|
size_t free_inc_nr = max(max_t(size_t, 1, nbuckets >> 12),
|
|
btree_reserve * 2);
|
|
bool resize = ca->buckets[0] != NULL,
|
|
start_copygc = ca->copygc_thread != NULL;
|
|
int ret = -ENOMEM;
|
|
unsigned i;
|
|
|
|
memset(&free, 0, sizeof(free));
|
|
memset(&free_inc, 0, sizeof(free_inc));
|
|
memset(&alloc_heap, 0, sizeof(alloc_heap));
|
|
memset(©gc_heap, 0, sizeof(copygc_heap));
|
|
|
|
if (!(buckets = kvpmalloc(sizeof(struct bucket_array) +
|
|
nbuckets * sizeof(struct bucket),
|
|
GFP_KERNEL|__GFP_ZERO)) ||
|
|
!(buckets_nouse = kvpmalloc(BITS_TO_LONGS(nbuckets) *
|
|
sizeof(unsigned long),
|
|
GFP_KERNEL|__GFP_ZERO)) ||
|
|
!(buckets_written = kvpmalloc(BITS_TO_LONGS(nbuckets) *
|
|
sizeof(unsigned long),
|
|
GFP_KERNEL|__GFP_ZERO)) ||
|
|
!init_fifo(&free[RESERVE_BTREE], btree_reserve, GFP_KERNEL) ||
|
|
!init_fifo(&free[RESERVE_MOVINGGC],
|
|
copygc_reserve, GFP_KERNEL) ||
|
|
!init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) ||
|
|
!init_fifo(&free_inc, free_inc_nr, GFP_KERNEL) ||
|
|
!init_heap(&alloc_heap, ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL) ||
|
|
!init_heap(©gc_heap, copygc_reserve, GFP_KERNEL))
|
|
goto err;
|
|
|
|
buckets->first_bucket = ca->mi.first_bucket;
|
|
buckets->nbuckets = nbuckets;
|
|
|
|
bch2_copygc_stop(ca);
|
|
|
|
if (resize) {
|
|
down_write(&c->gc_lock);
|
|
down_write(&ca->bucket_lock);
|
|
percpu_down_write(&c->mark_lock);
|
|
}
|
|
|
|
old_buckets = bucket_array(ca);
|
|
|
|
if (resize) {
|
|
size_t n = min(buckets->nbuckets, old_buckets->nbuckets);
|
|
|
|
memcpy(buckets->b,
|
|
old_buckets->b,
|
|
n * sizeof(struct bucket));
|
|
memcpy(buckets_nouse,
|
|
ca->buckets_nouse,
|
|
BITS_TO_LONGS(n) * sizeof(unsigned long));
|
|
memcpy(buckets_written,
|
|
ca->buckets_written,
|
|
BITS_TO_LONGS(n) * sizeof(unsigned long));
|
|
}
|
|
|
|
rcu_assign_pointer(ca->buckets[0], buckets);
|
|
buckets = old_buckets;
|
|
|
|
swap(ca->buckets_nouse, buckets_nouse);
|
|
swap(ca->buckets_written, buckets_written);
|
|
|
|
if (resize)
|
|
percpu_up_write(&c->mark_lock);
|
|
|
|
spin_lock(&c->freelist_lock);
|
|
for (i = 0; i < RESERVE_NR; i++) {
|
|
fifo_move(&free[i], &ca->free[i]);
|
|
swap(ca->free[i], free[i]);
|
|
}
|
|
fifo_move(&free_inc, &ca->free_inc);
|
|
swap(ca->free_inc, free_inc);
|
|
spin_unlock(&c->freelist_lock);
|
|
|
|
/* with gc lock held, alloc_heap can't be in use: */
|
|
swap(ca->alloc_heap, alloc_heap);
|
|
|
|
/* and we shut down copygc: */
|
|
swap(ca->copygc_heap, copygc_heap);
|
|
|
|
nbuckets = ca->mi.nbuckets;
|
|
|
|
if (resize) {
|
|
up_write(&ca->bucket_lock);
|
|
up_write(&c->gc_lock);
|
|
}
|
|
|
|
if (start_copygc &&
|
|
bch2_copygc_start(c, ca))
|
|
bch_err(ca, "error restarting copygc thread");
|
|
|
|
ret = 0;
|
|
err:
|
|
free_heap(©gc_heap);
|
|
free_heap(&alloc_heap);
|
|
free_fifo(&free_inc);
|
|
for (i = 0; i < RESERVE_NR; i++)
|
|
free_fifo(&free[i]);
|
|
kvpfree(buckets_nouse,
|
|
BITS_TO_LONGS(nbuckets) * sizeof(unsigned long));
|
|
kvpfree(buckets_written,
|
|
BITS_TO_LONGS(nbuckets) * sizeof(unsigned long));
|
|
if (buckets)
|
|
call_rcu(&old_buckets->rcu, buckets_free_rcu);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch2_dev_buckets_free(struct bch_dev *ca)
|
|
{
|
|
unsigned i;
|
|
|
|
free_heap(&ca->copygc_heap);
|
|
free_heap(&ca->alloc_heap);
|
|
free_fifo(&ca->free_inc);
|
|
for (i = 0; i < RESERVE_NR; i++)
|
|
free_fifo(&ca->free[i]);
|
|
kvpfree(ca->buckets_written,
|
|
BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long));
|
|
kvpfree(ca->buckets_nouse,
|
|
BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long));
|
|
kvpfree(rcu_dereference_protected(ca->buckets[0], 1),
|
|
sizeof(struct bucket_array) +
|
|
ca->mi.nbuckets * sizeof(struct bucket));
|
|
|
|
free_percpu(ca->usage[0]);
|
|
}
|
|
|
|
int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
if (!(ca->usage[0] = alloc_percpu(struct bch_dev_usage)))
|
|
return -ENOMEM;
|
|
|
|
return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);;
|
|
}
|