linux-stable/mm/mmap.c
Linus Torvalds 9be34c9d52 mm: get rid of the most spurious find_vma_prev() users
We have some users of this function that date back to before the vma
list was doubly linked, and just are silly.  These days, you can find
the previous vma by just following the vma->vm_prev pointer.

In some cases you don't need any find_vma() lookup at all, and in other
cases you're better off with the regular "find_vma()" that uses the vma
cache front-end lookup.

Some "find_vma_prev()" users are still valid, though.  For example, in
the case of a stack that grows up, it can be the case that we don't find
any 'vma' at all (because we're looking up an address that is past the
last vma), and that the stack that we want to grow is the 'prev' vma.

But that kind of special case aside, we generally should prefer to use
'find_vma()'.

Noticed due to a totally unrelated POWER memory corruption bug that just
happened to hit in 'find_vma_prev()' and made me go "Hmm - why are we
using that function here?".

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-16 00:35:09 -07:00

2668 lines
69 KiB
C

/*
* mm/mmap.c
*
* Written by obz.
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
*/
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/capability.h>
#include <linux/init.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/personality.h>
#include <linux/security.h>
#include <linux/hugetlb.h>
#include <linux/profile.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/mempolicy.h>
#include <linux/rmap.h>
#include <linux/mmu_notifier.h>
#include <linux/perf_event.h>
#include <linux/audit.h>
#include <linux/khugepaged.h>
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#include "internal.h"
#ifndef arch_mmap_check
#define arch_mmap_check(addr, len, flags) (0)
#endif
#ifndef arch_rebalance_pgtables
#define arch_rebalance_pgtables(addr, len) (addr)
#endif
static void unmap_region(struct mm_struct *mm,
struct vm_area_struct *vma, struct vm_area_struct *prev,
unsigned long start, unsigned long end);
/*
* WARNING: the debugging will use recursive algorithms so never enable this
* unless you know what you are doing.
*/
#undef DEBUG_MM_RB
/* description of effects of mapping type and prot in current implementation.
* this is due to the limited x86 page protection hardware. The expected
* behavior is in parens:
*
* map_type prot
* PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
* MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
* w: (no) no w: (no) no w: (yes) yes w: (no) no
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
*
* MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
* w: (no) no w: (no) no w: (copy) copy w: (no) no
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
*
*/
pgprot_t protection_map[16] = {
__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
};
pgprot_t vm_get_page_prot(unsigned long vm_flags)
{
return __pgprot(pgprot_val(protection_map[vm_flags &
(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
pgprot_val(arch_vm_get_page_prot(vm_flags)));
}
EXPORT_SYMBOL(vm_get_page_prot);
int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
/*
* Make sure vm_committed_as in one cacheline and not cacheline shared with
* other variables. It can be updated by several CPUs frequently.
*/
struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
/*
* Check that a process has enough memory to allocate a new virtual
* mapping. 0 means there is enough memory for the allocation to
* succeed and -ENOMEM implies there is not.
*
* We currently support three overcommit policies, which are set via the
* vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
*
* Strict overcommit modes added 2002 Feb 26 by Alan Cox.
* Additional code 2002 Jul 20 by Robert Love.
*
* cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
*
* Note this is a helper function intended to be used by LSMs which
* wish to use this logic.
*/
int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
{
unsigned long free, allowed;
vm_acct_memory(pages);
/*
* Sometimes we want to use more memory than we have
*/
if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
return 0;
if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
unsigned long n;
free = global_page_state(NR_FILE_PAGES);
free += nr_swap_pages;
/*
* Any slabs which are created with the
* SLAB_RECLAIM_ACCOUNT flag claim to have contents
* which are reclaimable, under pressure. The dentry
* cache and most inode caches should fall into this
*/
free += global_page_state(NR_SLAB_RECLAIMABLE);
/*
* Leave the last 3% for root
*/
if (!cap_sys_admin)
free -= free / 32;
if (free > pages)
return 0;
/*
* nr_free_pages() is very expensive on large systems,
* only call if we're about to fail.
*/
n = nr_free_pages();
/*
* Leave reserved pages. The pages are not for anonymous pages.
*/
if (n <= totalreserve_pages)
goto error;
else
n -= totalreserve_pages;
/*
* Leave the last 3% for root
*/
if (!cap_sys_admin)
n -= n / 32;
free += n;
if (free > pages)
return 0;
goto error;
}
allowed = (totalram_pages - hugetlb_total_pages())
* sysctl_overcommit_ratio / 100;
/*
* Leave the last 3% for root
*/
if (!cap_sys_admin)
allowed -= allowed / 32;
allowed += total_swap_pages;
/* Don't let a single process grow too big:
leave 3% of the size of this process for other processes */
if (mm)
allowed -= mm->total_vm / 32;
if (percpu_counter_read_positive(&vm_committed_as) < allowed)
return 0;
error:
vm_unacct_memory(pages);
return -ENOMEM;
}
/*
* Requires inode->i_mapping->i_mmap_mutex
*/
static void __remove_shared_vm_struct(struct vm_area_struct *vma,
struct file *file, struct address_space *mapping)
{
if (vma->vm_flags & VM_DENYWRITE)
atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
if (vma->vm_flags & VM_SHARED)
mapping->i_mmap_writable--;
flush_dcache_mmap_lock(mapping);
if (unlikely(vma->vm_flags & VM_NONLINEAR))
list_del_init(&vma->shared.vm_set.list);
else
vma_prio_tree_remove(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
/*
* Unlink a file-based vm structure from its prio_tree, to hide
* vma from rmap and vmtruncate before freeing its page tables.
*/
void unlink_file_vma(struct vm_area_struct *vma)
{
struct file *file = vma->vm_file;
if (file) {
struct address_space *mapping = file->f_mapping;
mutex_lock(&mapping->i_mmap_mutex);
__remove_shared_vm_struct(vma, file, mapping);
mutex_unlock(&mapping->i_mmap_mutex);
}
}
/*
* Close a vm structure and free it, returning the next.
*/
static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
{
struct vm_area_struct *next = vma->vm_next;
might_sleep();
if (vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
if (vma->vm_file) {
fput(vma->vm_file);
if (vma->vm_flags & VM_EXECUTABLE)
removed_exe_file_vma(vma->vm_mm);
}
mpol_put(vma_policy(vma));
kmem_cache_free(vm_area_cachep, vma);
return next;
}
SYSCALL_DEFINE1(brk, unsigned long, brk)
{
unsigned long rlim, retval;
unsigned long newbrk, oldbrk;
struct mm_struct *mm = current->mm;
unsigned long min_brk;
down_write(&mm->mmap_sem);
#ifdef CONFIG_COMPAT_BRK
/*
* CONFIG_COMPAT_BRK can still be overridden by setting
* randomize_va_space to 2, which will still cause mm->start_brk
* to be arbitrarily shifted
*/
if (current->brk_randomized)
min_brk = mm->start_brk;
else
min_brk = mm->end_data;
#else
min_brk = mm->start_brk;
#endif
if (brk < min_brk)
goto out;
/*
* Check against rlimit here. If this check is done later after the test
* of oldbrk with newbrk then it can escape the test and let the data
* segment grow beyond its set limit the in case where the limit is
* not page aligned -Ram Gupta
*/
rlim = rlimit(RLIMIT_DATA);
if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
(mm->end_data - mm->start_data) > rlim)
goto out;
newbrk = PAGE_ALIGN(brk);
oldbrk = PAGE_ALIGN(mm->brk);
if (oldbrk == newbrk)
goto set_brk;
/* Always allow shrinking brk. */
if (brk <= mm->brk) {
if (!do_munmap(mm, newbrk, oldbrk-newbrk))
goto set_brk;
goto out;
}
/* Check against existing mmap mappings. */
if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
goto out;
/* Ok, looks good - let it rip. */
if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
goto out;
set_brk:
mm->brk = brk;
out:
retval = mm->brk;
up_write(&mm->mmap_sem);
return retval;
}
#ifdef DEBUG_MM_RB
static int browse_rb(struct rb_root *root)
{
int i = 0, j;
struct rb_node *nd, *pn = NULL;
unsigned long prev = 0, pend = 0;
for (nd = rb_first(root); nd; nd = rb_next(nd)) {
struct vm_area_struct *vma;
vma = rb_entry(nd, struct vm_area_struct, vm_rb);
if (vma->vm_start < prev)
printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
if (vma->vm_start < pend)
printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
if (vma->vm_start > vma->vm_end)
printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
i++;
pn = nd;
prev = vma->vm_start;
pend = vma->vm_end;
}
j = 0;
for (nd = pn; nd; nd = rb_prev(nd)) {
j++;
}
if (i != j)
printk("backwards %d, forwards %d\n", j, i), i = 0;
return i;
}
void validate_mm(struct mm_struct *mm)
{
int bug = 0;
int i = 0;
struct vm_area_struct *tmp = mm->mmap;
while (tmp) {
tmp = tmp->vm_next;
i++;
}
if (i != mm->map_count)
printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
i = browse_rb(&mm->mm_rb);
if (i != mm->map_count)
printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
BUG_ON(bug);
}
#else
#define validate_mm(mm) do { } while (0)
#endif
static struct vm_area_struct *
find_vma_prepare(struct mm_struct *mm, unsigned long addr,
struct vm_area_struct **pprev, struct rb_node ***rb_link,
struct rb_node ** rb_parent)
{
struct vm_area_struct * vma;
struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
__rb_link = &mm->mm_rb.rb_node;
rb_prev = __rb_parent = NULL;
vma = NULL;
while (*__rb_link) {
struct vm_area_struct *vma_tmp;
__rb_parent = *__rb_link;
vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
if (vma_tmp->vm_end > addr) {
vma = vma_tmp;
if (vma_tmp->vm_start <= addr)
break;
__rb_link = &__rb_parent->rb_left;
} else {
rb_prev = __rb_parent;
__rb_link = &__rb_parent->rb_right;
}
}
*pprev = NULL;
if (rb_prev)
*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
*rb_link = __rb_link;
*rb_parent = __rb_parent;
return vma;
}
void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
struct rb_node **rb_link, struct rb_node *rb_parent)
{
rb_link_node(&vma->vm_rb, rb_parent, rb_link);
rb_insert_color(&vma->vm_rb, &mm->mm_rb);
}
static void __vma_link_file(struct vm_area_struct *vma)
{
struct file *file;
file = vma->vm_file;
if (file) {
struct address_space *mapping = file->f_mapping;
if (vma->vm_flags & VM_DENYWRITE)
atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
if (vma->vm_flags & VM_SHARED)
mapping->i_mmap_writable++;
flush_dcache_mmap_lock(mapping);
if (unlikely(vma->vm_flags & VM_NONLINEAR))
vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
else
vma_prio_tree_insert(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
}
static void
__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct rb_node **rb_link,
struct rb_node *rb_parent)
{
__vma_link_list(mm, vma, prev, rb_parent);
__vma_link_rb(mm, vma, rb_link, rb_parent);
}
static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct rb_node **rb_link,
struct rb_node *rb_parent)
{
struct address_space *mapping = NULL;
if (vma->vm_file)
mapping = vma->vm_file->f_mapping;
if (mapping)
mutex_lock(&mapping->i_mmap_mutex);
__vma_link(mm, vma, prev, rb_link, rb_parent);
__vma_link_file(vma);
if (mapping)
mutex_unlock(&mapping->i_mmap_mutex);
mm->map_count++;
validate_mm(mm);
}
/*
* Helper for vma_adjust in the split_vma insert case:
* insert vm structure into list and rbtree and anon_vma,
* but it has already been inserted into prio_tree earlier.
*/
static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
{
struct vm_area_struct *__vma, *prev;
struct rb_node **rb_link, *rb_parent;
__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
BUG_ON(__vma && __vma->vm_start < vma->vm_end);
__vma_link(mm, vma, prev, rb_link, rb_parent);
mm->map_count++;
}
static inline void
__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev)
{
struct vm_area_struct *next = vma->vm_next;
prev->vm_next = next;
if (next)
next->vm_prev = prev;
rb_erase(&vma->vm_rb, &mm->mm_rb);
if (mm->mmap_cache == vma)
mm->mmap_cache = prev;
}
/*
* We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
* is already present in an i_mmap tree without adjusting the tree.
* The following helper function should be used when such adjustments
* are necessary. The "insert" vma (if any) is to be inserted
* before we drop the necessary locks.
*/
int vma_adjust(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
{
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *next = vma->vm_next;
struct vm_area_struct *importer = NULL;
struct address_space *mapping = NULL;
struct prio_tree_root *root = NULL;
struct anon_vma *anon_vma = NULL;
struct file *file = vma->vm_file;
long adjust_next = 0;
int remove_next = 0;
if (next && !insert) {
struct vm_area_struct *exporter = NULL;
if (end >= next->vm_end) {
/*
* vma expands, overlapping all the next, and
* perhaps the one after too (mprotect case 6).
*/
again: remove_next = 1 + (end > next->vm_end);
end = next->vm_end;
exporter = next;
importer = vma;
} else if (end > next->vm_start) {
/*
* vma expands, overlapping part of the next:
* mprotect case 5 shifting the boundary up.
*/
adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
exporter = next;
importer = vma;
} else if (end < vma->vm_end) {
/*
* vma shrinks, and !insert tells it's not
* split_vma inserting another: so it must be
* mprotect case 4 shifting the boundary down.
*/
adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
exporter = vma;
importer = next;
}
/*
* Easily overlooked: when mprotect shifts the boundary,
* make sure the expanding vma has anon_vma set if the
* shrinking vma had, to cover any anon pages imported.
*/
if (exporter && exporter->anon_vma && !importer->anon_vma) {
if (anon_vma_clone(importer, exporter))
return -ENOMEM;
importer->anon_vma = exporter->anon_vma;
}
}
if (file) {
mapping = file->f_mapping;
if (!(vma->vm_flags & VM_NONLINEAR))
root = &mapping->i_mmap;
mutex_lock(&mapping->i_mmap_mutex);
if (insert) {
/*
* Put into prio_tree now, so instantiated pages
* are visible to arm/parisc __flush_dcache_page
* throughout; but we cannot insert into address
* space until vma start or end is updated.
*/
__vma_link_file(insert);
}
}
vma_adjust_trans_huge(vma, start, end, adjust_next);
/*
* When changing only vma->vm_end, we don't really need anon_vma
* lock. This is a fairly rare case by itself, but the anon_vma
* lock may be shared between many sibling processes. Skipping
* the lock for brk adjustments makes a difference sometimes.
*/
if (vma->anon_vma && (importer || start != vma->vm_start)) {
anon_vma = vma->anon_vma;
anon_vma_lock(anon_vma);
}
if (root) {
flush_dcache_mmap_lock(mapping);
vma_prio_tree_remove(vma, root);
if (adjust_next)
vma_prio_tree_remove(next, root);
}
vma->vm_start = start;
vma->vm_end = end;
vma->vm_pgoff = pgoff;
if (adjust_next) {
next->vm_start += adjust_next << PAGE_SHIFT;
next->vm_pgoff += adjust_next;
}
if (root) {
if (adjust_next)
vma_prio_tree_insert(next, root);
vma_prio_tree_insert(vma, root);
flush_dcache_mmap_unlock(mapping);
}
if (remove_next) {
/*
* vma_merge has merged next into vma, and needs
* us to remove next before dropping the locks.
*/
__vma_unlink(mm, next, vma);
if (file)
__remove_shared_vm_struct(next, file, mapping);
} else if (insert) {
/*
* split_vma has split insert from vma, and needs
* us to insert it before dropping the locks
* (it may either follow vma or precede it).
*/
__insert_vm_struct(mm, insert);
}
if (anon_vma)
anon_vma_unlock(anon_vma);
if (mapping)
mutex_unlock(&mapping->i_mmap_mutex);
if (remove_next) {
if (file) {
fput(file);
if (next->vm_flags & VM_EXECUTABLE)
removed_exe_file_vma(mm);
}
if (next->anon_vma)
anon_vma_merge(vma, next);
mm->map_count--;
mpol_put(vma_policy(next));
kmem_cache_free(vm_area_cachep, next);
/*
* In mprotect's case 6 (see comments on vma_merge),
* we must remove another next too. It would clutter
* up the code too much to do both in one go.
*/
if (remove_next == 2) {
next = vma->vm_next;
goto again;
}
}
validate_mm(mm);
return 0;
}
/*
* If the vma has a ->close operation then the driver probably needs to release
* per-vma resources, so we don't attempt to merge those.
*/
static inline int is_mergeable_vma(struct vm_area_struct *vma,
struct file *file, unsigned long vm_flags)
{
/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
return 0;
if (vma->vm_file != file)
return 0;
if (vma->vm_ops && vma->vm_ops->close)
return 0;
return 1;
}
static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
struct anon_vma *anon_vma2,
struct vm_area_struct *vma)
{
/*
* The list_is_singular() test is to avoid merging VMA cloned from
* parents. This can improve scalability caused by anon_vma lock.
*/
if ((!anon_vma1 || !anon_vma2) && (!vma ||
list_is_singular(&vma->anon_vma_chain)))
return 1;
return anon_vma1 == anon_vma2;
}
/*
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
* in front of (at a lower virtual address and file offset than) the vma.
*
* We cannot merge two vmas if they have differently assigned (non-NULL)
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
*
* We don't check here for the merged mmap wrapping around the end of pagecache
* indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
* wrap, nor mmaps which cover the final page at index -1UL.
*/
static int
can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
{
if (is_mergeable_vma(vma, file, vm_flags) &&
is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
if (vma->vm_pgoff == vm_pgoff)
return 1;
}
return 0;
}
/*
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
* beyond (at a higher virtual address and file offset than) the vma.
*
* We cannot merge two vmas if they have differently assigned (non-NULL)
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
*/
static int
can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
{
if (is_mergeable_vma(vma, file, vm_flags) &&
is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
pgoff_t vm_pglen;
vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
if (vma->vm_pgoff + vm_pglen == vm_pgoff)
return 1;
}
return 0;
}
/*
* Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
* whether that can be merged with its predecessor or its successor.
* Or both (it neatly fills a hole).
*
* In most cases - when called for mmap, brk or mremap - [addr,end) is
* certain not to be mapped by the time vma_merge is called; but when
* called for mprotect, it is certain to be already mapped (either at
* an offset within prev, or at the start of next), and the flags of
* this area are about to be changed to vm_flags - and the no-change
* case has already been eliminated.
*
* The following mprotect cases have to be considered, where AAAA is
* the area passed down from mprotect_fixup, never extending beyond one
* vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
*
* AAAA AAAA AAAA AAAA
* PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
* cannot merge might become might become might become
* PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
* mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
* mremap move: PPPPNNNNNNNN 8
* AAAA
* PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
* might become case 1 below case 2 below case 3 below
*
* Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
* mprotect_fixup updates vm_flags & vm_page_prot on successful return.
*/
struct vm_area_struct *vma_merge(struct mm_struct *mm,
struct vm_area_struct *prev, unsigned long addr,
unsigned long end, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file,
pgoff_t pgoff, struct mempolicy *policy)
{
pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
struct vm_area_struct *area, *next;
int err;
/*
* We later require that vma->vm_flags == vm_flags,
* so this tests vma->vm_flags & VM_SPECIAL, too.
*/
if (vm_flags & VM_SPECIAL)
return NULL;
if (prev)
next = prev->vm_next;
else
next = mm->mmap;
area = next;
if (next && next->vm_end == end) /* cases 6, 7, 8 */
next = next->vm_next;
/*
* Can it merge with the predecessor?
*/
if (prev && prev->vm_end == addr &&
mpol_equal(vma_policy(prev), policy) &&
can_vma_merge_after(prev, vm_flags,
anon_vma, file, pgoff)) {
/*
* OK, it can. Can we now merge in the successor as well?
*/
if (next && end == next->vm_start &&
mpol_equal(policy, vma_policy(next)) &&
can_vma_merge_before(next, vm_flags,
anon_vma, file, pgoff+pglen) &&
is_mergeable_anon_vma(prev->anon_vma,
next->anon_vma, NULL)) {
/* cases 1, 6 */
err = vma_adjust(prev, prev->vm_start,
next->vm_end, prev->vm_pgoff, NULL);
} else /* cases 2, 5, 7 */
err = vma_adjust(prev, prev->vm_start,
end, prev->vm_pgoff, NULL);
if (err)
return NULL;
khugepaged_enter_vma_merge(prev);
return prev;
}
/*
* Can this new request be merged in front of next?
*/
if (next && end == next->vm_start &&
mpol_equal(policy, vma_policy(next)) &&
can_vma_merge_before(next, vm_flags,
anon_vma, file, pgoff+pglen)) {
if (prev && addr < prev->vm_end) /* case 4 */
err = vma_adjust(prev, prev->vm_start,
addr, prev->vm_pgoff, NULL);
else /* cases 3, 8 */
err = vma_adjust(area, addr, next->vm_end,
next->vm_pgoff - pglen, NULL);
if (err)
return NULL;
khugepaged_enter_vma_merge(area);
return area;
}
return NULL;
}
/*
* Rough compatbility check to quickly see if it's even worth looking
* at sharing an anon_vma.
*
* They need to have the same vm_file, and the flags can only differ
* in things that mprotect may change.
*
* NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
* we can merge the two vma's. For example, we refuse to merge a vma if
* there is a vm_ops->close() function, because that indicates that the
* driver is doing some kind of reference counting. But that doesn't
* really matter for the anon_vma sharing case.
*/
static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
{
return a->vm_end == b->vm_start &&
mpol_equal(vma_policy(a), vma_policy(b)) &&
a->vm_file == b->vm_file &&
!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
}
/*
* Do some basic sanity checking to see if we can re-use the anon_vma
* from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
* the same as 'old', the other will be the new one that is trying
* to share the anon_vma.
*
* NOTE! This runs with mm_sem held for reading, so it is possible that
* the anon_vma of 'old' is concurrently in the process of being set up
* by another page fault trying to merge _that_. But that's ok: if it
* is being set up, that automatically means that it will be a singleton
* acceptable for merging, so we can do all of this optimistically. But
* we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
*
* IOW: that the "list_is_singular()" test on the anon_vma_chain only
* matters for the 'stable anon_vma' case (ie the thing we want to avoid
* is to return an anon_vma that is "complex" due to having gone through
* a fork).
*
* We also make sure that the two vma's are compatible (adjacent,
* and with the same memory policies). That's all stable, even with just
* a read lock on the mm_sem.
*/
static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
{
if (anon_vma_compatible(a, b)) {
struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
if (anon_vma && list_is_singular(&old->anon_vma_chain))
return anon_vma;
}
return NULL;
}
/*
* find_mergeable_anon_vma is used by anon_vma_prepare, to check
* neighbouring vmas for a suitable anon_vma, before it goes off
* to allocate a new anon_vma. It checks because a repetitive
* sequence of mprotects and faults may otherwise lead to distinct
* anon_vmas being allocated, preventing vma merge in subsequent
* mprotect.
*/
struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
{
struct anon_vma *anon_vma;
struct vm_area_struct *near;
near = vma->vm_next;
if (!near)
goto try_prev;
anon_vma = reusable_anon_vma(near, vma, near);
if (anon_vma)
return anon_vma;
try_prev:
near = vma->vm_prev;
if (!near)
goto none;
anon_vma = reusable_anon_vma(near, near, vma);
if (anon_vma)
return anon_vma;
none:
/*
* There's no absolute need to look only at touching neighbours:
* we could search further afield for "compatible" anon_vmas.
* But it would probably just be a waste of time searching,
* or lead to too many vmas hanging off the same anon_vma.
* We're trying to allow mprotect remerging later on,
* not trying to minimize memory used for anon_vmas.
*/
return NULL;
}
#ifdef CONFIG_PROC_FS
void vm_stat_account(struct mm_struct *mm, unsigned long flags,
struct file *file, long pages)
{
const unsigned long stack_flags
= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
if (file) {
mm->shared_vm += pages;
if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
mm->exec_vm += pages;
} else if (flags & stack_flags)
mm->stack_vm += pages;
if (flags & (VM_RESERVED|VM_IO))
mm->reserved_vm += pages;
}
#endif /* CONFIG_PROC_FS */
/*
* The caller must hold down_write(&current->mm->mmap_sem).
*/
unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flags, unsigned long pgoff)
{
struct mm_struct * mm = current->mm;
struct inode *inode;
vm_flags_t vm_flags;
int error;
unsigned long reqprot = prot;
/*
* Does the application expect PROT_READ to imply PROT_EXEC?
*
* (the exception is when the underlying filesystem is noexec
* mounted, in which case we dont add PROT_EXEC.)
*/
if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
prot |= PROT_EXEC;
if (!len)
return -EINVAL;
if (!(flags & MAP_FIXED))
addr = round_hint_to_min(addr);
/* Careful about overflows.. */
len = PAGE_ALIGN(len);
if (!len)
return -ENOMEM;
/* offset overflow? */
if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
return -EOVERFLOW;
/* Too many mappings? */
if (mm->map_count > sysctl_max_map_count)
return -ENOMEM;
/* Obtain the address to map to. we verify (or select) it and ensure
* that it represents a valid section of the address space.
*/
addr = get_unmapped_area(file, addr, len, pgoff, flags);
if (addr & ~PAGE_MASK)
return addr;
/* Do simple checking here so the lower-level routines won't have
* to. we assume access permissions have been handled by the open
* of the memory object, so we don't do any here.
*/
vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
if (flags & MAP_LOCKED)
if (!can_do_mlock())
return -EPERM;
/* mlock MCL_FUTURE? */
if (vm_flags & VM_LOCKED) {
unsigned long locked, lock_limit;
locked = len >> PAGE_SHIFT;
locked += mm->locked_vm;
lock_limit = rlimit(RLIMIT_MEMLOCK);
lock_limit >>= PAGE_SHIFT;
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
return -EAGAIN;
}
inode = file ? file->f_path.dentry->d_inode : NULL;
if (file) {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
return -EACCES;
/*
* Make sure we don't allow writing to an append-only
* file..
*/
if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
return -EACCES;
/*
* Make sure there are no mandatory locks on the file.
*/
if (locks_verify_locked(inode))
return -EAGAIN;
vm_flags |= VM_SHARED | VM_MAYSHARE;
if (!(file->f_mode & FMODE_WRITE))
vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
/* fall through */
case MAP_PRIVATE:
if (!(file->f_mode & FMODE_READ))
return -EACCES;
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
if (vm_flags & VM_EXEC)
return -EPERM;
vm_flags &= ~VM_MAYEXEC;
}
if (!file->f_op || !file->f_op->mmap)
return -ENODEV;
break;
default:
return -EINVAL;
}
} else {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
/*
* Ignore pgoff.
*/
pgoff = 0;
vm_flags |= VM_SHARED | VM_MAYSHARE;
break;
case MAP_PRIVATE:
/*
* Set pgoff according to addr for anon_vma.
*/
pgoff = addr >> PAGE_SHIFT;
break;
default:
return -EINVAL;
}
}
error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
if (error)
return error;
return mmap_region(file, addr, len, flags, vm_flags, pgoff);
}
EXPORT_SYMBOL(do_mmap_pgoff);
SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, pgoff)
{
struct file *file = NULL;
unsigned long retval = -EBADF;
if (!(flags & MAP_ANONYMOUS)) {
audit_mmap_fd(fd, flags);
if (unlikely(flags & MAP_HUGETLB))
return -EINVAL;
file = fget(fd);
if (!file)
goto out;
} else if (flags & MAP_HUGETLB) {
struct user_struct *user = NULL;
/*
* VM_NORESERVE is used because the reservations will be
* taken when vm_ops->mmap() is called
* A dummy user value is used because we are not locking
* memory so no accounting is necessary
*/
len = ALIGN(len, huge_page_size(&default_hstate));
file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
&user, HUGETLB_ANONHUGE_INODE);
if (IS_ERR(file))
return PTR_ERR(file);
}
flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
down_write(&current->mm->mmap_sem);
retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
up_write(&current->mm->mmap_sem);
if (file)
fput(file);
out:
return retval;
}
#ifdef __ARCH_WANT_SYS_OLD_MMAP
struct mmap_arg_struct {
unsigned long addr;
unsigned long len;
unsigned long prot;
unsigned long flags;
unsigned long fd;
unsigned long offset;
};
SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
{
struct mmap_arg_struct a;
if (copy_from_user(&a, arg, sizeof(a)))
return -EFAULT;
if (a.offset & ~PAGE_MASK)
return -EINVAL;
return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
a.offset >> PAGE_SHIFT);
}
#endif /* __ARCH_WANT_SYS_OLD_MMAP */
/*
* Some shared mappigns will want the pages marked read-only
* to track write events. If so, we'll downgrade vm_page_prot
* to the private version (using protection_map[] without the
* VM_SHARED bit).
*/
int vma_wants_writenotify(struct vm_area_struct *vma)
{
vm_flags_t vm_flags = vma->vm_flags;
/* If it was private or non-writable, the write bit is already clear */
if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
return 0;
/* The backer wishes to know when pages are first written to? */
if (vma->vm_ops && vma->vm_ops->page_mkwrite)
return 1;
/* The open routine did something to the protections already? */
if (pgprot_val(vma->vm_page_prot) !=
pgprot_val(vm_get_page_prot(vm_flags)))
return 0;
/* Specialty mapping? */
if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
return 0;
/* Can the mapping track the dirty pages? */
return vma->vm_file && vma->vm_file->f_mapping &&
mapping_cap_account_dirty(vma->vm_file->f_mapping);
}
/*
* We account for memory if it's a private writeable mapping,
* not hugepages and VM_NORESERVE wasn't set.
*/
static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
{
/*
* hugetlb has its own accounting separate from the core VM
* VM_HUGETLB may not be set yet so we cannot check for that flag.
*/
if (file && is_file_hugepages(file))
return 0;
return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
}
unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, unsigned long flags,
vm_flags_t vm_flags, unsigned long pgoff)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
int correct_wcount = 0;
int error;
struct rb_node **rb_link, *rb_parent;
unsigned long charged = 0;
struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
/* Clear old maps */
error = -ENOMEM;
munmap_back:
vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
if (vma && vma->vm_start < addr + len) {
if (do_munmap(mm, addr, len))
return -ENOMEM;
goto munmap_back;
}
/* Check against address space limit. */
if (!may_expand_vm(mm, len >> PAGE_SHIFT))
return -ENOMEM;
/*
* Set 'VM_NORESERVE' if we should not account for the
* memory use of this mapping.
*/
if ((flags & MAP_NORESERVE)) {
/* We honor MAP_NORESERVE if allowed to overcommit */
if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
vm_flags |= VM_NORESERVE;
/* hugetlb applies strict overcommit unless MAP_NORESERVE */
if (file && is_file_hugepages(file))
vm_flags |= VM_NORESERVE;
}
/*
* Private writable mapping: check memory availability
*/
if (accountable_mapping(file, vm_flags)) {
charged = len >> PAGE_SHIFT;
if (security_vm_enough_memory(charged))
return -ENOMEM;
vm_flags |= VM_ACCOUNT;
}
/*
* Can we just expand an old mapping?
*/
vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
if (vma)
goto out;
/*
* Determine the object being mapped and call the appropriate
* specific mapper. the address has already been validated, but
* not unmapped, but the maps are removed from the list.
*/
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma) {
error = -ENOMEM;
goto unacct_error;
}
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = vm_flags;
vma->vm_page_prot = vm_get_page_prot(vm_flags);
vma->vm_pgoff = pgoff;
INIT_LIST_HEAD(&vma->anon_vma_chain);
if (file) {
error = -EINVAL;
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
goto free_vma;
if (vm_flags & VM_DENYWRITE) {
error = deny_write_access(file);
if (error)
goto free_vma;
correct_wcount = 1;
}
vma->vm_file = file;
get_file(file);
error = file->f_op->mmap(file, vma);
if (error)
goto unmap_and_free_vma;
if (vm_flags & VM_EXECUTABLE)
added_exe_file_vma(mm);
/* Can addr have changed??
*
* Answer: Yes, several device drivers can do it in their
* f_op->mmap method. -DaveM
*/
addr = vma->vm_start;
pgoff = vma->vm_pgoff;
vm_flags = vma->vm_flags;
} else if (vm_flags & VM_SHARED) {
error = shmem_zero_setup(vma);
if (error)
goto free_vma;
}
if (vma_wants_writenotify(vma)) {
pgprot_t pprot = vma->vm_page_prot;
/* Can vma->vm_page_prot have changed??
*
* Answer: Yes, drivers may have changed it in their
* f_op->mmap method.
*
* Ensures that vmas marked as uncached stay that way.
*/
vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
}
vma_link(mm, vma, prev, rb_link, rb_parent);
file = vma->vm_file;
/* Once vma denies write, undo our temporary denial count */
if (correct_wcount)
atomic_inc(&inode->i_writecount);
out:
perf_event_mmap(vma);
mm->total_vm += len >> PAGE_SHIFT;
vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
if (vm_flags & VM_LOCKED) {
if (!mlock_vma_pages_range(vma, addr, addr + len))
mm->locked_vm += (len >> PAGE_SHIFT);
} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
make_pages_present(addr, addr + len);
return addr;
unmap_and_free_vma:
if (correct_wcount)
atomic_inc(&inode->i_writecount);
vma->vm_file = NULL;
fput(file);
/* Undo any partial mapping done by a device driver. */
unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
charged = 0;
free_vma:
kmem_cache_free(vm_area_cachep, vma);
unacct_error:
if (charged)
vm_unacct_memory(charged);
return error;
}
/* Get an address range which is currently unmapped.
* For shmat() with addr=0.
*
* Ugly calling convention alert:
* Return value with the low bits set means error value,
* ie
* if (ret & ~PAGE_MASK)
* error = ret;
*
* This function "knows" that -ENOMEM has the bits set.
*/
#ifndef HAVE_ARCH_UNMAPPED_AREA
unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long start_addr;
if (len > TASK_SIZE)
return -ENOMEM;
if (flags & MAP_FIXED)
return addr;
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
if (len > mm->cached_hole_size) {
start_addr = addr = mm->free_area_cache;
} else {
start_addr = addr = TASK_UNMAPPED_BASE;
mm->cached_hole_size = 0;
}
full_search:
for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
/* At this point: (!vma || addr < vma->vm_end). */
if (TASK_SIZE - len < addr) {
/*
* Start a new search - just in case we missed
* some holes.
*/
if (start_addr != TASK_UNMAPPED_BASE) {
addr = TASK_UNMAPPED_BASE;
start_addr = addr;
mm->cached_hole_size = 0;
goto full_search;
}
return -ENOMEM;
}
if (!vma || addr + len <= vma->vm_start) {
/*
* Remember the place where we stopped the search:
*/
mm->free_area_cache = addr + len;
return addr;
}
if (addr + mm->cached_hole_size < vma->vm_start)
mm->cached_hole_size = vma->vm_start - addr;
addr = vma->vm_end;
}
}
#endif
void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
{
/*
* Is this a new hole at the lowest possible address?
*/
if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
mm->free_area_cache = addr;
mm->cached_hole_size = ~0UL;
}
}
/*
* This mmap-allocator allocates new areas top-down from below the
* stack's low limit (the base):
*/
#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
unsigned long
arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
const unsigned long len, const unsigned long pgoff,
const unsigned long flags)
{
struct vm_area_struct *vma;
struct mm_struct *mm = current->mm;
unsigned long addr = addr0;
/* requested length too big for entire address space */
if (len > TASK_SIZE)
return -ENOMEM;
if (flags & MAP_FIXED)
return addr;
/* requesting a specific address */
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
/* check if free_area_cache is useful for us */
if (len <= mm->cached_hole_size) {
mm->cached_hole_size = 0;
mm->free_area_cache = mm->mmap_base;
}
/* either no address requested or can't fit in requested address hole */
addr = mm->free_area_cache;
/* make sure it can fit in the remaining address space */
if (addr > len) {
vma = find_vma(mm, addr-len);
if (!vma || addr <= vma->vm_start)
/* remember the address as a hint for next time */
return (mm->free_area_cache = addr-len);
}
if (mm->mmap_base < len)
goto bottomup;
addr = mm->mmap_base-len;
do {
/*
* Lookup failure means no vma is above this address,
* else if new region fits below vma->vm_start,
* return with success:
*/
vma = find_vma(mm, addr);
if (!vma || addr+len <= vma->vm_start)
/* remember the address as a hint for next time */
return (mm->free_area_cache = addr);
/* remember the largest hole we saw so far */
if (addr + mm->cached_hole_size < vma->vm_start)
mm->cached_hole_size = vma->vm_start - addr;
/* try just below the current vma->vm_start */
addr = vma->vm_start-len;
} while (len < vma->vm_start);
bottomup:
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
mm->cached_hole_size = ~0UL;
mm->free_area_cache = TASK_UNMAPPED_BASE;
addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
/*
* Restore the topdown base:
*/
mm->free_area_cache = mm->mmap_base;
mm->cached_hole_size = ~0UL;
return addr;
}
#endif
void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
{
/*
* Is this a new hole at the highest possible address?
*/
if (addr > mm->free_area_cache)
mm->free_area_cache = addr;
/* dont allow allocations above current base */
if (mm->free_area_cache > mm->mmap_base)
mm->free_area_cache = mm->mmap_base;
}
unsigned long
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
unsigned long (*get_area)(struct file *, unsigned long,
unsigned long, unsigned long, unsigned long);
unsigned long error = arch_mmap_check(addr, len, flags);
if (error)
return error;
/* Careful about overflows.. */
if (len > TASK_SIZE)
return -ENOMEM;
get_area = current->mm->get_unmapped_area;
if (file && file->f_op && file->f_op->get_unmapped_area)
get_area = file->f_op->get_unmapped_area;
addr = get_area(file, addr, len, pgoff, flags);
if (IS_ERR_VALUE(addr))
return addr;
if (addr > TASK_SIZE - len)
return -ENOMEM;
if (addr & ~PAGE_MASK)
return -EINVAL;
return arch_rebalance_pgtables(addr, len);
}
EXPORT_SYMBOL(get_unmapped_area);
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma = NULL;
if (mm) {
/* Check the cache first. */
/* (Cache hit rate is typically around 35%.) */
vma = mm->mmap_cache;
if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
struct rb_node * rb_node;
rb_node = mm->mm_rb.rb_node;
vma = NULL;
while (rb_node) {
struct vm_area_struct * vma_tmp;
vma_tmp = rb_entry(rb_node,
struct vm_area_struct, vm_rb);
if (vma_tmp->vm_end > addr) {
vma = vma_tmp;
if (vma_tmp->vm_start <= addr)
break;
rb_node = rb_node->rb_left;
} else
rb_node = rb_node->rb_right;
}
if (vma)
mm->mmap_cache = vma;
}
}
return vma;
}
EXPORT_SYMBOL(find_vma);
/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
struct vm_area_struct *
find_vma_prev(struct mm_struct *mm, unsigned long addr,
struct vm_area_struct **pprev)
{
struct vm_area_struct *vma = NULL, *prev = NULL;
struct rb_node *rb_node;
if (!mm)
goto out;
/* Guard against addr being lower than the first VMA */
vma = mm->mmap;
/* Go through the RB tree quickly. */
rb_node = mm->mm_rb.rb_node;
while (rb_node) {
struct vm_area_struct *vma_tmp;
vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
if (addr < vma_tmp->vm_end) {
rb_node = rb_node->rb_left;
} else {
prev = vma_tmp;
if (!prev->vm_next || (addr < prev->vm_next->vm_end))
break;
rb_node = rb_node->rb_right;
}
}
out:
*pprev = prev;
return prev ? prev->vm_next : vma;
}
/*
* Verify that the stack growth is acceptable and
* update accounting. This is shared with both the
* grow-up and grow-down cases.
*/
static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
{
struct mm_struct *mm = vma->vm_mm;
struct rlimit *rlim = current->signal->rlim;
unsigned long new_start;
/* address space limit tests */
if (!may_expand_vm(mm, grow))
return -ENOMEM;
/* Stack limit test */
if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
return -ENOMEM;
/* mlock limit tests */
if (vma->vm_flags & VM_LOCKED) {
unsigned long locked;
unsigned long limit;
locked = mm->locked_vm + grow;
limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
limit >>= PAGE_SHIFT;
if (locked > limit && !capable(CAP_IPC_LOCK))
return -ENOMEM;
}
/* Check to ensure the stack will not grow into a hugetlb-only region */
new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
vma->vm_end - size;
if (is_hugepage_only_range(vma->vm_mm, new_start, size))
return -EFAULT;
/*
* Overcommit.. This must be the final test, as it will
* update security statistics.
*/
if (security_vm_enough_memory_mm(mm, grow))
return -ENOMEM;
/* Ok, everything looks good - let it rip */
mm->total_vm += grow;
if (vma->vm_flags & VM_LOCKED)
mm->locked_vm += grow;
vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
return 0;
}
#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
/*
* PA-RISC uses this for its stack; IA64 for its Register Backing Store.
* vma is the last one with address > vma->vm_end. Have to extend vma.
*/
int expand_upwards(struct vm_area_struct *vma, unsigned long address)
{
int error;
if (!(vma->vm_flags & VM_GROWSUP))
return -EFAULT;
/*
* We must make sure the anon_vma is allocated
* so that the anon_vma locking is not a noop.
*/
if (unlikely(anon_vma_prepare(vma)))
return -ENOMEM;
vma_lock_anon_vma(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
* is required to hold the mmap_sem in read mode. We need the
* anon_vma lock to serialize against concurrent expand_stacks.
* Also guard against wrapping around to address 0.
*/
if (address < PAGE_ALIGN(address+4))
address = PAGE_ALIGN(address+4);
else {
vma_unlock_anon_vma(vma);
return -ENOMEM;
}
error = 0;
/* Somebody else might have raced and expanded it already */
if (address > vma->vm_end) {
unsigned long size, grow;
size = address - vma->vm_start;
grow = (address - vma->vm_end) >> PAGE_SHIFT;
error = -ENOMEM;
if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
error = acct_stack_growth(vma, size, grow);
if (!error) {
vma->vm_end = address;
perf_event_mmap(vma);
}
}
}
vma_unlock_anon_vma(vma);
khugepaged_enter_vma_merge(vma);
return error;
}
#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
/*
* vma is the first one with address < vma->vm_start. Have to extend vma.
*/
int expand_downwards(struct vm_area_struct *vma,
unsigned long address)
{
int error;
/*
* We must make sure the anon_vma is allocated
* so that the anon_vma locking is not a noop.
*/
if (unlikely(anon_vma_prepare(vma)))
return -ENOMEM;
address &= PAGE_MASK;
error = security_file_mmap(NULL, 0, 0, 0, address, 1);
if (error)
return error;
vma_lock_anon_vma(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
* is required to hold the mmap_sem in read mode. We need the
* anon_vma lock to serialize against concurrent expand_stacks.
*/
/* Somebody else might have raced and expanded it already */
if (address < vma->vm_start) {
unsigned long size, grow;
size = vma->vm_end - address;
grow = (vma->vm_start - address) >> PAGE_SHIFT;
error = -ENOMEM;
if (grow <= vma->vm_pgoff) {
error = acct_stack_growth(vma, size, grow);
if (!error) {
vma->vm_start = address;
vma->vm_pgoff -= grow;
perf_event_mmap(vma);
}
}
}
vma_unlock_anon_vma(vma);
khugepaged_enter_vma_merge(vma);
return error;
}
#ifdef CONFIG_STACK_GROWSUP
int expand_stack(struct vm_area_struct *vma, unsigned long address)
{
return expand_upwards(vma, address);
}
struct vm_area_struct *
find_extend_vma(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma, *prev;
addr &= PAGE_MASK;
vma = find_vma_prev(mm, addr, &prev);
if (vma && (vma->vm_start <= addr))
return vma;
if (!prev || expand_stack(prev, addr))
return NULL;
if (prev->vm_flags & VM_LOCKED) {
mlock_vma_pages_range(prev, addr, prev->vm_end);
}
return prev;
}
#else
int expand_stack(struct vm_area_struct *vma, unsigned long address)
{
return expand_downwards(vma, address);
}
struct vm_area_struct *
find_extend_vma(struct mm_struct * mm, unsigned long addr)
{
struct vm_area_struct * vma;
unsigned long start;
addr &= PAGE_MASK;
vma = find_vma(mm,addr);
if (!vma)
return NULL;
if (vma->vm_start <= addr)
return vma;
if (!(vma->vm_flags & VM_GROWSDOWN))
return NULL;
start = vma->vm_start;
if (expand_stack(vma, addr))
return NULL;
if (vma->vm_flags & VM_LOCKED) {
mlock_vma_pages_range(vma, addr, start);
}
return vma;
}
#endif
/*
* Ok - we have the memory areas we should free on the vma list,
* so release them, and do the vma updates.
*
* Called with the mm semaphore held.
*/
static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
{
/* Update high watermark before we lower total_vm */
update_hiwater_vm(mm);
do {
long nrpages = vma_pages(vma);
mm->total_vm -= nrpages;
vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
vma = remove_vma(vma);
} while (vma);
validate_mm(mm);
}
/*
* Get rid of page table information in the indicated region.
*
* Called with the mm semaphore held.
*/
static void unmap_region(struct mm_struct *mm,
struct vm_area_struct *vma, struct vm_area_struct *prev,
unsigned long start, unsigned long end)
{
struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
struct mmu_gather tlb;
unsigned long nr_accounted = 0;
lru_add_drain();
tlb_gather_mmu(&tlb, mm, 0);
update_hiwater_rss(mm);
unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
vm_unacct_memory(nr_accounted);
free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
next ? next->vm_start : 0);
tlb_finish_mmu(&tlb, start, end);
}
/*
* Create a list of vma's touched by the unmap, removing them from the mm's
* vma list as we go..
*/
static void
detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, unsigned long end)
{
struct vm_area_struct **insertion_point;
struct vm_area_struct *tail_vma = NULL;
unsigned long addr;
insertion_point = (prev ? &prev->vm_next : &mm->mmap);
vma->vm_prev = NULL;
do {
rb_erase(&vma->vm_rb, &mm->mm_rb);
mm->map_count--;
tail_vma = vma;
vma = vma->vm_next;
} while (vma && vma->vm_start < end);
*insertion_point = vma;
if (vma)
vma->vm_prev = prev;
tail_vma->vm_next = NULL;
if (mm->unmap_area == arch_unmap_area)
addr = prev ? prev->vm_end : mm->mmap_base;
else
addr = vma ? vma->vm_start : mm->mmap_base;
mm->unmap_area(mm, addr);
mm->mmap_cache = NULL; /* Kill the cache. */
}
/*
* __split_vma() bypasses sysctl_max_map_count checking. We use this on the
* munmap path where it doesn't make sense to fail.
*/
static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
unsigned long addr, int new_below)
{
struct mempolicy *pol;
struct vm_area_struct *new;
int err = -ENOMEM;
if (is_vm_hugetlb_page(vma) && (addr &
~(huge_page_mask(hstate_vma(vma)))))
return -EINVAL;
new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
if (!new)
goto out_err;
/* most fields are the same, copy all, and then fixup */
*new = *vma;
INIT_LIST_HEAD(&new->anon_vma_chain);
if (new_below)
new->vm_end = addr;
else {
new->vm_start = addr;
new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
}
pol = mpol_dup(vma_policy(vma));
if (IS_ERR(pol)) {
err = PTR_ERR(pol);
goto out_free_vma;
}
vma_set_policy(new, pol);
if (anon_vma_clone(new, vma))
goto out_free_mpol;
if (new->vm_file) {
get_file(new->vm_file);
if (vma->vm_flags & VM_EXECUTABLE)
added_exe_file_vma(mm);
}
if (new->vm_ops && new->vm_ops->open)
new->vm_ops->open(new);
if (new_below)
err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
((addr - new->vm_start) >> PAGE_SHIFT), new);
else
err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
/* Success. */
if (!err)
return 0;
/* Clean everything up if vma_adjust failed. */
if (new->vm_ops && new->vm_ops->close)
new->vm_ops->close(new);
if (new->vm_file) {
if (vma->vm_flags & VM_EXECUTABLE)
removed_exe_file_vma(mm);
fput(new->vm_file);
}
unlink_anon_vmas(new);
out_free_mpol:
mpol_put(pol);
out_free_vma:
kmem_cache_free(vm_area_cachep, new);
out_err:
return err;
}
/*
* Split a vma into two pieces at address 'addr', a new vma is allocated
* either for the first part or the tail.
*/
int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, int new_below)
{
if (mm->map_count >= sysctl_max_map_count)
return -ENOMEM;
return __split_vma(mm, vma, addr, new_below);
}
/* Munmap is split into 2 main parts -- this part which finds
* what needs doing, and the areas themselves, which do the
* work. This now handles partial unmappings.
* Jeremy Fitzhardinge <jeremy@goop.org>
*/
int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
{
unsigned long end;
struct vm_area_struct *vma, *prev, *last;
if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
return -EINVAL;
if ((len = PAGE_ALIGN(len)) == 0)
return -EINVAL;
/* Find the first overlapping VMA */
vma = find_vma(mm, start);
if (!vma)
return 0;
prev = vma->vm_prev;
/* we have start < vma->vm_end */
/* if it doesn't overlap, we have nothing.. */
end = start + len;
if (vma->vm_start >= end)
return 0;
/*
* If we need to split any vma, do it now to save pain later.
*
* Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
* unmapped vm_area_struct will remain in use: so lower split_vma
* places tmp vma above, and higher split_vma places tmp vma below.
*/
if (start > vma->vm_start) {
int error;
/*
* Make sure that map_count on return from munmap() will
* not exceed its limit; but let map_count go just above
* its limit temporarily, to help free resources as expected.
*/
if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
return -ENOMEM;
error = __split_vma(mm, vma, start, 0);
if (error)
return error;
prev = vma;
}
/* Does it split the last one? */
last = find_vma(mm, end);
if (last && end > last->vm_start) {
int error = __split_vma(mm, last, end, 1);
if (error)
return error;
}
vma = prev? prev->vm_next: mm->mmap;
/*
* unlock any mlock()ed ranges before detaching vmas
*/
if (mm->locked_vm) {
struct vm_area_struct *tmp = vma;
while (tmp && tmp->vm_start < end) {
if (tmp->vm_flags & VM_LOCKED) {
mm->locked_vm -= vma_pages(tmp);
munlock_vma_pages_all(tmp);
}
tmp = tmp->vm_next;
}
}
/*
* Remove the vma's, and unmap the actual pages
*/
detach_vmas_to_be_unmapped(mm, vma, prev, end);
unmap_region(mm, vma, prev, start, end);
/* Fix up all other VM information */
remove_vma_list(mm, vma);
return 0;
}
EXPORT_SYMBOL(do_munmap);
SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
{
int ret;
struct mm_struct *mm = current->mm;
profile_munmap(addr);
down_write(&mm->mmap_sem);
ret = do_munmap(mm, addr, len);
up_write(&mm->mmap_sem);
return ret;
}
static inline void verify_mm_writelocked(struct mm_struct *mm)
{
#ifdef CONFIG_DEBUG_VM
if (unlikely(down_read_trylock(&mm->mmap_sem))) {
WARN_ON(1);
up_read(&mm->mmap_sem);
}
#endif
}
/*
* this is really a simplified "do_mmap". it only handles
* anonymous maps. eventually we may be able to do some
* brk-specific accounting here.
*/
unsigned long do_brk(unsigned long addr, unsigned long len)
{
struct mm_struct * mm = current->mm;
struct vm_area_struct * vma, * prev;
unsigned long flags;
struct rb_node ** rb_link, * rb_parent;
pgoff_t pgoff = addr >> PAGE_SHIFT;
int error;
len = PAGE_ALIGN(len);
if (!len)
return addr;
error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
if (error)
return error;
flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
if (error & ~PAGE_MASK)
return error;
/*
* mlock MCL_FUTURE?
*/
if (mm->def_flags & VM_LOCKED) {
unsigned long locked, lock_limit;
locked = len >> PAGE_SHIFT;
locked += mm->locked_vm;
lock_limit = rlimit(RLIMIT_MEMLOCK);
lock_limit >>= PAGE_SHIFT;
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
return -EAGAIN;
}
/*
* mm->mmap_sem is required to protect against another thread
* changing the mappings in case we sleep.
*/
verify_mm_writelocked(mm);
/*
* Clear old maps. this also does some error checking for us
*/
munmap_back:
vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
if (vma && vma->vm_start < addr + len) {
if (do_munmap(mm, addr, len))
return -ENOMEM;
goto munmap_back;
}
/* Check against address space limits *after* clearing old maps... */
if (!may_expand_vm(mm, len >> PAGE_SHIFT))
return -ENOMEM;
if (mm->map_count > sysctl_max_map_count)
return -ENOMEM;
if (security_vm_enough_memory(len >> PAGE_SHIFT))
return -ENOMEM;
/* Can we just expand an old private anonymous mapping? */
vma = vma_merge(mm, prev, addr, addr + len, flags,
NULL, NULL, pgoff, NULL);
if (vma)
goto out;
/*
* create a vma struct for an anonymous mapping
*/
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma) {
vm_unacct_memory(len >> PAGE_SHIFT);
return -ENOMEM;
}
INIT_LIST_HEAD(&vma->anon_vma_chain);
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_pgoff = pgoff;
vma->vm_flags = flags;
vma->vm_page_prot = vm_get_page_prot(flags);
vma_link(mm, vma, prev, rb_link, rb_parent);
out:
perf_event_mmap(vma);
mm->total_vm += len >> PAGE_SHIFT;
if (flags & VM_LOCKED) {
if (!mlock_vma_pages_range(vma, addr, addr + len))
mm->locked_vm += (len >> PAGE_SHIFT);
}
return addr;
}
EXPORT_SYMBOL(do_brk);
/* Release all mmaps. */
void exit_mmap(struct mm_struct *mm)
{
struct mmu_gather tlb;
struct vm_area_struct *vma;
unsigned long nr_accounted = 0;
unsigned long end;
/* mm's last user has gone, and its about to be pulled down */
mmu_notifier_release(mm);
if (mm->locked_vm) {
vma = mm->mmap;
while (vma) {
if (vma->vm_flags & VM_LOCKED)
munlock_vma_pages_all(vma);
vma = vma->vm_next;
}
}
arch_exit_mmap(mm);
vma = mm->mmap;
if (!vma) /* Can happen if dup_mmap() received an OOM */
return;
lru_add_drain();
flush_cache_mm(mm);
tlb_gather_mmu(&tlb, mm, 1);
/* update_hiwater_rss(mm) here? but nobody should be looking */
/* Use -1 here to ensure all VMAs in the mm are unmapped */
end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
vm_unacct_memory(nr_accounted);
free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
tlb_finish_mmu(&tlb, 0, end);
/*
* Walk the list again, actually closing and freeing it,
* with preemption enabled, without holding any MM locks.
*/
while (vma)
vma = remove_vma(vma);
BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
}
/* Insert vm structure into process list sorted by address
* and into the inode's i_mmap tree. If vm_file is non-NULL
* then i_mmap_mutex is taken here.
*/
int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
{
struct vm_area_struct * __vma, * prev;
struct rb_node ** rb_link, * rb_parent;
/*
* The vm_pgoff of a purely anonymous vma should be irrelevant
* until its first write fault, when page's anon_vma and index
* are set. But now set the vm_pgoff it will almost certainly
* end up with (unless mremap moves it elsewhere before that
* first wfault), so /proc/pid/maps tells a consistent story.
*
* By setting it to reflect the virtual start address of the
* vma, merges and splits can happen in a seamless way, just
* using the existing file pgoff checks and manipulations.
* Similarly in do_mmap_pgoff and in do_brk.
*/
if (!vma->vm_file) {
BUG_ON(vma->anon_vma);
vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
}
__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
if (__vma && __vma->vm_start < vma->vm_end)
return -ENOMEM;
if ((vma->vm_flags & VM_ACCOUNT) &&
security_vm_enough_memory_mm(mm, vma_pages(vma)))
return -ENOMEM;
vma_link(mm, vma, prev, rb_link, rb_parent);
return 0;
}
/*
* Copy the vma structure to a new location in the same mm,
* prior to moving page table entries, to effect an mremap move.
*/
struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
unsigned long addr, unsigned long len, pgoff_t pgoff)
{
struct vm_area_struct *vma = *vmap;
unsigned long vma_start = vma->vm_start;
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *new_vma, *prev;
struct rb_node **rb_link, *rb_parent;
struct mempolicy *pol;
/*
* If anonymous vma has not yet been faulted, update new pgoff
* to match new location, to increase its chance of merging.
*/
if (!vma->vm_file && !vma->anon_vma)
pgoff = addr >> PAGE_SHIFT;
find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
if (new_vma) {
/*
* Source vma may have been merged into new_vma
*/
if (vma_start >= new_vma->vm_start &&
vma_start < new_vma->vm_end)
*vmap = new_vma;
} else {
new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
if (new_vma) {
*new_vma = *vma;
pol = mpol_dup(vma_policy(vma));
if (IS_ERR(pol))
goto out_free_vma;
INIT_LIST_HEAD(&new_vma->anon_vma_chain);
if (anon_vma_clone(new_vma, vma))
goto out_free_mempol;
vma_set_policy(new_vma, pol);
new_vma->vm_start = addr;
new_vma->vm_end = addr + len;
new_vma->vm_pgoff = pgoff;
if (new_vma->vm_file) {
get_file(new_vma->vm_file);
if (vma->vm_flags & VM_EXECUTABLE)
added_exe_file_vma(mm);
}
if (new_vma->vm_ops && new_vma->vm_ops->open)
new_vma->vm_ops->open(new_vma);
vma_link(mm, new_vma, prev, rb_link, rb_parent);
}
}
return new_vma;
out_free_mempol:
mpol_put(pol);
out_free_vma:
kmem_cache_free(vm_area_cachep, new_vma);
return NULL;
}
/*
* Return true if the calling process may expand its vm space by the passed
* number of pages
*/
int may_expand_vm(struct mm_struct *mm, unsigned long npages)
{
unsigned long cur = mm->total_vm; /* pages */
unsigned long lim;
lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
if (cur + npages > lim)
return 0;
return 1;
}
static int special_mapping_fault(struct vm_area_struct *vma,
struct vm_fault *vmf)
{
pgoff_t pgoff;
struct page **pages;
/*
* special mappings have no vm_file, and in that case, the mm
* uses vm_pgoff internally. So we have to subtract it from here.
* We are allowed to do this because we are the mm; do not copy
* this code into drivers!
*/
pgoff = vmf->pgoff - vma->vm_pgoff;
for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
pgoff--;
if (*pages) {
struct page *page = *pages;
get_page(page);
vmf->page = page;
return 0;
}
return VM_FAULT_SIGBUS;
}
/*
* Having a close hook prevents vma merging regardless of flags.
*/
static void special_mapping_close(struct vm_area_struct *vma)
{
}
static const struct vm_operations_struct special_mapping_vmops = {
.close = special_mapping_close,
.fault = special_mapping_fault,
};
/*
* Called with mm->mmap_sem held for writing.
* Insert a new vma covering the given region, with the given flags.
* Its pages are supplied by the given array of struct page *.
* The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
* The region past the last page supplied will always produce SIGBUS.
* The array pointer and the pages it points to are assumed to stay alive
* for as long as this mapping might exist.
*/
int install_special_mapping(struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long vm_flags, struct page **pages)
{
int ret;
struct vm_area_struct *vma;
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (unlikely(vma == NULL))
return -ENOMEM;
INIT_LIST_HEAD(&vma->anon_vma_chain);
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
vma->vm_ops = &special_mapping_vmops;
vma->vm_private_data = pages;
ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
if (ret)
goto out;
ret = insert_vm_struct(mm, vma);
if (ret)
goto out;
mm->total_vm += len >> PAGE_SHIFT;
perf_event_mmap(vma);
return 0;
out:
kmem_cache_free(vm_area_cachep, vma);
return ret;
}
static DEFINE_MUTEX(mm_all_locks_mutex);
static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
{
if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
/*
* The LSB of head.next can't change from under us
* because we hold the mm_all_locks_mutex.
*/
mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
/*
* We can safely modify head.next after taking the
* anon_vma->root->mutex. If some other vma in this mm shares
* the same anon_vma we won't take it again.
*
* No need of atomic instructions here, head.next
* can't change from under us thanks to the
* anon_vma->root->mutex.
*/
if (__test_and_set_bit(0, (unsigned long *)
&anon_vma->root->head.next))
BUG();
}
}
static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
{
if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
/*
* AS_MM_ALL_LOCKS can't change from under us because
* we hold the mm_all_locks_mutex.
*
* Operations on ->flags have to be atomic because
* even if AS_MM_ALL_LOCKS is stable thanks to the
* mm_all_locks_mutex, there may be other cpus
* changing other bitflags in parallel to us.
*/
if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
BUG();
mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
}
}
/*
* This operation locks against the VM for all pte/vma/mm related
* operations that could ever happen on a certain mm. This includes
* vmtruncate, try_to_unmap, and all page faults.
*
* The caller must take the mmap_sem in write mode before calling
* mm_take_all_locks(). The caller isn't allowed to release the
* mmap_sem until mm_drop_all_locks() returns.
*
* mmap_sem in write mode is required in order to block all operations
* that could modify pagetables and free pages without need of
* altering the vma layout (for example populate_range() with
* nonlinear vmas). It's also needed in write mode to avoid new
* anon_vmas to be associated with existing vmas.
*
* A single task can't take more than one mm_take_all_locks() in a row
* or it would deadlock.
*
* The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
* mapping->flags avoid to take the same lock twice, if more than one
* vma in this mm is backed by the same anon_vma or address_space.
*
* We can take all the locks in random order because the VM code
* taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
* takes more than one of them in a row. Secondly we're protected
* against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
*
* mm_take_all_locks() and mm_drop_all_locks are expensive operations
* that may have to take thousand of locks.
*
* mm_take_all_locks() can fail if it's interrupted by signals.
*/
int mm_take_all_locks(struct mm_struct *mm)
{
struct vm_area_struct *vma;
struct anon_vma_chain *avc;
int ret = -EINTR;
BUG_ON(down_read_trylock(&mm->mmap_sem));
mutex_lock(&mm_all_locks_mutex);
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (signal_pending(current))
goto out_unlock;
if (vma->vm_file && vma->vm_file->f_mapping)
vm_lock_mapping(mm, vma->vm_file->f_mapping);
}
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (signal_pending(current))
goto out_unlock;
if (vma->anon_vma)
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
vm_lock_anon_vma(mm, avc->anon_vma);
}
ret = 0;
out_unlock:
if (ret)
mm_drop_all_locks(mm);
return ret;
}
static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
{
if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
/*
* The LSB of head.next can't change to 0 from under
* us because we hold the mm_all_locks_mutex.
*
* We must however clear the bitflag before unlocking
* the vma so the users using the anon_vma->head will
* never see our bitflag.
*
* No need of atomic instructions here, head.next
* can't change from under us until we release the
* anon_vma->root->mutex.
*/
if (!__test_and_clear_bit(0, (unsigned long *)
&anon_vma->root->head.next))
BUG();
anon_vma_unlock(anon_vma);
}
}
static void vm_unlock_mapping(struct address_space *mapping)
{
if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
/*
* AS_MM_ALL_LOCKS can't change to 0 from under us
* because we hold the mm_all_locks_mutex.
*/
mutex_unlock(&mapping->i_mmap_mutex);
if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
&mapping->flags))
BUG();
}
}
/*
* The mmap_sem cannot be released by the caller until
* mm_drop_all_locks() returns.
*/
void mm_drop_all_locks(struct mm_struct *mm)
{
struct vm_area_struct *vma;
struct anon_vma_chain *avc;
BUG_ON(down_read_trylock(&mm->mmap_sem));
BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (vma->anon_vma)
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
vm_unlock_anon_vma(avc->anon_vma);
if (vma->vm_file && vma->vm_file->f_mapping)
vm_unlock_mapping(vma->vm_file->f_mapping);
}
mutex_unlock(&mm_all_locks_mutex);
}
/*
* initialise the VMA slab
*/
void __init mmap_init(void)
{
int ret;
ret = percpu_counter_init(&vm_committed_as, 0);
VM_BUG_ON(ret);
}