linux-stable/drivers/clocksource/timer-mediatek.c
AngeloGioacchino Del Regno 49d576ea72 clocksource/drivers/timer-mediatek: Split out CPUXGPT timers
On MediaTek platforms, CPUXGPT is the source for the AArch64 System
Timer, read through CNTVCT_EL0.

The handling for starting this timer ASAP was introduced in commit
327e93cf9a59 ("clocksource/drivers/timer-mediatek: Implement CPUXGPT timers")
which description also contains an important full explanation of the
reasons why this driver is necessary and cannot be a module.

In preparation for an eventual conversion of timer-mediatek to a
platform_driver that would be possibly built as a module, split out
the CPUXGPT timers driver to a new timer-mediatek-cpux.c driver.

This commit brings no functional changes.

Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Reviewed-by: Walter Chang <walter.chang@mediatek.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20230309103913.116775-1-angelogioacchino.delregno@collabora.com
2023-04-24 16:56:13 +02:00

342 lines
8.9 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Mediatek SoCs General-Purpose Timer handling.
*
* Copyright (C) 2014 Matthias Brugger
*
* Matthias Brugger <matthias.bgg@gmail.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/interrupt.h>
#include <linux/irqreturn.h>
#include <linux/sched_clock.h>
#include <linux/slab.h>
#include "timer-of.h"
#define TIMER_CLK_EVT (1)
#define TIMER_CLK_SRC (2)
#define TIMER_SYNC_TICKS (3)
/* gpt */
#define GPT_IRQ_EN_REG 0x00
#define GPT_IRQ_ENABLE(val) BIT((val) - 1)
#define GPT_IRQ_ACK_REG 0x08
#define GPT_IRQ_ACK(val) BIT((val) - 1)
#define GPT_CTRL_REG(val) (0x10 * (val))
#define GPT_CTRL_OP(val) (((val) & 0x3) << 4)
#define GPT_CTRL_OP_ONESHOT (0)
#define GPT_CTRL_OP_REPEAT (1)
#define GPT_CTRL_OP_FREERUN (3)
#define GPT_CTRL_CLEAR (2)
#define GPT_CTRL_ENABLE (1)
#define GPT_CTRL_DISABLE (0)
#define GPT_CLK_REG(val) (0x04 + (0x10 * (val)))
#define GPT_CLK_SRC(val) (((val) & 0x1) << 4)
#define GPT_CLK_SRC_SYS13M (0)
#define GPT_CLK_SRC_RTC32K (1)
#define GPT_CLK_DIV1 (0x0)
#define GPT_CLK_DIV2 (0x1)
#define GPT_CNT_REG(val) (0x08 + (0x10 * (val)))
#define GPT_CMP_REG(val) (0x0C + (0x10 * (val)))
/* system timer */
#define SYST_BASE (0x40)
#define SYST_CON (SYST_BASE + 0x0)
#define SYST_VAL (SYST_BASE + 0x4)
#define SYST_CON_REG(to) (timer_of_base(to) + SYST_CON)
#define SYST_VAL_REG(to) (timer_of_base(to) + SYST_VAL)
/*
* SYST_CON_EN: Clock enable. Shall be set to
* - Start timer countdown.
* - Allow timeout ticks being updated.
* - Allow changing interrupt status,like clear irq pending.
*
* SYST_CON_IRQ_EN: Set to enable interrupt.
*
* SYST_CON_IRQ_CLR: Set to clear interrupt.
*/
#define SYST_CON_EN BIT(0)
#define SYST_CON_IRQ_EN BIT(1)
#define SYST_CON_IRQ_CLR BIT(4)
static void __iomem *gpt_sched_reg __read_mostly;
static void mtk_syst_ack_irq(struct timer_of *to)
{
/* Clear and disable interrupt */
writel(SYST_CON_EN, SYST_CON_REG(to));
writel(SYST_CON_IRQ_CLR | SYST_CON_EN, SYST_CON_REG(to));
}
static irqreturn_t mtk_syst_handler(int irq, void *dev_id)
{
struct clock_event_device *clkevt = dev_id;
struct timer_of *to = to_timer_of(clkevt);
mtk_syst_ack_irq(to);
clkevt->event_handler(clkevt);
return IRQ_HANDLED;
}
static int mtk_syst_clkevt_next_event(unsigned long ticks,
struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
/* Enable clock to allow timeout tick update later */
writel(SYST_CON_EN, SYST_CON_REG(to));
/*
* Write new timeout ticks. Timer shall start countdown
* after timeout ticks are updated.
*/
writel(ticks, SYST_VAL_REG(to));
/* Enable interrupt */
writel(SYST_CON_EN | SYST_CON_IRQ_EN, SYST_CON_REG(to));
return 0;
}
static int mtk_syst_clkevt_shutdown(struct clock_event_device *clkevt)
{
/* Clear any irq */
mtk_syst_ack_irq(to_timer_of(clkevt));
/* Disable timer */
writel(0, SYST_CON_REG(to_timer_of(clkevt)));
return 0;
}
static int mtk_syst_clkevt_resume(struct clock_event_device *clkevt)
{
return mtk_syst_clkevt_shutdown(clkevt);
}
static int mtk_syst_clkevt_oneshot(struct clock_event_device *clkevt)
{
return 0;
}
static u64 notrace mtk_gpt_read_sched_clock(void)
{
return readl_relaxed(gpt_sched_reg);
}
static void mtk_gpt_clkevt_time_stop(struct timer_of *to, u8 timer)
{
u32 val;
val = readl(timer_of_base(to) + GPT_CTRL_REG(timer));
writel(val & ~GPT_CTRL_ENABLE, timer_of_base(to) +
GPT_CTRL_REG(timer));
}
static void mtk_gpt_clkevt_time_setup(struct timer_of *to,
unsigned long delay, u8 timer)
{
writel(delay, timer_of_base(to) + GPT_CMP_REG(timer));
}
static void mtk_gpt_clkevt_time_start(struct timer_of *to,
bool periodic, u8 timer)
{
u32 val;
/* Acknowledge interrupt */
writel(GPT_IRQ_ACK(timer), timer_of_base(to) + GPT_IRQ_ACK_REG);
val = readl(timer_of_base(to) + GPT_CTRL_REG(timer));
/* Clear 2 bit timer operation mode field */
val &= ~GPT_CTRL_OP(0x3);
if (periodic)
val |= GPT_CTRL_OP(GPT_CTRL_OP_REPEAT);
else
val |= GPT_CTRL_OP(GPT_CTRL_OP_ONESHOT);
writel(val | GPT_CTRL_ENABLE | GPT_CTRL_CLEAR,
timer_of_base(to) + GPT_CTRL_REG(timer));
}
static int mtk_gpt_clkevt_shutdown(struct clock_event_device *clk)
{
mtk_gpt_clkevt_time_stop(to_timer_of(clk), TIMER_CLK_EVT);
return 0;
}
static int mtk_gpt_clkevt_set_periodic(struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
mtk_gpt_clkevt_time_stop(to, TIMER_CLK_EVT);
mtk_gpt_clkevt_time_setup(to, to->of_clk.period, TIMER_CLK_EVT);
mtk_gpt_clkevt_time_start(to, true, TIMER_CLK_EVT);
return 0;
}
static int mtk_gpt_clkevt_next_event(unsigned long event,
struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
mtk_gpt_clkevt_time_stop(to, TIMER_CLK_EVT);
mtk_gpt_clkevt_time_setup(to, event, TIMER_CLK_EVT);
mtk_gpt_clkevt_time_start(to, false, TIMER_CLK_EVT);
return 0;
}
static irqreturn_t mtk_gpt_interrupt(int irq, void *dev_id)
{
struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
struct timer_of *to = to_timer_of(clkevt);
/* Acknowledge timer0 irq */
writel(GPT_IRQ_ACK(TIMER_CLK_EVT), timer_of_base(to) + GPT_IRQ_ACK_REG);
clkevt->event_handler(clkevt);
return IRQ_HANDLED;
}
static void
__init mtk_gpt_setup(struct timer_of *to, u8 timer, u8 option)
{
writel(GPT_CTRL_CLEAR | GPT_CTRL_DISABLE,
timer_of_base(to) + GPT_CTRL_REG(timer));
writel(GPT_CLK_SRC(GPT_CLK_SRC_SYS13M) | GPT_CLK_DIV1,
timer_of_base(to) + GPT_CLK_REG(timer));
writel(0x0, timer_of_base(to) + GPT_CMP_REG(timer));
writel(GPT_CTRL_OP(option) | GPT_CTRL_ENABLE,
timer_of_base(to) + GPT_CTRL_REG(timer));
}
static void mtk_gpt_enable_irq(struct timer_of *to, u8 timer)
{
u32 val;
/* Disable all interrupts */
writel(0x0, timer_of_base(to) + GPT_IRQ_EN_REG);
/* Acknowledge all spurious pending interrupts */
writel(0x3f, timer_of_base(to) + GPT_IRQ_ACK_REG);
val = readl(timer_of_base(to) + GPT_IRQ_EN_REG);
writel(val | GPT_IRQ_ENABLE(timer),
timer_of_base(to) + GPT_IRQ_EN_REG);
}
static void mtk_gpt_resume(struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
mtk_gpt_enable_irq(to, TIMER_CLK_EVT);
}
static void mtk_gpt_suspend(struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
/* Disable all interrupts */
writel(0x0, timer_of_base(to) + GPT_IRQ_EN_REG);
/*
* This is called with interrupts disabled,
* so we need to ack any interrupt that is pending
* or for example ATF will prevent a suspend from completing.
*/
writel(0x3f, timer_of_base(to) + GPT_IRQ_ACK_REG);
}
static struct timer_of to = {
.flags = TIMER_OF_IRQ | TIMER_OF_BASE | TIMER_OF_CLOCK,
.clkevt = {
.name = "mtk-clkevt",
.rating = 300,
.cpumask = cpu_possible_mask,
},
.of_irq = {
.flags = IRQF_TIMER | IRQF_IRQPOLL,
},
};
static int __init mtk_syst_init(struct device_node *node)
{
int ret;
to.clkevt.features = CLOCK_EVT_FEAT_DYNIRQ | CLOCK_EVT_FEAT_ONESHOT;
to.clkevt.set_state_shutdown = mtk_syst_clkevt_shutdown;
to.clkevt.set_state_oneshot = mtk_syst_clkevt_oneshot;
to.clkevt.tick_resume = mtk_syst_clkevt_resume;
to.clkevt.set_next_event = mtk_syst_clkevt_next_event;
to.of_irq.handler = mtk_syst_handler;
ret = timer_of_init(node, &to);
if (ret)
return ret;
clockevents_config_and_register(&to.clkevt, timer_of_rate(&to),
TIMER_SYNC_TICKS, 0xffffffff);
return 0;
}
static int __init mtk_gpt_init(struct device_node *node)
{
int ret;
to.clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
to.clkevt.set_state_shutdown = mtk_gpt_clkevt_shutdown;
to.clkevt.set_state_periodic = mtk_gpt_clkevt_set_periodic;
to.clkevt.set_state_oneshot = mtk_gpt_clkevt_shutdown;
to.clkevt.tick_resume = mtk_gpt_clkevt_shutdown;
to.clkevt.set_next_event = mtk_gpt_clkevt_next_event;
to.clkevt.suspend = mtk_gpt_suspend;
to.clkevt.resume = mtk_gpt_resume;
to.of_irq.handler = mtk_gpt_interrupt;
ret = timer_of_init(node, &to);
if (ret)
return ret;
/* Configure clock source */
mtk_gpt_setup(&to, TIMER_CLK_SRC, GPT_CTRL_OP_FREERUN);
clocksource_mmio_init(timer_of_base(&to) + GPT_CNT_REG(TIMER_CLK_SRC),
node->name, timer_of_rate(&to), 300, 32,
clocksource_mmio_readl_up);
gpt_sched_reg = timer_of_base(&to) + GPT_CNT_REG(TIMER_CLK_SRC);
sched_clock_register(mtk_gpt_read_sched_clock, 32, timer_of_rate(&to));
/* Configure clock event */
mtk_gpt_setup(&to, TIMER_CLK_EVT, GPT_CTRL_OP_REPEAT);
clockevents_config_and_register(&to.clkevt, timer_of_rate(&to),
TIMER_SYNC_TICKS, 0xffffffff);
mtk_gpt_enable_irq(&to, TIMER_CLK_EVT);
return 0;
}
TIMER_OF_DECLARE(mtk_mt6577, "mediatek,mt6577-timer", mtk_gpt_init);
TIMER_OF_DECLARE(mtk_mt6765, "mediatek,mt6765-timer", mtk_syst_init);