Matt Hsiao 23d51b8181 misc: hpilo: map iLO shared memory by PCI revision id
Starting from iLO ASIC 'Neches' with subsystem device id 0x00E4,
bar 5 is used for shared memory region mapping instead of bar 2
because bar 2 is made inaccessible after system POST for security
reason.

As this holds true for future iLO ASIC generations, it does not
make sense to map shared memory region according to the subsystem
device id of each following generations.

Map iLO shared memory region with PCI revision id that maps to the
iLO ASIC generation, starting from Neches (Rev 7).

Signed-off-by: Matt Hsiao <matt.hsiao@hpe.com>
Link: https://lore.kernel.org/r/20210531085551.26421-1-matt.hsiao@hpe.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-04 15:28:23 +02:00

934 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the HP iLO management processor.
*
* Copyright (C) 2008 Hewlett-Packard Development Company, L.P.
* David Altobelli <david.altobelli@hpe.com>
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/file.h>
#include <linux/cdev.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/wait.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include "hpilo.h"
static struct class *ilo_class;
static unsigned int ilo_major;
static unsigned int max_ccb = 16;
static char ilo_hwdev[MAX_ILO_DEV];
static const struct pci_device_id ilo_blacklist[] = {
/* auxiliary iLO */
{PCI_DEVICE_SUB(PCI_VENDOR_ID_HP, 0x3307, PCI_VENDOR_ID_HP, 0x1979)},
/* CL */
{PCI_DEVICE_SUB(PCI_VENDOR_ID_HP, 0x3307, PCI_VENDOR_ID_HP_3PAR, 0x0289)},
{}
};
static inline int get_entry_id(int entry)
{
return (entry & ENTRY_MASK_DESCRIPTOR) >> ENTRY_BITPOS_DESCRIPTOR;
}
static inline int get_entry_len(int entry)
{
return ((entry & ENTRY_MASK_QWORDS) >> ENTRY_BITPOS_QWORDS) << 3;
}
static inline int mk_entry(int id, int len)
{
int qlen = len & 7 ? (len >> 3) + 1 : len >> 3;
return id << ENTRY_BITPOS_DESCRIPTOR | qlen << ENTRY_BITPOS_QWORDS;
}
static inline int desc_mem_sz(int nr_entry)
{
return nr_entry << L2_QENTRY_SZ;
}
/*
* FIFO queues, shared with hardware.
*
* If a queue has empty slots, an entry is added to the queue tail,
* and that entry is marked as occupied.
* Entries can be dequeued from the head of the list, when the device
* has marked the entry as consumed.
*
* Returns true on successful queue/dequeue, false on failure.
*/
static int fifo_enqueue(struct ilo_hwinfo *hw, char *fifobar, int entry)
{
struct fifo *fifo_q = FIFOBARTOHANDLE(fifobar);
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&hw->fifo_lock, flags);
if (!(fifo_q->fifobar[(fifo_q->tail + 1) & fifo_q->imask]
& ENTRY_MASK_O)) {
fifo_q->fifobar[fifo_q->tail & fifo_q->imask] |=
(entry & ENTRY_MASK_NOSTATE) | fifo_q->merge;
fifo_q->tail += 1;
ret = 1;
}
spin_unlock_irqrestore(&hw->fifo_lock, flags);
return ret;
}
static int fifo_dequeue(struct ilo_hwinfo *hw, char *fifobar, int *entry)
{
struct fifo *fifo_q = FIFOBARTOHANDLE(fifobar);
unsigned long flags;
int ret = 0;
u64 c;
spin_lock_irqsave(&hw->fifo_lock, flags);
c = fifo_q->fifobar[fifo_q->head & fifo_q->imask];
if (c & ENTRY_MASK_C) {
if (entry)
*entry = c & ENTRY_MASK_NOSTATE;
fifo_q->fifobar[fifo_q->head & fifo_q->imask] =
(c | ENTRY_MASK) + 1;
fifo_q->head += 1;
ret = 1;
}
spin_unlock_irqrestore(&hw->fifo_lock, flags);
return ret;
}
static int fifo_check_recv(struct ilo_hwinfo *hw, char *fifobar)
{
struct fifo *fifo_q = FIFOBARTOHANDLE(fifobar);
unsigned long flags;
int ret = 0;
u64 c;
spin_lock_irqsave(&hw->fifo_lock, flags);
c = fifo_q->fifobar[fifo_q->head & fifo_q->imask];
if (c & ENTRY_MASK_C)
ret = 1;
spin_unlock_irqrestore(&hw->fifo_lock, flags);
return ret;
}
static int ilo_pkt_enqueue(struct ilo_hwinfo *hw, struct ccb *ccb,
int dir, int id, int len)
{
char *fifobar;
int entry;
if (dir == SENDQ)
fifobar = ccb->ccb_u1.send_fifobar;
else
fifobar = ccb->ccb_u3.recv_fifobar;
entry = mk_entry(id, len);
return fifo_enqueue(hw, fifobar, entry);
}
static int ilo_pkt_dequeue(struct ilo_hwinfo *hw, struct ccb *ccb,
int dir, int *id, int *len, void **pkt)
{
char *fifobar, *desc;
int entry = 0, pkt_id = 0;
int ret;
if (dir == SENDQ) {
fifobar = ccb->ccb_u1.send_fifobar;
desc = ccb->ccb_u2.send_desc;
} else {
fifobar = ccb->ccb_u3.recv_fifobar;
desc = ccb->ccb_u4.recv_desc;
}
ret = fifo_dequeue(hw, fifobar, &entry);
if (ret) {
pkt_id = get_entry_id(entry);
if (id)
*id = pkt_id;
if (len)
*len = get_entry_len(entry);
if (pkt)
*pkt = (void *)(desc + desc_mem_sz(pkt_id));
}
return ret;
}
static int ilo_pkt_recv(struct ilo_hwinfo *hw, struct ccb *ccb)
{
char *fifobar = ccb->ccb_u3.recv_fifobar;
return fifo_check_recv(hw, fifobar);
}
static inline void doorbell_set(struct ccb *ccb)
{
iowrite8(1, ccb->ccb_u5.db_base);
}
static inline void doorbell_clr(struct ccb *ccb)
{
iowrite8(2, ccb->ccb_u5.db_base);
}
static inline int ctrl_set(int l2sz, int idxmask, int desclim)
{
int active = 0, go = 1;
return l2sz << CTRL_BITPOS_L2SZ |
idxmask << CTRL_BITPOS_FIFOINDEXMASK |
desclim << CTRL_BITPOS_DESCLIMIT |
active << CTRL_BITPOS_A |
go << CTRL_BITPOS_G;
}
static void ctrl_setup(struct ccb *ccb, int nr_desc, int l2desc_sz)
{
/* for simplicity, use the same parameters for send and recv ctrls */
ccb->send_ctrl = ctrl_set(l2desc_sz, nr_desc-1, nr_desc-1);
ccb->recv_ctrl = ctrl_set(l2desc_sz, nr_desc-1, nr_desc-1);
}
static inline int fifo_sz(int nr_entry)
{
/* size of a fifo is determined by the number of entries it contains */
return nr_entry * sizeof(u64) + FIFOHANDLESIZE;
}
static void fifo_setup(void *base_addr, int nr_entry)
{
struct fifo *fifo_q = base_addr;
int i;
/* set up an empty fifo */
fifo_q->head = 0;
fifo_q->tail = 0;
fifo_q->reset = 0;
fifo_q->nrents = nr_entry;
fifo_q->imask = nr_entry - 1;
fifo_q->merge = ENTRY_MASK_O;
for (i = 0; i < nr_entry; i++)
fifo_q->fifobar[i] = 0;
}
static void ilo_ccb_close(struct pci_dev *pdev, struct ccb_data *data)
{
struct ccb *driver_ccb = &data->driver_ccb;
struct ccb __iomem *device_ccb = data->mapped_ccb;
int retries;
/* complicated dance to tell the hw we are stopping */
doorbell_clr(driver_ccb);
iowrite32(ioread32(&device_ccb->send_ctrl) & ~(1 << CTRL_BITPOS_G),
&device_ccb->send_ctrl);
iowrite32(ioread32(&device_ccb->recv_ctrl) & ~(1 << CTRL_BITPOS_G),
&device_ccb->recv_ctrl);
/* give iLO some time to process stop request */
for (retries = MAX_WAIT; retries > 0; retries--) {
doorbell_set(driver_ccb);
udelay(WAIT_TIME);
if (!(ioread32(&device_ccb->send_ctrl) & (1 << CTRL_BITPOS_A))
&&
!(ioread32(&device_ccb->recv_ctrl) & (1 << CTRL_BITPOS_A)))
break;
}
if (retries == 0)
dev_err(&pdev->dev, "Closing, but controller still active\n");
/* clear the hw ccb */
memset_io(device_ccb, 0, sizeof(struct ccb));
/* free resources used to back send/recv queues */
dma_free_coherent(&pdev->dev, data->dma_size, data->dma_va,
data->dma_pa);
}
static int ilo_ccb_setup(struct ilo_hwinfo *hw, struct ccb_data *data, int slot)
{
char *dma_va;
dma_addr_t dma_pa;
struct ccb *driver_ccb, *ilo_ccb;
driver_ccb = &data->driver_ccb;
ilo_ccb = &data->ilo_ccb;
data->dma_size = 2 * fifo_sz(NR_QENTRY) +
2 * desc_mem_sz(NR_QENTRY) +
ILO_START_ALIGN + ILO_CACHE_SZ;
data->dma_va = dma_alloc_coherent(&hw->ilo_dev->dev, data->dma_size,
&data->dma_pa, GFP_ATOMIC);
if (!data->dma_va)
return -ENOMEM;
dma_va = (char *)data->dma_va;
dma_pa = data->dma_pa;
dma_va = (char *)roundup((unsigned long)dma_va, ILO_START_ALIGN);
dma_pa = roundup(dma_pa, ILO_START_ALIGN);
/*
* Create two ccb's, one with virt addrs, one with phys addrs.
* Copy the phys addr ccb to device shared mem.
*/
ctrl_setup(driver_ccb, NR_QENTRY, L2_QENTRY_SZ);
ctrl_setup(ilo_ccb, NR_QENTRY, L2_QENTRY_SZ);
fifo_setup(dma_va, NR_QENTRY);
driver_ccb->ccb_u1.send_fifobar = dma_va + FIFOHANDLESIZE;
ilo_ccb->ccb_u1.send_fifobar_pa = dma_pa + FIFOHANDLESIZE;
dma_va += fifo_sz(NR_QENTRY);
dma_pa += fifo_sz(NR_QENTRY);
dma_va = (char *)roundup((unsigned long)dma_va, ILO_CACHE_SZ);
dma_pa = roundup(dma_pa, ILO_CACHE_SZ);
fifo_setup(dma_va, NR_QENTRY);
driver_ccb->ccb_u3.recv_fifobar = dma_va + FIFOHANDLESIZE;
ilo_ccb->ccb_u3.recv_fifobar_pa = dma_pa + FIFOHANDLESIZE;
dma_va += fifo_sz(NR_QENTRY);
dma_pa += fifo_sz(NR_QENTRY);
driver_ccb->ccb_u2.send_desc = dma_va;
ilo_ccb->ccb_u2.send_desc_pa = dma_pa;
dma_pa += desc_mem_sz(NR_QENTRY);
dma_va += desc_mem_sz(NR_QENTRY);
driver_ccb->ccb_u4.recv_desc = dma_va;
ilo_ccb->ccb_u4.recv_desc_pa = dma_pa;
driver_ccb->channel = slot;
ilo_ccb->channel = slot;
driver_ccb->ccb_u5.db_base = hw->db_vaddr + (slot << L2_DB_SIZE);
ilo_ccb->ccb_u5.db_base = NULL; /* hw ccb's doorbell is not used */
return 0;
}
static void ilo_ccb_open(struct ilo_hwinfo *hw, struct ccb_data *data, int slot)
{
int pkt_id, pkt_sz;
struct ccb *driver_ccb = &data->driver_ccb;
/* copy the ccb with physical addrs to device memory */
data->mapped_ccb = (struct ccb __iomem *)
(hw->ram_vaddr + (slot * ILOHW_CCB_SZ));
memcpy_toio(data->mapped_ccb, &data->ilo_ccb, sizeof(struct ccb));
/* put packets on the send and receive queues */
pkt_sz = 0;
for (pkt_id = 0; pkt_id < NR_QENTRY; pkt_id++) {
ilo_pkt_enqueue(hw, driver_ccb, SENDQ, pkt_id, pkt_sz);
doorbell_set(driver_ccb);
}
pkt_sz = desc_mem_sz(1);
for (pkt_id = 0; pkt_id < NR_QENTRY; pkt_id++)
ilo_pkt_enqueue(hw, driver_ccb, RECVQ, pkt_id, pkt_sz);
/* the ccb is ready to use */
doorbell_clr(driver_ccb);
}
static int ilo_ccb_verify(struct ilo_hwinfo *hw, struct ccb_data *data)
{
int pkt_id, i;
struct ccb *driver_ccb = &data->driver_ccb;
/* make sure iLO is really handling requests */
for (i = MAX_WAIT; i > 0; i--) {
if (ilo_pkt_dequeue(hw, driver_ccb, SENDQ, &pkt_id, NULL, NULL))
break;
udelay(WAIT_TIME);
}
if (i == 0) {
dev_err(&hw->ilo_dev->dev, "Open could not dequeue a packet\n");
return -EBUSY;
}
ilo_pkt_enqueue(hw, driver_ccb, SENDQ, pkt_id, 0);
doorbell_set(driver_ccb);
return 0;
}
static inline int is_channel_reset(struct ccb *ccb)
{
/* check for this particular channel needing a reset */
return FIFOBARTOHANDLE(ccb->ccb_u1.send_fifobar)->reset;
}
static inline void set_channel_reset(struct ccb *ccb)
{
/* set a flag indicating this channel needs a reset */
FIFOBARTOHANDLE(ccb->ccb_u1.send_fifobar)->reset = 1;
}
static inline int get_device_outbound(struct ilo_hwinfo *hw)
{
return ioread32(&hw->mmio_vaddr[DB_OUT]);
}
static inline int is_db_reset(int db_out)
{
return db_out & (1 << DB_RESET);
}
static inline int is_device_reset(struct ilo_hwinfo *hw)
{
/* check for global reset condition */
return is_db_reset(get_device_outbound(hw));
}
static inline void clear_pending_db(struct ilo_hwinfo *hw, int clr)
{
iowrite32(clr, &hw->mmio_vaddr[DB_OUT]);
}
static inline void clear_device(struct ilo_hwinfo *hw)
{
/* clear the device (reset bits, pending channel entries) */
clear_pending_db(hw, -1);
}
static inline void ilo_enable_interrupts(struct ilo_hwinfo *hw)
{
iowrite8(ioread8(&hw->mmio_vaddr[DB_IRQ]) | 1, &hw->mmio_vaddr[DB_IRQ]);
}
static inline void ilo_disable_interrupts(struct ilo_hwinfo *hw)
{
iowrite8(ioread8(&hw->mmio_vaddr[DB_IRQ]) & ~1,
&hw->mmio_vaddr[DB_IRQ]);
}
static void ilo_set_reset(struct ilo_hwinfo *hw)
{
int slot;
/*
* Mapped memory is zeroed on ilo reset, so set a per ccb flag
* to indicate that this ccb needs to be closed and reopened.
*/
for (slot = 0; slot < max_ccb; slot++) {
if (!hw->ccb_alloc[slot])
continue;
set_channel_reset(&hw->ccb_alloc[slot]->driver_ccb);
}
}
static ssize_t ilo_read(struct file *fp, char __user *buf,
size_t len, loff_t *off)
{
int err, found, cnt, pkt_id, pkt_len;
struct ccb_data *data = fp->private_data;
struct ccb *driver_ccb = &data->driver_ccb;
struct ilo_hwinfo *hw = data->ilo_hw;
void *pkt;
if (is_channel_reset(driver_ccb)) {
/*
* If the device has been reset, applications
* need to close and reopen all ccbs.
*/
return -ENODEV;
}
/*
* This function is to be called when data is expected
* in the channel, and will return an error if no packet is found
* during the loop below. The sleep/retry logic is to allow
* applications to call read() immediately post write(),
* and give iLO some time to process the sent packet.
*/
cnt = 20;
do {
/* look for a received packet */
found = ilo_pkt_dequeue(hw, driver_ccb, RECVQ, &pkt_id,
&pkt_len, &pkt);
if (found)
break;
cnt--;
msleep(100);
} while (!found && cnt);
if (!found)
return -EAGAIN;
/* only copy the length of the received packet */
if (pkt_len < len)
len = pkt_len;
err = copy_to_user(buf, pkt, len);
/* return the received packet to the queue */
ilo_pkt_enqueue(hw, driver_ccb, RECVQ, pkt_id, desc_mem_sz(1));
return err ? -EFAULT : len;
}
static ssize_t ilo_write(struct file *fp, const char __user *buf,
size_t len, loff_t *off)
{
int err, pkt_id, pkt_len;
struct ccb_data *data = fp->private_data;
struct ccb *driver_ccb = &data->driver_ccb;
struct ilo_hwinfo *hw = data->ilo_hw;
void *pkt;
if (is_channel_reset(driver_ccb))
return -ENODEV;
/* get a packet to send the user command */
if (!ilo_pkt_dequeue(hw, driver_ccb, SENDQ, &pkt_id, &pkt_len, &pkt))
return -EBUSY;
/* limit the length to the length of the packet */
if (pkt_len < len)
len = pkt_len;
/* on failure, set the len to 0 to return empty packet to the device */
err = copy_from_user(pkt, buf, len);
if (err)
len = 0;
/* send the packet */
ilo_pkt_enqueue(hw, driver_ccb, SENDQ, pkt_id, len);
doorbell_set(driver_ccb);
return err ? -EFAULT : len;
}
static __poll_t ilo_poll(struct file *fp, poll_table *wait)
{
struct ccb_data *data = fp->private_data;
struct ccb *driver_ccb = &data->driver_ccb;
poll_wait(fp, &data->ccb_waitq, wait);
if (is_channel_reset(driver_ccb))
return EPOLLERR;
else if (ilo_pkt_recv(data->ilo_hw, driver_ccb))
return EPOLLIN | EPOLLRDNORM;
return 0;
}
static int ilo_close(struct inode *ip, struct file *fp)
{
int slot;
struct ccb_data *data;
struct ilo_hwinfo *hw;
unsigned long flags;
slot = iminor(ip) % max_ccb;
hw = container_of(ip->i_cdev, struct ilo_hwinfo, cdev);
spin_lock(&hw->open_lock);
if (hw->ccb_alloc[slot]->ccb_cnt == 1) {
data = fp->private_data;
spin_lock_irqsave(&hw->alloc_lock, flags);
hw->ccb_alloc[slot] = NULL;
spin_unlock_irqrestore(&hw->alloc_lock, flags);
ilo_ccb_close(hw->ilo_dev, data);
kfree(data);
} else
hw->ccb_alloc[slot]->ccb_cnt--;
spin_unlock(&hw->open_lock);
return 0;
}
static int ilo_open(struct inode *ip, struct file *fp)
{
int slot, error;
struct ccb_data *data;
struct ilo_hwinfo *hw;
unsigned long flags;
slot = iminor(ip) % max_ccb;
hw = container_of(ip->i_cdev, struct ilo_hwinfo, cdev);
/* new ccb allocation */
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
spin_lock(&hw->open_lock);
/* each fd private_data holds sw/hw view of ccb */
if (hw->ccb_alloc[slot] == NULL) {
/* create a channel control block for this minor */
error = ilo_ccb_setup(hw, data, slot);
if (error) {
kfree(data);
goto out;
}
data->ccb_cnt = 1;
data->ccb_excl = fp->f_flags & O_EXCL;
data->ilo_hw = hw;
init_waitqueue_head(&data->ccb_waitq);
/* write the ccb to hw */
spin_lock_irqsave(&hw->alloc_lock, flags);
ilo_ccb_open(hw, data, slot);
hw->ccb_alloc[slot] = data;
spin_unlock_irqrestore(&hw->alloc_lock, flags);
/* make sure the channel is functional */
error = ilo_ccb_verify(hw, data);
if (error) {
spin_lock_irqsave(&hw->alloc_lock, flags);
hw->ccb_alloc[slot] = NULL;
spin_unlock_irqrestore(&hw->alloc_lock, flags);
ilo_ccb_close(hw->ilo_dev, data);
kfree(data);
goto out;
}
} else {
kfree(data);
if (fp->f_flags & O_EXCL || hw->ccb_alloc[slot]->ccb_excl) {
/*
* The channel exists, and either this open
* or a previous open of this channel wants
* exclusive access.
*/
error = -EBUSY;
} else {
hw->ccb_alloc[slot]->ccb_cnt++;
error = 0;
}
}
out:
spin_unlock(&hw->open_lock);
if (!error)
fp->private_data = hw->ccb_alloc[slot];
return error;
}
static const struct file_operations ilo_fops = {
.owner = THIS_MODULE,
.read = ilo_read,
.write = ilo_write,
.poll = ilo_poll,
.open = ilo_open,
.release = ilo_close,
.llseek = noop_llseek,
};
static irqreturn_t ilo_isr(int irq, void *data)
{
struct ilo_hwinfo *hw = data;
int pending, i;
spin_lock(&hw->alloc_lock);
/* check for ccbs which have data */
pending = get_device_outbound(hw);
if (!pending) {
spin_unlock(&hw->alloc_lock);
return IRQ_NONE;
}
if (is_db_reset(pending)) {
/* wake up all ccbs if the device was reset */
pending = -1;
ilo_set_reset(hw);
}
for (i = 0; i < max_ccb; i++) {
if (!hw->ccb_alloc[i])
continue;
if (pending & (1 << i))
wake_up_interruptible(&hw->ccb_alloc[i]->ccb_waitq);
}
/* clear the device of the channels that have been handled */
clear_pending_db(hw, pending);
spin_unlock(&hw->alloc_lock);
return IRQ_HANDLED;
}
static void ilo_unmap_device(struct pci_dev *pdev, struct ilo_hwinfo *hw)
{
pci_iounmap(pdev, hw->db_vaddr);
pci_iounmap(pdev, hw->ram_vaddr);
pci_iounmap(pdev, hw->mmio_vaddr);
}
static int ilo_map_device(struct pci_dev *pdev, struct ilo_hwinfo *hw)
{
int bar;
unsigned long off;
u8 pci_rev_id;
int rc;
/* map the memory mapped i/o registers */
hw->mmio_vaddr = pci_iomap(pdev, 1, 0);
if (hw->mmio_vaddr == NULL) {
dev_err(&pdev->dev, "Error mapping mmio\n");
goto out;
}
/* map the adapter shared memory region */
rc = pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev_id);
if (rc != 0) {
dev_err(&pdev->dev, "Error reading PCI rev id: %d\n", rc);
goto out;
}
if (pci_rev_id >= PCI_REV_ID_NECHES) {
bar = 5;
/* Last 8k is reserved for CCBs */
off = pci_resource_len(pdev, bar) - 0x2000;
} else {
bar = 2;
off = 0;
}
hw->ram_vaddr = pci_iomap_range(pdev, bar, off, max_ccb * ILOHW_CCB_SZ);
if (hw->ram_vaddr == NULL) {
dev_err(&pdev->dev, "Error mapping shared mem\n");
goto mmio_free;
}
/* map the doorbell aperture */
hw->db_vaddr = pci_iomap(pdev, 3, max_ccb * ONE_DB_SIZE);
if (hw->db_vaddr == NULL) {
dev_err(&pdev->dev, "Error mapping doorbell\n");
goto ram_free;
}
return 0;
ram_free:
pci_iounmap(pdev, hw->ram_vaddr);
mmio_free:
pci_iounmap(pdev, hw->mmio_vaddr);
out:
return -ENOMEM;
}
static void ilo_remove(struct pci_dev *pdev)
{
int i, minor;
struct ilo_hwinfo *ilo_hw = pci_get_drvdata(pdev);
if (!ilo_hw)
return;
clear_device(ilo_hw);
minor = MINOR(ilo_hw->cdev.dev);
for (i = minor; i < minor + max_ccb; i++)
device_destroy(ilo_class, MKDEV(ilo_major, i));
cdev_del(&ilo_hw->cdev);
ilo_disable_interrupts(ilo_hw);
free_irq(pdev->irq, ilo_hw);
ilo_unmap_device(pdev, ilo_hw);
pci_release_regions(pdev);
/*
* pci_disable_device(pdev) used to be here. But this PCI device has
* two functions with interrupt lines connected to a single pin. The
* other one is a USB host controller. So when we disable the PIN here
* e.g. by rmmod hpilo, the controller stops working. It is because
* the interrupt link is disabled in ACPI since it is not refcounted
* yet. See acpi_pci_link_free_irq called from acpi_pci_irq_disable.
*/
kfree(ilo_hw);
ilo_hwdev[(minor / max_ccb)] = 0;
}
static int ilo_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int devnum, minor, start, error = 0;
struct ilo_hwinfo *ilo_hw;
if (pci_match_id(ilo_blacklist, pdev)) {
dev_dbg(&pdev->dev, "Not supported on this device\n");
return -ENODEV;
}
if (max_ccb > MAX_CCB)
max_ccb = MAX_CCB;
else if (max_ccb < MIN_CCB)
max_ccb = MIN_CCB;
/* find a free range for device files */
for (devnum = 0; devnum < MAX_ILO_DEV; devnum++) {
if (ilo_hwdev[devnum] == 0) {
ilo_hwdev[devnum] = 1;
break;
}
}
if (devnum == MAX_ILO_DEV) {
dev_err(&pdev->dev, "Error finding free device\n");
return -ENODEV;
}
/* track global allocations for this device */
error = -ENOMEM;
ilo_hw = kzalloc(sizeof(*ilo_hw), GFP_KERNEL);
if (!ilo_hw)
goto out;
ilo_hw->ilo_dev = pdev;
spin_lock_init(&ilo_hw->alloc_lock);
spin_lock_init(&ilo_hw->fifo_lock);
spin_lock_init(&ilo_hw->open_lock);
error = pci_enable_device(pdev);
if (error)
goto free;
pci_set_master(pdev);
error = pci_request_regions(pdev, ILO_NAME);
if (error)
goto disable;
error = ilo_map_device(pdev, ilo_hw);
if (error)
goto free_regions;
pci_set_drvdata(pdev, ilo_hw);
clear_device(ilo_hw);
error = request_irq(pdev->irq, ilo_isr, IRQF_SHARED, "hpilo", ilo_hw);
if (error)
goto unmap;
ilo_enable_interrupts(ilo_hw);
cdev_init(&ilo_hw->cdev, &ilo_fops);
ilo_hw->cdev.owner = THIS_MODULE;
start = devnum * max_ccb;
error = cdev_add(&ilo_hw->cdev, MKDEV(ilo_major, start), max_ccb);
if (error) {
dev_err(&pdev->dev, "Could not add cdev\n");
goto remove_isr;
}
for (minor = 0 ; minor < max_ccb; minor++) {
struct device *dev;
dev = device_create(ilo_class, &pdev->dev,
MKDEV(ilo_major, minor), NULL,
"hpilo!d%dccb%d", devnum, minor);
if (IS_ERR(dev))
dev_err(&pdev->dev, "Could not create files\n");
}
return 0;
remove_isr:
ilo_disable_interrupts(ilo_hw);
free_irq(pdev->irq, ilo_hw);
unmap:
ilo_unmap_device(pdev, ilo_hw);
free_regions:
pci_release_regions(pdev);
disable:
/* pci_disable_device(pdev); see comment in ilo_remove */
free:
kfree(ilo_hw);
out:
ilo_hwdev[devnum] = 0;
return error;
}
static const struct pci_device_id ilo_devices[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_COMPAQ, 0xB204) },
{ PCI_DEVICE(PCI_VENDOR_ID_HP, 0x3307) },
{ }
};
MODULE_DEVICE_TABLE(pci, ilo_devices);
static struct pci_driver ilo_driver = {
.name = ILO_NAME,
.id_table = ilo_devices,
.probe = ilo_probe,
.remove = ilo_remove,
};
static int __init ilo_init(void)
{
int error;
dev_t dev;
ilo_class = class_create(THIS_MODULE, "iLO");
if (IS_ERR(ilo_class)) {
error = PTR_ERR(ilo_class);
goto out;
}
error = alloc_chrdev_region(&dev, 0, MAX_OPEN, ILO_NAME);
if (error)
goto class_destroy;
ilo_major = MAJOR(dev);
error = pci_register_driver(&ilo_driver);
if (error)
goto chr_remove;
return 0;
chr_remove:
unregister_chrdev_region(dev, MAX_OPEN);
class_destroy:
class_destroy(ilo_class);
out:
return error;
}
static void __exit ilo_exit(void)
{
pci_unregister_driver(&ilo_driver);
unregister_chrdev_region(MKDEV(ilo_major, 0), MAX_OPEN);
class_destroy(ilo_class);
}
MODULE_VERSION("1.5.0");
MODULE_ALIAS(ILO_NAME);
MODULE_DESCRIPTION(ILO_NAME);
MODULE_AUTHOR("David Altobelli <david.altobelli@hpe.com>");
MODULE_LICENSE("GPL v2");
module_param(max_ccb, uint, 0444);
MODULE_PARM_DESC(max_ccb, "Maximum number of HP iLO channels to attach (8-24)(default=16)");
module_init(ilo_init);
module_exit(ilo_exit);