mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 10:45:49 +00:00
7a51608d01
In backpointers fsck, we do a seqential scan of one btree, and check references to another: extents <-> backpointers Checking references generates random lookups, so we want to pin that btree in memory (or only a range, if it doesn't fit in ram). Previously, this was done with a simple check in the shrinker - "if btree node is in range being pinned, don't free it" - but this generated OOMs, as our shrinker wasn't well behaved if there was less memory available than expected. Instead, we now have two different shrinkers and lru lists; the second shrinker being for pinned nodes, with seeks set much higher than normal - so they can still be freed if necessary, but we'll prefer not to. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
918 lines
22 KiB
C
918 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "bcachefs.h"
|
|
#include "btree_key_cache.h"
|
|
#include "btree_update.h"
|
|
#include "btree_write_buffer.h"
|
|
#include "buckets.h"
|
|
#include "errcode.h"
|
|
#include "error.h"
|
|
#include "journal.h"
|
|
#include "journal_io.h"
|
|
#include "journal_reclaim.h"
|
|
#include "replicas.h"
|
|
#include "sb-members.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/kthread.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
/* Free space calculations: */
|
|
|
|
static unsigned journal_space_from(struct journal_device *ja,
|
|
enum journal_space_from from)
|
|
{
|
|
switch (from) {
|
|
case journal_space_discarded:
|
|
return ja->discard_idx;
|
|
case journal_space_clean_ondisk:
|
|
return ja->dirty_idx_ondisk;
|
|
case journal_space_clean:
|
|
return ja->dirty_idx;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
unsigned bch2_journal_dev_buckets_available(struct journal *j,
|
|
struct journal_device *ja,
|
|
enum journal_space_from from)
|
|
{
|
|
unsigned available = (journal_space_from(ja, from) -
|
|
ja->cur_idx - 1 + ja->nr) % ja->nr;
|
|
|
|
/*
|
|
* Don't use the last bucket unless writing the new last_seq
|
|
* will make another bucket available:
|
|
*/
|
|
if (available && ja->dirty_idx_ondisk == ja->dirty_idx)
|
|
--available;
|
|
|
|
return available;
|
|
}
|
|
|
|
void bch2_journal_set_watermark(struct journal *j)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
bool low_on_space = j->space[journal_space_clean].total * 4 <=
|
|
j->space[journal_space_total].total;
|
|
bool low_on_pin = fifo_free(&j->pin) < j->pin.size / 4;
|
|
bool low_on_wb = bch2_btree_write_buffer_must_wait(c);
|
|
unsigned watermark = low_on_space || low_on_pin || low_on_wb
|
|
? BCH_WATERMARK_reclaim
|
|
: BCH_WATERMARK_stripe;
|
|
|
|
if (track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_space], low_on_space) ||
|
|
track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_pin], low_on_pin) ||
|
|
track_event_change(&c->times[BCH_TIME_blocked_write_buffer_full], low_on_wb))
|
|
trace_and_count(c, journal_full, c);
|
|
|
|
mod_bit(JOURNAL_space_low, &j->flags, low_on_space || low_on_pin);
|
|
|
|
swap(watermark, j->watermark);
|
|
if (watermark > j->watermark)
|
|
journal_wake(j);
|
|
}
|
|
|
|
static struct journal_space
|
|
journal_dev_space_available(struct journal *j, struct bch_dev *ca,
|
|
enum journal_space_from from)
|
|
{
|
|
struct journal_device *ja = &ca->journal;
|
|
unsigned sectors, buckets, unwritten;
|
|
u64 seq;
|
|
|
|
if (from == journal_space_total)
|
|
return (struct journal_space) {
|
|
.next_entry = ca->mi.bucket_size,
|
|
.total = ca->mi.bucket_size * ja->nr,
|
|
};
|
|
|
|
buckets = bch2_journal_dev_buckets_available(j, ja, from);
|
|
sectors = ja->sectors_free;
|
|
|
|
/*
|
|
* We that we don't allocate the space for a journal entry
|
|
* until we write it out - thus, account for it here:
|
|
*/
|
|
for (seq = journal_last_unwritten_seq(j);
|
|
seq <= journal_cur_seq(j);
|
|
seq++) {
|
|
unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors;
|
|
|
|
if (!unwritten)
|
|
continue;
|
|
|
|
/* entry won't fit on this device, skip: */
|
|
if (unwritten > ca->mi.bucket_size)
|
|
continue;
|
|
|
|
if (unwritten >= sectors) {
|
|
if (!buckets) {
|
|
sectors = 0;
|
|
break;
|
|
}
|
|
|
|
buckets--;
|
|
sectors = ca->mi.bucket_size;
|
|
}
|
|
|
|
sectors -= unwritten;
|
|
}
|
|
|
|
if (sectors < ca->mi.bucket_size && buckets) {
|
|
buckets--;
|
|
sectors = ca->mi.bucket_size;
|
|
}
|
|
|
|
return (struct journal_space) {
|
|
.next_entry = sectors,
|
|
.total = sectors + buckets * ca->mi.bucket_size,
|
|
};
|
|
}
|
|
|
|
static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want,
|
|
enum journal_space_from from)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
unsigned pos, nr_devs = 0;
|
|
struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX];
|
|
|
|
BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space));
|
|
|
|
rcu_read_lock();
|
|
for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) {
|
|
if (!ca->journal.nr)
|
|
continue;
|
|
|
|
space = journal_dev_space_available(j, ca, from);
|
|
if (!space.next_entry)
|
|
continue;
|
|
|
|
for (pos = 0; pos < nr_devs; pos++)
|
|
if (space.total > dev_space[pos].total)
|
|
break;
|
|
|
|
array_insert_item(dev_space, nr_devs, pos, space);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (nr_devs < nr_devs_want)
|
|
return (struct journal_space) { 0, 0 };
|
|
|
|
/*
|
|
* We sorted largest to smallest, and we want the smallest out of the
|
|
* @nr_devs_want largest devices:
|
|
*/
|
|
return dev_space[nr_devs_want - 1];
|
|
}
|
|
|
|
void bch2_journal_space_available(struct journal *j)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
unsigned clean, clean_ondisk, total;
|
|
unsigned max_entry_size = min(j->buf[0].buf_size >> 9,
|
|
j->buf[1].buf_size >> 9);
|
|
unsigned nr_online = 0, nr_devs_want;
|
|
bool can_discard = false;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&j->lock);
|
|
|
|
rcu_read_lock();
|
|
for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) {
|
|
struct journal_device *ja = &ca->journal;
|
|
|
|
if (!ja->nr)
|
|
continue;
|
|
|
|
while (ja->dirty_idx != ja->cur_idx &&
|
|
ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j))
|
|
ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr;
|
|
|
|
while (ja->dirty_idx_ondisk != ja->dirty_idx &&
|
|
ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk)
|
|
ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr;
|
|
|
|
if (ja->discard_idx != ja->dirty_idx_ondisk)
|
|
can_discard = true;
|
|
|
|
max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size);
|
|
nr_online++;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
j->can_discard = can_discard;
|
|
|
|
if (nr_online < metadata_replicas_required(c)) {
|
|
struct printbuf buf = PRINTBUF;
|
|
buf.atomic++;
|
|
prt_printf(&buf, "insufficient writeable journal devices available: have %u, need %u\n"
|
|
"rw journal devs:", nr_online, metadata_replicas_required(c));
|
|
|
|
rcu_read_lock();
|
|
for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal])
|
|
prt_printf(&buf, " %s", ca->name);
|
|
rcu_read_unlock();
|
|
|
|
bch_err(c, "%s", buf.buf);
|
|
printbuf_exit(&buf);
|
|
ret = JOURNAL_ERR_insufficient_devices;
|
|
goto out;
|
|
}
|
|
|
|
nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas);
|
|
|
|
for (unsigned i = 0; i < journal_space_nr; i++)
|
|
j->space[i] = __journal_space_available(j, nr_devs_want, i);
|
|
|
|
clean_ondisk = j->space[journal_space_clean_ondisk].total;
|
|
clean = j->space[journal_space_clean].total;
|
|
total = j->space[journal_space_total].total;
|
|
|
|
if (!j->space[journal_space_discarded].next_entry)
|
|
ret = JOURNAL_ERR_journal_full;
|
|
|
|
if ((j->space[journal_space_clean_ondisk].next_entry <
|
|
j->space[journal_space_clean_ondisk].total) &&
|
|
(clean - clean_ondisk <= total / 8) &&
|
|
(clean_ondisk * 2 > clean))
|
|
set_bit(JOURNAL_may_skip_flush, &j->flags);
|
|
else
|
|
clear_bit(JOURNAL_may_skip_flush, &j->flags);
|
|
|
|
bch2_journal_set_watermark(j);
|
|
out:
|
|
j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0;
|
|
j->cur_entry_error = ret;
|
|
|
|
if (!ret)
|
|
journal_wake(j);
|
|
}
|
|
|
|
/* Discards - last part of journal reclaim: */
|
|
|
|
static bool should_discard_bucket(struct journal *j, struct journal_device *ja)
|
|
{
|
|
bool ret;
|
|
|
|
spin_lock(&j->lock);
|
|
ret = ja->discard_idx != ja->dirty_idx_ondisk;
|
|
spin_unlock(&j->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Advance ja->discard_idx as long as it points to buckets that are no longer
|
|
* dirty, issuing discards if necessary:
|
|
*/
|
|
void bch2_journal_do_discards(struct journal *j)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
|
|
mutex_lock(&j->discard_lock);
|
|
|
|
for_each_rw_member(c, ca) {
|
|
struct journal_device *ja = &ca->journal;
|
|
|
|
while (should_discard_bucket(j, ja)) {
|
|
if (!c->opts.nochanges &&
|
|
ca->mi.discard &&
|
|
bdev_max_discard_sectors(ca->disk_sb.bdev))
|
|
blkdev_issue_discard(ca->disk_sb.bdev,
|
|
bucket_to_sector(ca,
|
|
ja->buckets[ja->discard_idx]),
|
|
ca->mi.bucket_size, GFP_NOFS);
|
|
|
|
spin_lock(&j->lock);
|
|
ja->discard_idx = (ja->discard_idx + 1) % ja->nr;
|
|
|
|
bch2_journal_space_available(j);
|
|
spin_unlock(&j->lock);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&j->discard_lock);
|
|
}
|
|
|
|
/*
|
|
* Journal entry pinning - machinery for holding a reference on a given journal
|
|
* entry, holding it open to ensure it gets replayed during recovery:
|
|
*/
|
|
|
|
void bch2_journal_reclaim_fast(struct journal *j)
|
|
{
|
|
bool popped = false;
|
|
|
|
lockdep_assert_held(&j->lock);
|
|
|
|
/*
|
|
* Unpin journal entries whose reference counts reached zero, meaning
|
|
* all btree nodes got written out
|
|
*/
|
|
while (!fifo_empty(&j->pin) &&
|
|
j->pin.front <= j->seq_ondisk &&
|
|
!atomic_read(&fifo_peek_front(&j->pin).count)) {
|
|
j->pin.front++;
|
|
popped = true;
|
|
}
|
|
|
|
if (popped)
|
|
bch2_journal_space_available(j);
|
|
}
|
|
|
|
bool __bch2_journal_pin_put(struct journal *j, u64 seq)
|
|
{
|
|
struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq);
|
|
|
|
return atomic_dec_and_test(&pin_list->count);
|
|
}
|
|
|
|
void bch2_journal_pin_put(struct journal *j, u64 seq)
|
|
{
|
|
if (__bch2_journal_pin_put(j, seq)) {
|
|
spin_lock(&j->lock);
|
|
bch2_journal_reclaim_fast(j);
|
|
spin_unlock(&j->lock);
|
|
}
|
|
}
|
|
|
|
static inline bool __journal_pin_drop(struct journal *j,
|
|
struct journal_entry_pin *pin)
|
|
{
|
|
struct journal_entry_pin_list *pin_list;
|
|
|
|
if (!journal_pin_active(pin))
|
|
return false;
|
|
|
|
if (j->flush_in_progress == pin)
|
|
j->flush_in_progress_dropped = true;
|
|
|
|
pin_list = journal_seq_pin(j, pin->seq);
|
|
pin->seq = 0;
|
|
list_del_init(&pin->list);
|
|
|
|
/*
|
|
* Unpinning a journal entry may make journal_next_bucket() succeed, if
|
|
* writing a new last_seq will now make another bucket available:
|
|
*/
|
|
return atomic_dec_and_test(&pin_list->count) &&
|
|
pin_list == &fifo_peek_front(&j->pin);
|
|
}
|
|
|
|
void bch2_journal_pin_drop(struct journal *j,
|
|
struct journal_entry_pin *pin)
|
|
{
|
|
spin_lock(&j->lock);
|
|
if (__journal_pin_drop(j, pin))
|
|
bch2_journal_reclaim_fast(j);
|
|
spin_unlock(&j->lock);
|
|
}
|
|
|
|
static enum journal_pin_type journal_pin_type(journal_pin_flush_fn fn)
|
|
{
|
|
if (fn == bch2_btree_node_flush0 ||
|
|
fn == bch2_btree_node_flush1)
|
|
return JOURNAL_PIN_btree;
|
|
else if (fn == bch2_btree_key_cache_journal_flush)
|
|
return JOURNAL_PIN_key_cache;
|
|
else
|
|
return JOURNAL_PIN_other;
|
|
}
|
|
|
|
static inline void bch2_journal_pin_set_locked(struct journal *j, u64 seq,
|
|
struct journal_entry_pin *pin,
|
|
journal_pin_flush_fn flush_fn,
|
|
enum journal_pin_type type)
|
|
{
|
|
struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq);
|
|
|
|
/*
|
|
* flush_fn is how we identify journal pins in debugfs, so must always
|
|
* exist, even if it doesn't do anything:
|
|
*/
|
|
BUG_ON(!flush_fn);
|
|
|
|
atomic_inc(&pin_list->count);
|
|
pin->seq = seq;
|
|
pin->flush = flush_fn;
|
|
list_add(&pin->list, &pin_list->list[type]);
|
|
}
|
|
|
|
void bch2_journal_pin_copy(struct journal *j,
|
|
struct journal_entry_pin *dst,
|
|
struct journal_entry_pin *src,
|
|
journal_pin_flush_fn flush_fn)
|
|
{
|
|
spin_lock(&j->lock);
|
|
|
|
u64 seq = READ_ONCE(src->seq);
|
|
|
|
if (seq < journal_last_seq(j)) {
|
|
/*
|
|
* bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on
|
|
* the src pin - with the pin dropped, the entry to pin might no
|
|
* longer to exist, but that means there's no longer anything to
|
|
* copy and we can bail out here:
|
|
*/
|
|
spin_unlock(&j->lock);
|
|
return;
|
|
}
|
|
|
|
bool reclaim = __journal_pin_drop(j, dst);
|
|
|
|
bch2_journal_pin_set_locked(j, seq, dst, flush_fn, journal_pin_type(flush_fn));
|
|
|
|
if (reclaim)
|
|
bch2_journal_reclaim_fast(j);
|
|
|
|
/*
|
|
* If the journal is currently full, we might want to call flush_fn
|
|
* immediately:
|
|
*/
|
|
if (seq == journal_last_seq(j))
|
|
journal_wake(j);
|
|
spin_unlock(&j->lock);
|
|
}
|
|
|
|
void bch2_journal_pin_set(struct journal *j, u64 seq,
|
|
struct journal_entry_pin *pin,
|
|
journal_pin_flush_fn flush_fn)
|
|
{
|
|
spin_lock(&j->lock);
|
|
|
|
BUG_ON(seq < journal_last_seq(j));
|
|
|
|
bool reclaim = __journal_pin_drop(j, pin);
|
|
|
|
bch2_journal_pin_set_locked(j, seq, pin, flush_fn, journal_pin_type(flush_fn));
|
|
|
|
if (reclaim)
|
|
bch2_journal_reclaim_fast(j);
|
|
/*
|
|
* If the journal is currently full, we might want to call flush_fn
|
|
* immediately:
|
|
*/
|
|
if (seq == journal_last_seq(j))
|
|
journal_wake(j);
|
|
|
|
spin_unlock(&j->lock);
|
|
}
|
|
|
|
/**
|
|
* bch2_journal_pin_flush: ensure journal pin callback is no longer running
|
|
* @j: journal object
|
|
* @pin: pin to flush
|
|
*/
|
|
void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin)
|
|
{
|
|
BUG_ON(journal_pin_active(pin));
|
|
|
|
wait_event(j->pin_flush_wait, j->flush_in_progress != pin);
|
|
}
|
|
|
|
/*
|
|
* Journal reclaim: flush references to open journal entries to reclaim space in
|
|
* the journal
|
|
*
|
|
* May be done by the journal code in the background as needed to free up space
|
|
* for more journal entries, or as part of doing a clean shutdown, or to migrate
|
|
* data off of a specific device:
|
|
*/
|
|
|
|
static struct journal_entry_pin *
|
|
journal_get_next_pin(struct journal *j,
|
|
u64 seq_to_flush,
|
|
unsigned allowed_below_seq,
|
|
unsigned allowed_above_seq,
|
|
u64 *seq)
|
|
{
|
|
struct journal_entry_pin_list *pin_list;
|
|
struct journal_entry_pin *ret = NULL;
|
|
unsigned i;
|
|
|
|
fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) {
|
|
if (*seq > seq_to_flush && !allowed_above_seq)
|
|
break;
|
|
|
|
for (i = 0; i < JOURNAL_PIN_NR; i++)
|
|
if ((((1U << i) & allowed_below_seq) && *seq <= seq_to_flush) ||
|
|
((1U << i) & allowed_above_seq)) {
|
|
ret = list_first_entry_or_null(&pin_list->list[i],
|
|
struct journal_entry_pin, list);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* returns true if we did work */
|
|
static size_t journal_flush_pins(struct journal *j,
|
|
u64 seq_to_flush,
|
|
unsigned allowed_below_seq,
|
|
unsigned allowed_above_seq,
|
|
unsigned min_any,
|
|
unsigned min_key_cache)
|
|
{
|
|
struct journal_entry_pin *pin;
|
|
size_t nr_flushed = 0;
|
|
journal_pin_flush_fn flush_fn;
|
|
u64 seq;
|
|
int err;
|
|
|
|
lockdep_assert_held(&j->reclaim_lock);
|
|
|
|
while (1) {
|
|
unsigned allowed_above = allowed_above_seq;
|
|
unsigned allowed_below = allowed_below_seq;
|
|
|
|
if (min_any) {
|
|
allowed_above |= ~0;
|
|
allowed_below |= ~0;
|
|
}
|
|
|
|
if (min_key_cache) {
|
|
allowed_above |= 1U << JOURNAL_PIN_key_cache;
|
|
allowed_below |= 1U << JOURNAL_PIN_key_cache;
|
|
}
|
|
|
|
cond_resched();
|
|
|
|
j->last_flushed = jiffies;
|
|
|
|
spin_lock(&j->lock);
|
|
pin = journal_get_next_pin(j, seq_to_flush, allowed_below, allowed_above, &seq);
|
|
if (pin) {
|
|
BUG_ON(j->flush_in_progress);
|
|
j->flush_in_progress = pin;
|
|
j->flush_in_progress_dropped = false;
|
|
flush_fn = pin->flush;
|
|
}
|
|
spin_unlock(&j->lock);
|
|
|
|
if (!pin)
|
|
break;
|
|
|
|
if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush)
|
|
min_key_cache--;
|
|
|
|
if (min_any)
|
|
min_any--;
|
|
|
|
err = flush_fn(j, pin, seq);
|
|
|
|
spin_lock(&j->lock);
|
|
/* Pin might have been dropped or rearmed: */
|
|
if (likely(!err && !j->flush_in_progress_dropped))
|
|
list_move(&pin->list, &journal_seq_pin(j, seq)->flushed);
|
|
j->flush_in_progress = NULL;
|
|
j->flush_in_progress_dropped = false;
|
|
spin_unlock(&j->lock);
|
|
|
|
wake_up(&j->pin_flush_wait);
|
|
|
|
if (err)
|
|
break;
|
|
|
|
nr_flushed++;
|
|
}
|
|
|
|
return nr_flushed;
|
|
}
|
|
|
|
static u64 journal_seq_to_flush(struct journal *j)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
u64 seq_to_flush = 0;
|
|
|
|
spin_lock(&j->lock);
|
|
|
|
for_each_rw_member(c, ca) {
|
|
struct journal_device *ja = &ca->journal;
|
|
unsigned nr_buckets, bucket_to_flush;
|
|
|
|
if (!ja->nr)
|
|
continue;
|
|
|
|
/* Try to keep the journal at most half full: */
|
|
nr_buckets = ja->nr / 2;
|
|
|
|
nr_buckets = min(nr_buckets, ja->nr);
|
|
|
|
bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr;
|
|
seq_to_flush = max(seq_to_flush,
|
|
ja->bucket_seq[bucket_to_flush]);
|
|
}
|
|
|
|
/* Also flush if the pin fifo is more than half full */
|
|
seq_to_flush = max_t(s64, seq_to_flush,
|
|
(s64) journal_cur_seq(j) -
|
|
(j->pin.size >> 1));
|
|
spin_unlock(&j->lock);
|
|
|
|
return seq_to_flush;
|
|
}
|
|
|
|
/**
|
|
* __bch2_journal_reclaim - free up journal buckets
|
|
* @j: journal object
|
|
* @direct: direct or background reclaim?
|
|
* @kicked: requested to run since we last ran?
|
|
* Returns: 0 on success, or -EIO if the journal has been shutdown
|
|
*
|
|
* Background journal reclaim writes out btree nodes. It should be run
|
|
* early enough so that we never completely run out of journal buckets.
|
|
*
|
|
* High watermarks for triggering background reclaim:
|
|
* - FIFO has fewer than 512 entries left
|
|
* - fewer than 25% journal buckets free
|
|
*
|
|
* Background reclaim runs until low watermarks are reached:
|
|
* - FIFO has more than 1024 entries left
|
|
* - more than 50% journal buckets free
|
|
*
|
|
* As long as a reclaim can complete in the time it takes to fill up
|
|
* 512 journal entries or 25% of all journal buckets, then
|
|
* journal_next_bucket() should not stall.
|
|
*/
|
|
static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
bool kthread = (current->flags & PF_KTHREAD) != 0;
|
|
u64 seq_to_flush;
|
|
size_t min_nr, min_key_cache, nr_flushed;
|
|
unsigned flags;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We can't invoke memory reclaim while holding the reclaim_lock -
|
|
* journal reclaim is required to make progress for memory reclaim
|
|
* (cleaning the caches), so we can't get stuck in memory reclaim while
|
|
* we're holding the reclaim lock:
|
|
*/
|
|
lockdep_assert_held(&j->reclaim_lock);
|
|
flags = memalloc_noreclaim_save();
|
|
|
|
do {
|
|
if (kthread && kthread_should_stop())
|
|
break;
|
|
|
|
if (bch2_journal_error(j)) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
bch2_journal_do_discards(j);
|
|
|
|
seq_to_flush = journal_seq_to_flush(j);
|
|
min_nr = 0;
|
|
|
|
/*
|
|
* If it's been longer than j->reclaim_delay_ms since we last flushed,
|
|
* make sure to flush at least one journal pin:
|
|
*/
|
|
if (time_after(jiffies, j->last_flushed +
|
|
msecs_to_jiffies(c->opts.journal_reclaim_delay)))
|
|
min_nr = 1;
|
|
|
|
if (j->watermark != BCH_WATERMARK_stripe)
|
|
min_nr = 1;
|
|
|
|
size_t btree_cache_live = bc->live[0].nr + bc->live[1].nr;
|
|
if (atomic_long_read(&bc->nr_dirty) * 2 > btree_cache_live)
|
|
min_nr = 1;
|
|
|
|
min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128);
|
|
|
|
trace_and_count(c, journal_reclaim_start, c,
|
|
direct, kicked,
|
|
min_nr, min_key_cache,
|
|
atomic_long_read(&bc->nr_dirty), btree_cache_live,
|
|
atomic_long_read(&c->btree_key_cache.nr_dirty),
|
|
atomic_long_read(&c->btree_key_cache.nr_keys));
|
|
|
|
nr_flushed = journal_flush_pins(j, seq_to_flush,
|
|
~0, 0,
|
|
min_nr, min_key_cache);
|
|
|
|
if (direct)
|
|
j->nr_direct_reclaim += nr_flushed;
|
|
else
|
|
j->nr_background_reclaim += nr_flushed;
|
|
trace_and_count(c, journal_reclaim_finish, c, nr_flushed);
|
|
|
|
if (nr_flushed)
|
|
wake_up(&j->reclaim_wait);
|
|
} while ((min_nr || min_key_cache) && nr_flushed && !direct);
|
|
|
|
memalloc_noreclaim_restore(flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bch2_journal_reclaim(struct journal *j)
|
|
{
|
|
return __bch2_journal_reclaim(j, true, true);
|
|
}
|
|
|
|
static int bch2_journal_reclaim_thread(void *arg)
|
|
{
|
|
struct journal *j = arg;
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
unsigned long delay, now;
|
|
bool journal_empty;
|
|
int ret = 0;
|
|
|
|
set_freezable();
|
|
|
|
j->last_flushed = jiffies;
|
|
|
|
while (!ret && !kthread_should_stop()) {
|
|
bool kicked = j->reclaim_kicked;
|
|
|
|
j->reclaim_kicked = false;
|
|
|
|
mutex_lock(&j->reclaim_lock);
|
|
ret = __bch2_journal_reclaim(j, false, kicked);
|
|
mutex_unlock(&j->reclaim_lock);
|
|
|
|
now = jiffies;
|
|
delay = msecs_to_jiffies(c->opts.journal_reclaim_delay);
|
|
j->next_reclaim = j->last_flushed + delay;
|
|
|
|
if (!time_in_range(j->next_reclaim, now, now + delay))
|
|
j->next_reclaim = now + delay;
|
|
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
|
|
if (kthread_should_stop())
|
|
break;
|
|
if (j->reclaim_kicked)
|
|
break;
|
|
|
|
spin_lock(&j->lock);
|
|
journal_empty = fifo_empty(&j->pin);
|
|
spin_unlock(&j->lock);
|
|
|
|
if (journal_empty)
|
|
schedule();
|
|
else if (time_after(j->next_reclaim, jiffies))
|
|
schedule_timeout(j->next_reclaim - jiffies);
|
|
else
|
|
break;
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_journal_reclaim_stop(struct journal *j)
|
|
{
|
|
struct task_struct *p = j->reclaim_thread;
|
|
|
|
j->reclaim_thread = NULL;
|
|
|
|
if (p) {
|
|
kthread_stop(p);
|
|
put_task_struct(p);
|
|
}
|
|
}
|
|
|
|
int bch2_journal_reclaim_start(struct journal *j)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct task_struct *p;
|
|
int ret;
|
|
|
|
if (j->reclaim_thread)
|
|
return 0;
|
|
|
|
p = kthread_create(bch2_journal_reclaim_thread, j,
|
|
"bch-reclaim/%s", c->name);
|
|
ret = PTR_ERR_OR_ZERO(p);
|
|
bch_err_msg(c, ret, "creating journal reclaim thread");
|
|
if (ret)
|
|
return ret;
|
|
|
|
get_task_struct(p);
|
|
j->reclaim_thread = p;
|
|
wake_up_process(p);
|
|
return 0;
|
|
}
|
|
|
|
static int journal_flush_done(struct journal *j, u64 seq_to_flush,
|
|
bool *did_work)
|
|
{
|
|
int ret;
|
|
|
|
ret = bch2_journal_error(j);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&j->reclaim_lock);
|
|
|
|
if (journal_flush_pins(j, seq_to_flush,
|
|
(1U << JOURNAL_PIN_key_cache)|
|
|
(1U << JOURNAL_PIN_other), 0, 0, 0) ||
|
|
journal_flush_pins(j, seq_to_flush,
|
|
(1U << JOURNAL_PIN_btree), 0, 0, 0))
|
|
*did_work = true;
|
|
|
|
if (seq_to_flush > journal_cur_seq(j))
|
|
bch2_journal_entry_close(j);
|
|
|
|
spin_lock(&j->lock);
|
|
/*
|
|
* If journal replay hasn't completed, the unreplayed journal entries
|
|
* hold refs on their corresponding sequence numbers
|
|
*/
|
|
ret = !test_bit(JOURNAL_replay_done, &j->flags) ||
|
|
journal_last_seq(j) > seq_to_flush ||
|
|
!fifo_used(&j->pin);
|
|
|
|
spin_unlock(&j->lock);
|
|
mutex_unlock(&j->reclaim_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush)
|
|
{
|
|
/* time_stats this */
|
|
bool did_work = false;
|
|
|
|
if (!test_bit(JOURNAL_running, &j->flags))
|
|
return false;
|
|
|
|
closure_wait_event(&j->async_wait,
|
|
journal_flush_done(j, seq_to_flush, &did_work));
|
|
|
|
return did_work;
|
|
}
|
|
|
|
int bch2_journal_flush_device_pins(struct journal *j, int dev_idx)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct journal_entry_pin_list *p;
|
|
u64 iter, seq = 0;
|
|
int ret = 0;
|
|
|
|
spin_lock(&j->lock);
|
|
fifo_for_each_entry_ptr(p, &j->pin, iter)
|
|
if (dev_idx >= 0
|
|
? bch2_dev_list_has_dev(p->devs, dev_idx)
|
|
: p->devs.nr < c->opts.metadata_replicas)
|
|
seq = iter;
|
|
spin_unlock(&j->lock);
|
|
|
|
bch2_journal_flush_pins(j, seq);
|
|
|
|
ret = bch2_journal_error(j);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&c->replicas_gc_lock);
|
|
bch2_replicas_gc_start(c, 1 << BCH_DATA_journal);
|
|
|
|
/*
|
|
* Now that we've populated replicas_gc, write to the journal to mark
|
|
* active journal devices. This handles the case where the journal might
|
|
* be empty. Otherwise we could clear all journal replicas and
|
|
* temporarily put the fs into an unrecoverable state. Journal recovery
|
|
* expects to find devices marked for journal data on unclean mount.
|
|
*/
|
|
ret = bch2_journal_meta(&c->journal);
|
|
if (ret)
|
|
goto err;
|
|
|
|
seq = 0;
|
|
spin_lock(&j->lock);
|
|
while (!ret) {
|
|
struct bch_replicas_padded replicas;
|
|
|
|
seq = max(seq, journal_last_seq(j));
|
|
if (seq >= j->pin.back)
|
|
break;
|
|
bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal,
|
|
journal_seq_pin(j, seq)->devs);
|
|
seq++;
|
|
|
|
if (replicas.e.nr_devs) {
|
|
spin_unlock(&j->lock);
|
|
ret = bch2_mark_replicas(c, &replicas.e);
|
|
spin_lock(&j->lock);
|
|
}
|
|
}
|
|
spin_unlock(&j->lock);
|
|
err:
|
|
ret = bch2_replicas_gc_end(c, ret);
|
|
mutex_unlock(&c->replicas_gc_lock);
|
|
|
|
return ret;
|
|
}
|