mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-10 07:00:48 +00:00
c658eac628
The Xtensa architecture allows to define custom instructions and registers. Registers that are bound to a coprocessor are only accessible if the corresponding enable bit is set, which allows to implement a 'lazy' context switch mechanism. Other registers needs to be saved and restore at the time of the context switch or during interrupt handling. This patch adds support for these additional states: - save and restore registers that are used by the compiler upon interrupt entry and exit. - context switch additional registers unbound to any coprocessor - 'lazy' context switch of registers bound to a coprocessor - ptrace interface to provide access to additional registers - update configuration files in include/asm-xtensa/variant-fsf Signed-off-by: Chris Zankel <chris@zankel.net>
194 lines
5.7 KiB
C
194 lines
5.7 KiB
C
/*
|
|
* include/asm-xtensa/processor.h
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2001 - 2005 Tensilica Inc.
|
|
*/
|
|
|
|
#ifndef _XTENSA_PROCESSOR_H
|
|
#define _XTENSA_PROCESSOR_H
|
|
|
|
#include <asm/variant/core.h>
|
|
#include <asm/coprocessor.h>
|
|
|
|
#include <linux/compiler.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/types.h>
|
|
#include <asm/regs.h>
|
|
|
|
/* Assertions. */
|
|
|
|
#if (XCHAL_HAVE_WINDOWED != 1)
|
|
# error Linux requires the Xtensa Windowed Registers Option.
|
|
#endif
|
|
|
|
/*
|
|
* User space process size: 1 GB.
|
|
* Windowed call ABI requires caller and callee to be located within the same
|
|
* 1 GB region. The C compiler places trampoline code on the stack for sources
|
|
* that take the address of a nested C function (a feature used by glibc), so
|
|
* the 1 GB requirement applies to the stack as well.
|
|
*/
|
|
|
|
#define TASK_SIZE __XTENSA_UL_CONST(0x40000000)
|
|
#define STACK_TOP TASK_SIZE
|
|
#define STACK_TOP_MAX STACK_TOP
|
|
|
|
/*
|
|
* General exception cause assigned to debug exceptions. Debug exceptions go
|
|
* to their own vector, rather than the general exception vectors (user,
|
|
* kernel, double); and their specific causes are reported via DEBUGCAUSE
|
|
* rather than EXCCAUSE. However it is sometimes convenient to redirect debug
|
|
* exceptions to the general exception mechanism. To do this, an otherwise
|
|
* unused EXCCAUSE value was assigned to debug exceptions for this purpose.
|
|
*/
|
|
|
|
#define EXCCAUSE_MAPPED_DEBUG 63
|
|
|
|
/*
|
|
* We use DEPC also as a flag to distinguish between double and regular
|
|
* exceptions. For performance reasons, DEPC might contain the value of
|
|
* EXCCAUSE for regular exceptions, so we use this definition to mark a
|
|
* valid double exception address.
|
|
* (Note: We use it in bgeui, so it should be 64, 128, or 256)
|
|
*/
|
|
|
|
#define VALID_DOUBLE_EXCEPTION_ADDRESS 64
|
|
|
|
/* LOCKLEVEL defines the interrupt level that masks all
|
|
* general-purpose interrupts.
|
|
*/
|
|
#define LOCKLEVEL 1
|
|
|
|
/* WSBITS and WBBITS are the width of the WINDOWSTART and WINDOWBASE
|
|
* registers
|
|
*/
|
|
#define WSBITS (XCHAL_NUM_AREGS / 4) /* width of WINDOWSTART in bits */
|
|
#define WBBITS (XCHAL_NUM_AREGS_LOG2 - 2) /* width of WINDOWBASE in bits */
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
/* Build a valid return address for the specified call winsize.
|
|
* winsize must be 1 (call4), 2 (call8), or 3 (call12)
|
|
*/
|
|
#define MAKE_RA_FOR_CALL(ra,ws) (((ra) & 0x3fffffff) | (ws) << 30)
|
|
|
|
/* Convert return address to a valid pc
|
|
* Note: We assume that the stack pointer is in the same 1GB ranges as the ra
|
|
*/
|
|
#define MAKE_PC_FROM_RA(ra,sp) (((ra) & 0x3fffffff) | ((sp) & 0xc0000000))
|
|
|
|
typedef struct {
|
|
unsigned long seg;
|
|
} mm_segment_t;
|
|
|
|
struct thread_struct {
|
|
|
|
/* kernel's return address and stack pointer for context switching */
|
|
unsigned long ra; /* kernel's a0: return address and window call size */
|
|
unsigned long sp; /* kernel's a1: stack pointer */
|
|
|
|
mm_segment_t current_ds; /* see uaccess.h for example uses */
|
|
|
|
/* struct xtensa_cpuinfo info; */
|
|
|
|
unsigned long bad_vaddr; /* last user fault */
|
|
unsigned long bad_uaddr; /* last kernel fault accessing user space */
|
|
unsigned long error_code;
|
|
|
|
unsigned long ibreak[XCHAL_NUM_IBREAK];
|
|
unsigned long dbreaka[XCHAL_NUM_DBREAK];
|
|
unsigned long dbreakc[XCHAL_NUM_DBREAK];
|
|
|
|
/* Make structure 16 bytes aligned. */
|
|
int align[0] __attribute__ ((aligned(16)));
|
|
};
|
|
|
|
|
|
/*
|
|
* Default implementation of macro that returns current
|
|
* instruction pointer ("program counter").
|
|
*/
|
|
#define current_text_addr() ({ __label__ _l; _l: &&_l;})
|
|
|
|
|
|
/* This decides where the kernel will search for a free chunk of vm
|
|
* space during mmap's.
|
|
*/
|
|
#define TASK_UNMAPPED_BASE (TASK_SIZE / 2)
|
|
|
|
#define INIT_THREAD \
|
|
{ \
|
|
ra: 0, \
|
|
sp: sizeof(init_stack) + (long) &init_stack, \
|
|
current_ds: {0}, \
|
|
/*info: {0}, */ \
|
|
bad_vaddr: 0, \
|
|
bad_uaddr: 0, \
|
|
error_code: 0, \
|
|
}
|
|
|
|
|
|
/*
|
|
* Do necessary setup to start up a newly executed thread.
|
|
* Note: We set-up ps as if we did a call4 to the new pc.
|
|
* set_thread_state in signal.c depends on it.
|
|
*/
|
|
#define USER_PS_VALUE ((1 << PS_WOE_BIT) | \
|
|
(1 << PS_CALLINC_SHIFT) | \
|
|
(USER_RING << PS_RING_SHIFT) | \
|
|
(1 << PS_UM_BIT) | \
|
|
(1 << PS_EXCM_BIT))
|
|
|
|
/* Clearing a0 terminates the backtrace. */
|
|
#define start_thread(regs, new_pc, new_sp) \
|
|
regs->pc = new_pc; \
|
|
regs->ps = USER_PS_VALUE; \
|
|
regs->areg[1] = new_sp; \
|
|
regs->areg[0] = 0; \
|
|
regs->wmask = 1; \
|
|
regs->depc = 0; \
|
|
regs->windowbase = 0; \
|
|
regs->windowstart = 1;
|
|
|
|
/* Forward declaration */
|
|
struct task_struct;
|
|
struct mm_struct;
|
|
|
|
/* Free all resources held by a thread. */
|
|
#define release_thread(thread) do { } while(0)
|
|
|
|
/* Prepare to copy thread state - unlazy all lazy status */
|
|
extern void prepare_to_copy(struct task_struct*);
|
|
|
|
/* Create a kernel thread without removing it from tasklists */
|
|
extern int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags);
|
|
|
|
/* Copy and release all segment info associated with a VM */
|
|
#define copy_segments(p, mm) do { } while(0)
|
|
#define release_segments(mm) do { } while(0)
|
|
#define forget_segments() do { } while (0)
|
|
|
|
#define thread_saved_pc(tsk) (task_pt_regs(tsk)->pc)
|
|
|
|
extern unsigned long get_wchan(struct task_struct *p);
|
|
|
|
#define KSTK_EIP(tsk) (task_pt_regs(tsk)->pc)
|
|
#define KSTK_ESP(tsk) (task_pt_regs(tsk)->areg[1])
|
|
|
|
#define cpu_relax() barrier()
|
|
|
|
/* Special register access. */
|
|
|
|
#define WSR(v,sr) __asm__ __volatile__ ("wsr %0,"__stringify(sr) :: "a"(v));
|
|
#define RSR(v,sr) __asm__ __volatile__ ("rsr %0,"__stringify(sr) : "=a"(v));
|
|
|
|
#define set_sr(x,sr) ({unsigned int v=(unsigned int)x; WSR(v,sr);})
|
|
#define get_sr(sr) ({unsigned int v; RSR(v,sr); v; })
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
#endif /* _XTENSA_PROCESSOR_H */
|