mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 13:43:51 +00:00
6b08b4ee5e
The rapl_find_package_domain_cpuslocked() function is supposed to
return NULL on error.
This new error patch returns ERR_PTR(-EINVAL) but none of the callers
check for that so it would lead to an Oops.
Fixes: 26096aed25
("powercap/intel_rapl: Fix the energy-pkg event for AMD CPUs")
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Link: https://patch.msgid.link/fa719c6a-8d3b-4cca-9b43-bcd477ff6655@stanley.mountain
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2345 lines
65 KiB
C
2345 lines
65 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Common code for Intel Running Average Power Limit (RAPL) support.
|
|
* Copyright (c) 2019, Intel Corporation.
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/bitmap.h>
|
|
#include <linux/cleanup.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/intel_rapl.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/module.h>
|
|
#include <linux/nospec.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/powercap.h>
|
|
#include <linux/processor.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/iosf_mbi.h>
|
|
|
|
/* bitmasks for RAPL MSRs, used by primitive access functions */
|
|
#define ENERGY_STATUS_MASK 0xffffffff
|
|
|
|
#define POWER_LIMIT1_MASK 0x7FFF
|
|
#define POWER_LIMIT1_ENABLE BIT(15)
|
|
#define POWER_LIMIT1_CLAMP BIT(16)
|
|
|
|
#define POWER_LIMIT2_MASK (0x7FFFULL<<32)
|
|
#define POWER_LIMIT2_ENABLE BIT_ULL(47)
|
|
#define POWER_LIMIT2_CLAMP BIT_ULL(48)
|
|
#define POWER_HIGH_LOCK BIT_ULL(63)
|
|
#define POWER_LOW_LOCK BIT(31)
|
|
|
|
#define POWER_LIMIT4_MASK 0x1FFF
|
|
|
|
#define TIME_WINDOW1_MASK (0x7FULL<<17)
|
|
#define TIME_WINDOW2_MASK (0x7FULL<<49)
|
|
|
|
#define POWER_UNIT_OFFSET 0
|
|
#define POWER_UNIT_MASK 0x0F
|
|
|
|
#define ENERGY_UNIT_OFFSET 0x08
|
|
#define ENERGY_UNIT_MASK 0x1F00
|
|
|
|
#define TIME_UNIT_OFFSET 0x10
|
|
#define TIME_UNIT_MASK 0xF0000
|
|
|
|
#define POWER_INFO_MAX_MASK (0x7fffULL<<32)
|
|
#define POWER_INFO_MIN_MASK (0x7fffULL<<16)
|
|
#define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
|
|
#define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
|
|
|
|
#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
|
|
#define PP_POLICY_MASK 0x1F
|
|
|
|
/*
|
|
* SPR has different layout for Psys Domain PowerLimit registers.
|
|
* There are 17 bits of PL1 and PL2 instead of 15 bits.
|
|
* The Enable bits and TimeWindow bits are also shifted as a result.
|
|
*/
|
|
#define PSYS_POWER_LIMIT1_MASK 0x1FFFF
|
|
#define PSYS_POWER_LIMIT1_ENABLE BIT(17)
|
|
|
|
#define PSYS_POWER_LIMIT2_MASK (0x1FFFFULL<<32)
|
|
#define PSYS_POWER_LIMIT2_ENABLE BIT_ULL(49)
|
|
|
|
#define PSYS_TIME_WINDOW1_MASK (0x7FULL<<19)
|
|
#define PSYS_TIME_WINDOW2_MASK (0x7FULL<<51)
|
|
|
|
/* bitmasks for RAPL TPMI, used by primitive access functions */
|
|
#define TPMI_POWER_LIMIT_MASK 0x3FFFF
|
|
#define TPMI_POWER_LIMIT_ENABLE BIT_ULL(62)
|
|
#define TPMI_TIME_WINDOW_MASK (0x7FULL<<18)
|
|
#define TPMI_INFO_SPEC_MASK 0x3FFFF
|
|
#define TPMI_INFO_MIN_MASK (0x3FFFFULL << 18)
|
|
#define TPMI_INFO_MAX_MASK (0x3FFFFULL << 36)
|
|
#define TPMI_INFO_MAX_TIME_WIN_MASK (0x7FULL << 54)
|
|
|
|
/* Non HW constants */
|
|
#define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
|
|
#define RAPL_PRIMITIVE_DUMMY BIT(2)
|
|
|
|
#define TIME_WINDOW_MAX_MSEC 40000
|
|
#define TIME_WINDOW_MIN_MSEC 250
|
|
#define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
|
|
enum unit_type {
|
|
ARBITRARY_UNIT, /* no translation */
|
|
POWER_UNIT,
|
|
ENERGY_UNIT,
|
|
TIME_UNIT,
|
|
};
|
|
|
|
/* per domain data, some are optional */
|
|
#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
|
|
|
|
#define DOMAIN_STATE_INACTIVE BIT(0)
|
|
#define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
|
|
|
|
static const char *pl_names[NR_POWER_LIMITS] = {
|
|
[POWER_LIMIT1] = "long_term",
|
|
[POWER_LIMIT2] = "short_term",
|
|
[POWER_LIMIT4] = "peak_power",
|
|
};
|
|
|
|
enum pl_prims {
|
|
PL_ENABLE,
|
|
PL_CLAMP,
|
|
PL_LIMIT,
|
|
PL_TIME_WINDOW,
|
|
PL_MAX_POWER,
|
|
PL_LOCK,
|
|
};
|
|
|
|
static bool is_pl_valid(struct rapl_domain *rd, int pl)
|
|
{
|
|
if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
|
|
return false;
|
|
return rd->rpl[pl].name ? true : false;
|
|
}
|
|
|
|
static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
|
|
{
|
|
if (rd->rp->priv->type == RAPL_IF_TPMI) {
|
|
if (pl == POWER_LIMIT1)
|
|
return PL1_LOCK;
|
|
if (pl == POWER_LIMIT2)
|
|
return PL2_LOCK;
|
|
if (pl == POWER_LIMIT4)
|
|
return PL4_LOCK;
|
|
}
|
|
|
|
/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
|
|
if (pl == POWER_LIMIT4)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Power Limit register that supports two power limits has a different
|
|
* bit position for the Lock bit.
|
|
*/
|
|
if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
|
|
return FW_HIGH_LOCK;
|
|
return FW_LOCK;
|
|
}
|
|
|
|
static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
|
|
{
|
|
switch (pl) {
|
|
case POWER_LIMIT1:
|
|
if (prim == PL_ENABLE)
|
|
return PL1_ENABLE;
|
|
if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
|
|
return PL1_CLAMP;
|
|
if (prim == PL_LIMIT)
|
|
return POWER_LIMIT1;
|
|
if (prim == PL_TIME_WINDOW)
|
|
return TIME_WINDOW1;
|
|
if (prim == PL_MAX_POWER)
|
|
return THERMAL_SPEC_POWER;
|
|
if (prim == PL_LOCK)
|
|
return get_pl_lock_prim(rd, pl);
|
|
return -EINVAL;
|
|
case POWER_LIMIT2:
|
|
if (prim == PL_ENABLE)
|
|
return PL2_ENABLE;
|
|
if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
|
|
return PL2_CLAMP;
|
|
if (prim == PL_LIMIT)
|
|
return POWER_LIMIT2;
|
|
if (prim == PL_TIME_WINDOW)
|
|
return TIME_WINDOW2;
|
|
if (prim == PL_MAX_POWER)
|
|
return MAX_POWER;
|
|
if (prim == PL_LOCK)
|
|
return get_pl_lock_prim(rd, pl);
|
|
return -EINVAL;
|
|
case POWER_LIMIT4:
|
|
if (prim == PL_LIMIT)
|
|
return POWER_LIMIT4;
|
|
if (prim == PL_ENABLE)
|
|
return PL4_ENABLE;
|
|
/* PL4 would be around two times PL2, use same prim as PL2. */
|
|
if (prim == PL_MAX_POWER)
|
|
return MAX_POWER;
|
|
if (prim == PL_LOCK)
|
|
return get_pl_lock_prim(rd, pl);
|
|
return -EINVAL;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
#define power_zone_to_rapl_domain(_zone) \
|
|
container_of(_zone, struct rapl_domain, power_zone)
|
|
|
|
struct rapl_defaults {
|
|
u8 floor_freq_reg_addr;
|
|
int (*check_unit)(struct rapl_domain *rd);
|
|
void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
|
|
u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
|
|
bool to_raw);
|
|
unsigned int dram_domain_energy_unit;
|
|
unsigned int psys_domain_energy_unit;
|
|
bool spr_psys_bits;
|
|
};
|
|
static struct rapl_defaults *defaults_msr;
|
|
static const struct rapl_defaults defaults_tpmi;
|
|
|
|
static struct rapl_defaults *get_defaults(struct rapl_package *rp)
|
|
{
|
|
return rp->priv->defaults;
|
|
}
|
|
|
|
/* Sideband MBI registers */
|
|
#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
|
|
#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
|
|
|
|
#define PACKAGE_PLN_INT_SAVED BIT(0)
|
|
#define MAX_PRIM_NAME (32)
|
|
|
|
/* per domain data. used to describe individual knobs such that access function
|
|
* can be consolidated into one instead of many inline functions.
|
|
*/
|
|
struct rapl_primitive_info {
|
|
const char *name;
|
|
u64 mask;
|
|
int shift;
|
|
enum rapl_domain_reg_id id;
|
|
enum unit_type unit;
|
|
u32 flag;
|
|
};
|
|
|
|
#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
|
|
.name = #p, \
|
|
.mask = m, \
|
|
.shift = s, \
|
|
.id = i, \
|
|
.unit = u, \
|
|
.flag = f \
|
|
}
|
|
|
|
static void rapl_init_domains(struct rapl_package *rp);
|
|
static int rapl_read_data_raw(struct rapl_domain *rd,
|
|
enum rapl_primitives prim,
|
|
bool xlate, u64 *data);
|
|
static int rapl_write_data_raw(struct rapl_domain *rd,
|
|
enum rapl_primitives prim,
|
|
unsigned long long value);
|
|
static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
|
|
enum pl_prims pl_prim,
|
|
bool xlate, u64 *data);
|
|
static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
|
|
enum pl_prims pl_prim,
|
|
unsigned long long value);
|
|
static u64 rapl_unit_xlate(struct rapl_domain *rd,
|
|
enum unit_type type, u64 value, int to_raw);
|
|
static void package_power_limit_irq_save(struct rapl_package *rp);
|
|
|
|
static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
|
|
|
|
static const char *const rapl_domain_names[] = {
|
|
"package",
|
|
"core",
|
|
"uncore",
|
|
"dram",
|
|
"psys",
|
|
};
|
|
|
|
static int get_energy_counter(struct powercap_zone *power_zone,
|
|
u64 *energy_raw)
|
|
{
|
|
struct rapl_domain *rd;
|
|
u64 energy_now;
|
|
|
|
/* prevent CPU hotplug, make sure the RAPL domain does not go
|
|
* away while reading the counter.
|
|
*/
|
|
cpus_read_lock();
|
|
rd = power_zone_to_rapl_domain(power_zone);
|
|
|
|
if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
|
|
*energy_raw = energy_now;
|
|
cpus_read_unlock();
|
|
|
|
return 0;
|
|
}
|
|
cpus_read_unlock();
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
|
|
{
|
|
struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
|
|
|
|
*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int release_zone(struct powercap_zone *power_zone)
|
|
{
|
|
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
|
|
struct rapl_package *rp = rd->rp;
|
|
|
|
/* package zone is the last zone of a package, we can free
|
|
* memory here since all children has been unregistered.
|
|
*/
|
|
if (rd->id == RAPL_DOMAIN_PACKAGE) {
|
|
kfree(rd);
|
|
rp->domains = NULL;
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static int find_nr_power_limit(struct rapl_domain *rd)
|
|
{
|
|
int i, nr_pl = 0;
|
|
|
|
for (i = 0; i < NR_POWER_LIMITS; i++) {
|
|
if (is_pl_valid(rd, i))
|
|
nr_pl++;
|
|
}
|
|
|
|
return nr_pl;
|
|
}
|
|
|
|
static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
|
|
{
|
|
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
|
|
struct rapl_defaults *defaults = get_defaults(rd->rp);
|
|
int ret;
|
|
|
|
cpus_read_lock();
|
|
ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
|
|
if (!ret && defaults->set_floor_freq)
|
|
defaults->set_floor_freq(rd, mode);
|
|
cpus_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
|
|
{
|
|
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
|
|
u64 val;
|
|
int ret;
|
|
|
|
if (rd->rpl[POWER_LIMIT1].locked) {
|
|
*mode = false;
|
|
return 0;
|
|
}
|
|
cpus_read_lock();
|
|
ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
|
|
if (!ret)
|
|
*mode = val;
|
|
cpus_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* per RAPL domain ops, in the order of rapl_domain_type */
|
|
static const struct powercap_zone_ops zone_ops[] = {
|
|
/* RAPL_DOMAIN_PACKAGE */
|
|
{
|
|
.get_energy_uj = get_energy_counter,
|
|
.get_max_energy_range_uj = get_max_energy_counter,
|
|
.release = release_zone,
|
|
.set_enable = set_domain_enable,
|
|
.get_enable = get_domain_enable,
|
|
},
|
|
/* RAPL_DOMAIN_PP0 */
|
|
{
|
|
.get_energy_uj = get_energy_counter,
|
|
.get_max_energy_range_uj = get_max_energy_counter,
|
|
.release = release_zone,
|
|
.set_enable = set_domain_enable,
|
|
.get_enable = get_domain_enable,
|
|
},
|
|
/* RAPL_DOMAIN_PP1 */
|
|
{
|
|
.get_energy_uj = get_energy_counter,
|
|
.get_max_energy_range_uj = get_max_energy_counter,
|
|
.release = release_zone,
|
|
.set_enable = set_domain_enable,
|
|
.get_enable = get_domain_enable,
|
|
},
|
|
/* RAPL_DOMAIN_DRAM */
|
|
{
|
|
.get_energy_uj = get_energy_counter,
|
|
.get_max_energy_range_uj = get_max_energy_counter,
|
|
.release = release_zone,
|
|
.set_enable = set_domain_enable,
|
|
.get_enable = get_domain_enable,
|
|
},
|
|
/* RAPL_DOMAIN_PLATFORM */
|
|
{
|
|
.get_energy_uj = get_energy_counter,
|
|
.get_max_energy_range_uj = get_max_energy_counter,
|
|
.release = release_zone,
|
|
.set_enable = set_domain_enable,
|
|
.get_enable = get_domain_enable,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Constraint index used by powercap can be different than power limit (PL)
|
|
* index in that some PLs maybe missing due to non-existent MSRs. So we
|
|
* need to convert here by finding the valid PLs only (name populated).
|
|
*/
|
|
static int contraint_to_pl(struct rapl_domain *rd, int cid)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
|
|
if (is_pl_valid(rd, i) && j++ == cid) {
|
|
pr_debug("%s: index %d\n", __func__, i);
|
|
return i;
|
|
}
|
|
}
|
|
pr_err("Cannot find matching power limit for constraint %d\n", cid);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int set_power_limit(struct powercap_zone *power_zone, int cid,
|
|
u64 power_limit)
|
|
{
|
|
struct rapl_domain *rd;
|
|
struct rapl_package *rp;
|
|
int ret = 0;
|
|
int id;
|
|
|
|
cpus_read_lock();
|
|
rd = power_zone_to_rapl_domain(power_zone);
|
|
id = contraint_to_pl(rd, cid);
|
|
rp = rd->rp;
|
|
|
|
ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
|
|
if (!ret)
|
|
package_power_limit_irq_save(rp);
|
|
cpus_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
|
|
u64 *data)
|
|
{
|
|
struct rapl_domain *rd;
|
|
u64 val;
|
|
int ret = 0;
|
|
int id;
|
|
|
|
cpus_read_lock();
|
|
rd = power_zone_to_rapl_domain(power_zone);
|
|
id = contraint_to_pl(rd, cid);
|
|
|
|
ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
|
|
if (!ret)
|
|
*data = val;
|
|
|
|
cpus_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int set_time_window(struct powercap_zone *power_zone, int cid,
|
|
u64 window)
|
|
{
|
|
struct rapl_domain *rd;
|
|
int ret = 0;
|
|
int id;
|
|
|
|
cpus_read_lock();
|
|
rd = power_zone_to_rapl_domain(power_zone);
|
|
id = contraint_to_pl(rd, cid);
|
|
|
|
ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
|
|
|
|
cpus_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static int get_time_window(struct powercap_zone *power_zone, int cid,
|
|
u64 *data)
|
|
{
|
|
struct rapl_domain *rd;
|
|
u64 val;
|
|
int ret = 0;
|
|
int id;
|
|
|
|
cpus_read_lock();
|
|
rd = power_zone_to_rapl_domain(power_zone);
|
|
id = contraint_to_pl(rd, cid);
|
|
|
|
ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
|
|
if (!ret)
|
|
*data = val;
|
|
|
|
cpus_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *get_constraint_name(struct powercap_zone *power_zone,
|
|
int cid)
|
|
{
|
|
struct rapl_domain *rd;
|
|
int id;
|
|
|
|
rd = power_zone_to_rapl_domain(power_zone);
|
|
id = contraint_to_pl(rd, cid);
|
|
if (id >= 0)
|
|
return rd->rpl[id].name;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
|
|
{
|
|
struct rapl_domain *rd;
|
|
u64 val;
|
|
int ret = 0;
|
|
int id;
|
|
|
|
cpus_read_lock();
|
|
rd = power_zone_to_rapl_domain(power_zone);
|
|
id = contraint_to_pl(rd, cid);
|
|
|
|
ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
|
|
if (!ret)
|
|
*data = val;
|
|
|
|
/* As a generalization rule, PL4 would be around two times PL2. */
|
|
if (id == POWER_LIMIT4)
|
|
*data = *data * 2;
|
|
|
|
cpus_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct powercap_zone_constraint_ops constraint_ops = {
|
|
.set_power_limit_uw = set_power_limit,
|
|
.get_power_limit_uw = get_current_power_limit,
|
|
.set_time_window_us = set_time_window,
|
|
.get_time_window_us = get_time_window,
|
|
.get_max_power_uw = get_max_power,
|
|
.get_name = get_constraint_name,
|
|
};
|
|
|
|
/* Return the id used for read_raw/write_raw callback */
|
|
static int get_rid(struct rapl_package *rp)
|
|
{
|
|
return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
|
|
}
|
|
|
|
/* called after domain detection and package level data are set */
|
|
static void rapl_init_domains(struct rapl_package *rp)
|
|
{
|
|
enum rapl_domain_type i;
|
|
enum rapl_domain_reg_id j;
|
|
struct rapl_domain *rd = rp->domains;
|
|
|
|
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
|
|
unsigned int mask = rp->domain_map & (1 << i);
|
|
int t;
|
|
|
|
if (!mask)
|
|
continue;
|
|
|
|
rd->rp = rp;
|
|
|
|
if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
|
|
snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
|
|
rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
|
|
rp->id);
|
|
} else {
|
|
snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
|
|
rapl_domain_names[i]);
|
|
}
|
|
|
|
rd->id = i;
|
|
|
|
/* PL1 is supported by default */
|
|
rp->priv->limits[i] |= BIT(POWER_LIMIT1);
|
|
|
|
for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
|
|
if (rp->priv->limits[i] & BIT(t))
|
|
rd->rpl[t].name = pl_names[t];
|
|
}
|
|
|
|
for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
|
|
rd->regs[j] = rp->priv->regs[i][j];
|
|
|
|
rd++;
|
|
}
|
|
}
|
|
|
|
static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
|
|
u64 value, int to_raw)
|
|
{
|
|
u64 units = 1;
|
|
struct rapl_defaults *defaults = get_defaults(rd->rp);
|
|
u64 scale = 1;
|
|
|
|
switch (type) {
|
|
case POWER_UNIT:
|
|
units = rd->power_unit;
|
|
break;
|
|
case ENERGY_UNIT:
|
|
scale = ENERGY_UNIT_SCALE;
|
|
units = rd->energy_unit;
|
|
break;
|
|
case TIME_UNIT:
|
|
return defaults->compute_time_window(rd, value, to_raw);
|
|
case ARBITRARY_UNIT:
|
|
default:
|
|
return value;
|
|
}
|
|
|
|
if (to_raw)
|
|
return div64_u64(value, units) * scale;
|
|
|
|
value *= units;
|
|
|
|
return div64_u64(value, scale);
|
|
}
|
|
|
|
/* RAPL primitives for MSR and MMIO I/F */
|
|
static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
|
|
/* name, mask, shift, msr index, unit divisor */
|
|
[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
|
|
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
|
|
[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
|
|
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
|
|
[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
|
|
RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
|
|
[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
|
|
RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
|
|
[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
|
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
|
[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
|
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
|
[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
|
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
|
[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
|
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
|
[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
|
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
|
[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
|
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
|
[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
|
|
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
|
|
[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
|
|
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
|
|
[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
|
|
0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
|
|
[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
|
|
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
|
|
[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
|
|
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
|
|
[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
|
|
RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
|
|
[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
|
|
RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
|
|
[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
|
|
RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
|
|
[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
|
|
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
|
|
[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
|
|
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
|
|
[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
|
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
|
[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
|
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
|
[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
|
|
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
|
|
[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
|
|
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
|
|
/* non-hardware */
|
|
[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
|
|
RAPL_PRIMITIVE_DERIVED),
|
|
};
|
|
|
|
/* RAPL primitives for TPMI I/F */
|
|
static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
|
|
/* name, mask, shift, msr index, unit divisor */
|
|
[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
|
|
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
|
|
[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
|
|
RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
|
|
[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
|
|
RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
|
|
[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
|
|
RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
|
|
[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
|
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
|
[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
|
|
RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
|
|
[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
|
|
RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
|
|
[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
|
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
|
[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
|
|
RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
|
|
[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
|
|
RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
|
|
[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
|
|
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
|
|
[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
|
|
RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
|
|
[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
|
|
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
|
|
[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
|
|
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
|
|
[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
|
|
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
|
|
[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
|
|
RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
|
|
[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
|
|
RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
|
|
/* non-hardware */
|
|
[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
|
|
POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
|
|
};
|
|
|
|
static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
|
|
{
|
|
struct rapl_primitive_info *rpi = rp->priv->rpi;
|
|
|
|
if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi)
|
|
return NULL;
|
|
|
|
return &rpi[prim];
|
|
}
|
|
|
|
static int rapl_config(struct rapl_package *rp)
|
|
{
|
|
switch (rp->priv->type) {
|
|
/* MMIO I/F shares the same register layout as MSR registers */
|
|
case RAPL_IF_MMIO:
|
|
case RAPL_IF_MSR:
|
|
rp->priv->defaults = (void *)defaults_msr;
|
|
rp->priv->rpi = (void *)rpi_msr;
|
|
break;
|
|
case RAPL_IF_TPMI:
|
|
rp->priv->defaults = (void *)&defaults_tpmi;
|
|
rp->priv->rpi = (void *)rpi_tpmi;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* defaults_msr can be NULL on unsupported platforms */
|
|
if (!rp->priv->defaults || !rp->priv->rpi)
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum rapl_primitives
|
|
prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
|
|
{
|
|
struct rapl_defaults *defaults = get_defaults(rd->rp);
|
|
|
|
if (!defaults->spr_psys_bits)
|
|
return prim;
|
|
|
|
if (rd->id != RAPL_DOMAIN_PLATFORM)
|
|
return prim;
|
|
|
|
switch (prim) {
|
|
case POWER_LIMIT1:
|
|
return PSYS_POWER_LIMIT1;
|
|
case POWER_LIMIT2:
|
|
return PSYS_POWER_LIMIT2;
|
|
case PL1_ENABLE:
|
|
return PSYS_PL1_ENABLE;
|
|
case PL2_ENABLE:
|
|
return PSYS_PL2_ENABLE;
|
|
case TIME_WINDOW1:
|
|
return PSYS_TIME_WINDOW1;
|
|
case TIME_WINDOW2:
|
|
return PSYS_TIME_WINDOW2;
|
|
default:
|
|
return prim;
|
|
}
|
|
}
|
|
|
|
/* Read primitive data based on its related struct rapl_primitive_info.
|
|
* if xlate flag is set, return translated data based on data units, i.e.
|
|
* time, energy, and power.
|
|
* RAPL MSRs are non-architectual and are laid out not consistently across
|
|
* domains. Here we use primitive info to allow writing consolidated access
|
|
* functions.
|
|
* For a given primitive, it is processed by MSR mask and shift. Unit conversion
|
|
* is pre-assigned based on RAPL unit MSRs read at init time.
|
|
* 63-------------------------- 31--------------------------- 0
|
|
* | xxxxx (mask) |
|
|
* | |<- shift ----------------|
|
|
* 63-------------------------- 31--------------------------- 0
|
|
*/
|
|
static int rapl_read_data_raw(struct rapl_domain *rd,
|
|
enum rapl_primitives prim, bool xlate, u64 *data)
|
|
{
|
|
u64 value;
|
|
enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
|
|
struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
|
|
struct reg_action ra;
|
|
|
|
if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
|
|
return -EINVAL;
|
|
|
|
ra.reg = rd->regs[rpi->id];
|
|
if (!ra.reg.val)
|
|
return -EINVAL;
|
|
|
|
/* non-hardware data are collected by the polling thread */
|
|
if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
|
|
*data = rd->rdd.primitives[prim];
|
|
return 0;
|
|
}
|
|
|
|
ra.mask = rpi->mask;
|
|
|
|
if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
|
|
pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
|
|
return -EIO;
|
|
}
|
|
|
|
value = ra.value >> rpi->shift;
|
|
|
|
if (xlate)
|
|
*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
|
|
else
|
|
*data = value;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Similar use of primitive info in the read counterpart */
|
|
static int rapl_write_data_raw(struct rapl_domain *rd,
|
|
enum rapl_primitives prim,
|
|
unsigned long long value)
|
|
{
|
|
enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
|
|
struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
|
|
u64 bits;
|
|
struct reg_action ra;
|
|
int ret;
|
|
|
|
if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
|
|
return -EINVAL;
|
|
|
|
bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
|
|
bits <<= rpi->shift;
|
|
bits &= rpi->mask;
|
|
|
|
memset(&ra, 0, sizeof(ra));
|
|
|
|
ra.reg = rd->regs[rpi->id];
|
|
ra.mask = rpi->mask;
|
|
ra.value = bits;
|
|
|
|
ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
|
|
enum pl_prims pl_prim, bool xlate, u64 *data)
|
|
{
|
|
enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
|
|
|
|
if (!is_pl_valid(rd, pl))
|
|
return -EINVAL;
|
|
|
|
return rapl_read_data_raw(rd, prim, xlate, data);
|
|
}
|
|
|
|
static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
|
|
enum pl_prims pl_prim,
|
|
unsigned long long value)
|
|
{
|
|
enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
|
|
|
|
if (!is_pl_valid(rd, pl))
|
|
return -EINVAL;
|
|
|
|
if (rd->rpl[pl].locked) {
|
|
pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
|
|
return -EACCES;
|
|
}
|
|
|
|
return rapl_write_data_raw(rd, prim, value);
|
|
}
|
|
/*
|
|
* Raw RAPL data stored in MSRs are in certain scales. We need to
|
|
* convert them into standard units based on the units reported in
|
|
* the RAPL unit MSRs. This is specific to CPUs as the method to
|
|
* calculate units differ on different CPUs.
|
|
* We convert the units to below format based on CPUs.
|
|
* i.e.
|
|
* energy unit: picoJoules : Represented in picoJoules by default
|
|
* power unit : microWatts : Represented in milliWatts by default
|
|
* time unit : microseconds: Represented in seconds by default
|
|
*/
|
|
static int rapl_check_unit_core(struct rapl_domain *rd)
|
|
{
|
|
struct reg_action ra;
|
|
u32 value;
|
|
|
|
ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
|
|
ra.mask = ~0;
|
|
if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
|
|
pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
|
|
ra.reg.val, rd->rp->name, rd->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
|
|
rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
|
|
|
|
value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
|
|
rd->power_unit = 1000000 / (1 << value);
|
|
|
|
value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
|
|
rd->time_unit = 1000000 / (1 << value);
|
|
|
|
pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
|
|
rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rapl_check_unit_atom(struct rapl_domain *rd)
|
|
{
|
|
struct reg_action ra;
|
|
u32 value;
|
|
|
|
ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
|
|
ra.mask = ~0;
|
|
if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
|
|
pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
|
|
ra.reg.val, rd->rp->name, rd->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
|
|
rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
|
|
|
|
value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
|
|
rd->power_unit = (1 << value) * 1000;
|
|
|
|
value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
|
|
rd->time_unit = 1000000 / (1 << value);
|
|
|
|
pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
|
|
rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void power_limit_irq_save_cpu(void *info)
|
|
{
|
|
u32 l, h = 0;
|
|
struct rapl_package *rp = (struct rapl_package *)info;
|
|
|
|
/* save the state of PLN irq mask bit before disabling it */
|
|
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
|
|
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
|
|
rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
|
|
rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
|
|
}
|
|
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
|
|
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
|
|
}
|
|
|
|
/* REVISIT:
|
|
* When package power limit is set artificially low by RAPL, LVT
|
|
* thermal interrupt for package power limit should be ignored
|
|
* since we are not really exceeding the real limit. The intention
|
|
* is to avoid excessive interrupts while we are trying to save power.
|
|
* A useful feature might be routing the package_power_limit interrupt
|
|
* to userspace via eventfd. once we have a usecase, this is simple
|
|
* to do by adding an atomic notifier.
|
|
*/
|
|
|
|
static void package_power_limit_irq_save(struct rapl_package *rp)
|
|
{
|
|
if (rp->lead_cpu < 0)
|
|
return;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
|
|
return;
|
|
|
|
smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
|
|
}
|
|
|
|
/*
|
|
* Restore per package power limit interrupt enable state. Called from cpu
|
|
* hotplug code on package removal.
|
|
*/
|
|
static void package_power_limit_irq_restore(struct rapl_package *rp)
|
|
{
|
|
u32 l, h;
|
|
|
|
if (rp->lead_cpu < 0)
|
|
return;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
|
|
return;
|
|
|
|
/* irq enable state not saved, nothing to restore */
|
|
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
|
|
return;
|
|
|
|
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
|
|
|
|
if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
|
|
l |= PACKAGE_THERM_INT_PLN_ENABLE;
|
|
else
|
|
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
|
|
|
|
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
|
|
}
|
|
|
|
static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
|
|
{
|
|
int i;
|
|
|
|
/* always enable clamp such that p-state can go below OS requested
|
|
* range. power capping priority over guranteed frequency.
|
|
*/
|
|
rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
|
|
|
|
for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
|
|
rapl_write_pl_data(rd, i, PL_ENABLE, mode);
|
|
rapl_write_pl_data(rd, i, PL_CLAMP, mode);
|
|
}
|
|
}
|
|
|
|
static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
|
|
{
|
|
static u32 power_ctrl_orig_val;
|
|
struct rapl_defaults *defaults = get_defaults(rd->rp);
|
|
u32 mdata;
|
|
|
|
if (!defaults->floor_freq_reg_addr) {
|
|
pr_err("Invalid floor frequency config register\n");
|
|
return;
|
|
}
|
|
|
|
if (!power_ctrl_orig_val)
|
|
iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
|
|
defaults->floor_freq_reg_addr,
|
|
&power_ctrl_orig_val);
|
|
mdata = power_ctrl_orig_val;
|
|
if (enable) {
|
|
mdata &= ~(0x7f << 8);
|
|
mdata |= 1 << 8;
|
|
}
|
|
iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
|
|
defaults->floor_freq_reg_addr, mdata);
|
|
}
|
|
|
|
static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
|
|
bool to_raw)
|
|
{
|
|
u64 f, y; /* fraction and exp. used for time unit */
|
|
|
|
/*
|
|
* Special processing based on 2^Y*(1+F/4), refer
|
|
* to Intel Software Developer's manual Vol.3B: CH 14.9.3.
|
|
*/
|
|
if (!to_raw) {
|
|
f = (value & 0x60) >> 5;
|
|
y = value & 0x1f;
|
|
value = (1 << y) * (4 + f) * rd->time_unit / 4;
|
|
} else {
|
|
if (value < rd->time_unit)
|
|
return 0;
|
|
|
|
do_div(value, rd->time_unit);
|
|
y = ilog2(value);
|
|
|
|
/*
|
|
* The target hardware field is 7 bits wide, so return all ones
|
|
* if the exponent is too large.
|
|
*/
|
|
if (y > 0x1f)
|
|
return 0x7f;
|
|
|
|
f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
|
|
value = (y & 0x1f) | ((f & 0x3) << 5);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
|
|
bool to_raw)
|
|
{
|
|
/*
|
|
* Atom time unit encoding is straight forward val * time_unit,
|
|
* where time_unit is default to 1 sec. Never 0.
|
|
*/
|
|
if (!to_raw)
|
|
return (value) ? value * rd->time_unit : rd->time_unit;
|
|
|
|
value = div64_u64(value, rd->time_unit);
|
|
|
|
return value;
|
|
}
|
|
|
|
/* TPMI Unit register has different layout */
|
|
#define TPMI_POWER_UNIT_OFFSET POWER_UNIT_OFFSET
|
|
#define TPMI_POWER_UNIT_MASK POWER_UNIT_MASK
|
|
#define TPMI_ENERGY_UNIT_OFFSET 0x06
|
|
#define TPMI_ENERGY_UNIT_MASK 0x7C0
|
|
#define TPMI_TIME_UNIT_OFFSET 0x0C
|
|
#define TPMI_TIME_UNIT_MASK 0xF000
|
|
|
|
static int rapl_check_unit_tpmi(struct rapl_domain *rd)
|
|
{
|
|
struct reg_action ra;
|
|
u32 value;
|
|
|
|
ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
|
|
ra.mask = ~0;
|
|
if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
|
|
pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
|
|
ra.reg.val, rd->rp->name, rd->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
|
|
rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
|
|
|
|
value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
|
|
rd->power_unit = 1000000 / (1 << value);
|
|
|
|
value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
|
|
rd->time_unit = 1000000 / (1 << value);
|
|
|
|
pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
|
|
rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct rapl_defaults defaults_tpmi = {
|
|
.check_unit = rapl_check_unit_tpmi,
|
|
/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
|
|
.set_floor_freq = set_floor_freq_default,
|
|
.compute_time_window = rapl_compute_time_window_core,
|
|
};
|
|
|
|
static const struct rapl_defaults rapl_defaults_core = {
|
|
.floor_freq_reg_addr = 0,
|
|
.check_unit = rapl_check_unit_core,
|
|
.set_floor_freq = set_floor_freq_default,
|
|
.compute_time_window = rapl_compute_time_window_core,
|
|
};
|
|
|
|
static const struct rapl_defaults rapl_defaults_hsw_server = {
|
|
.check_unit = rapl_check_unit_core,
|
|
.set_floor_freq = set_floor_freq_default,
|
|
.compute_time_window = rapl_compute_time_window_core,
|
|
.dram_domain_energy_unit = 15300,
|
|
};
|
|
|
|
static const struct rapl_defaults rapl_defaults_spr_server = {
|
|
.check_unit = rapl_check_unit_core,
|
|
.set_floor_freq = set_floor_freq_default,
|
|
.compute_time_window = rapl_compute_time_window_core,
|
|
.psys_domain_energy_unit = 1000000000,
|
|
.spr_psys_bits = true,
|
|
};
|
|
|
|
static const struct rapl_defaults rapl_defaults_byt = {
|
|
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
|
|
.check_unit = rapl_check_unit_atom,
|
|
.set_floor_freq = set_floor_freq_atom,
|
|
.compute_time_window = rapl_compute_time_window_atom,
|
|
};
|
|
|
|
static const struct rapl_defaults rapl_defaults_tng = {
|
|
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
|
|
.check_unit = rapl_check_unit_atom,
|
|
.set_floor_freq = set_floor_freq_atom,
|
|
.compute_time_window = rapl_compute_time_window_atom,
|
|
};
|
|
|
|
static const struct rapl_defaults rapl_defaults_ann = {
|
|
.floor_freq_reg_addr = 0,
|
|
.check_unit = rapl_check_unit_atom,
|
|
.set_floor_freq = NULL,
|
|
.compute_time_window = rapl_compute_time_window_atom,
|
|
};
|
|
|
|
static const struct rapl_defaults rapl_defaults_cht = {
|
|
.floor_freq_reg_addr = 0,
|
|
.check_unit = rapl_check_unit_atom,
|
|
.set_floor_freq = NULL,
|
|
.compute_time_window = rapl_compute_time_window_atom,
|
|
};
|
|
|
|
static const struct rapl_defaults rapl_defaults_amd = {
|
|
.check_unit = rapl_check_unit_core,
|
|
};
|
|
|
|
static const struct x86_cpu_id rapl_ids[] __initconst = {
|
|
X86_MATCH_VFM(INTEL_SANDYBRIDGE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_SANDYBRIDGE_X, &rapl_defaults_core),
|
|
|
|
X86_MATCH_VFM(INTEL_IVYBRIDGE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &rapl_defaults_core),
|
|
|
|
X86_MATCH_VFM(INTEL_HASWELL, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_HASWELL_L, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_HASWELL_G, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_HASWELL_X, &rapl_defaults_hsw_server),
|
|
|
|
X86_MATCH_VFM(INTEL_BROADWELL, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_BROADWELL_G, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_BROADWELL_D, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_BROADWELL_X, &rapl_defaults_hsw_server),
|
|
|
|
X86_MATCH_VFM(INTEL_SKYLAKE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_SKYLAKE_L, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_SKYLAKE_X, &rapl_defaults_hsw_server),
|
|
X86_MATCH_VFM(INTEL_KABYLAKE_L, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_KABYLAKE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_CANNONLAKE_L, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ICELAKE_L, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ICELAKE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ICELAKE_NNPI, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ICELAKE_X, &rapl_defaults_hsw_server),
|
|
X86_MATCH_VFM(INTEL_ICELAKE_D, &rapl_defaults_hsw_server),
|
|
X86_MATCH_VFM(INTEL_COMETLAKE_L, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_COMETLAKE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_TIGERLAKE_L, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_TIGERLAKE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ROCKETLAKE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ALDERLAKE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ALDERLAKE_L, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_RAPTORLAKE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_RAPTORLAKE_P, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_RAPTORLAKE_S, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_METEORLAKE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_METEORLAKE_L, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
|
|
X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &rapl_defaults_spr_server),
|
|
X86_MATCH_VFM(INTEL_LUNARLAKE_M, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ARROWLAKE_H, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ARROWLAKE, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ARROWLAKE_U, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_LAKEFIELD, &rapl_defaults_core),
|
|
|
|
X86_MATCH_VFM(INTEL_ATOM_SILVERMONT, &rapl_defaults_byt),
|
|
X86_MATCH_VFM(INTEL_ATOM_AIRMONT, &rapl_defaults_cht),
|
|
X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID, &rapl_defaults_tng),
|
|
X86_MATCH_VFM(INTEL_ATOM_AIRMONT_MID, &rapl_defaults_ann),
|
|
X86_MATCH_VFM(INTEL_ATOM_GOLDMONT, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ATOM_TREMONT, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ATOM_TREMONT_D, &rapl_defaults_core),
|
|
X86_MATCH_VFM(INTEL_ATOM_TREMONT_L, &rapl_defaults_core),
|
|
|
|
X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &rapl_defaults_hsw_server),
|
|
X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &rapl_defaults_hsw_server),
|
|
|
|
X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
|
|
X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
|
|
X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd),
|
|
X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
|
|
|
|
/* Read once for all raw primitive data for domains */
|
|
static void rapl_update_domain_data(struct rapl_package *rp)
|
|
{
|
|
int dmn, prim;
|
|
u64 val;
|
|
|
|
for (dmn = 0; dmn < rp->nr_domains; dmn++) {
|
|
pr_debug("update %s domain %s data\n", rp->name,
|
|
rp->domains[dmn].name);
|
|
/* exclude non-raw primitives */
|
|
for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
|
|
struct rapl_primitive_info *rpi = get_rpi(rp, prim);
|
|
|
|
if (!rapl_read_data_raw(&rp->domains[dmn], prim,
|
|
rpi->unit, &val))
|
|
rp->domains[dmn].rdd.primitives[prim] = val;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static int rapl_package_register_powercap(struct rapl_package *rp)
|
|
{
|
|
struct rapl_domain *rd;
|
|
struct powercap_zone *power_zone = NULL;
|
|
int nr_pl, ret;
|
|
|
|
/* Update the domain data of the new package */
|
|
rapl_update_domain_data(rp);
|
|
|
|
/* first we register package domain as the parent zone */
|
|
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
|
|
if (rd->id == RAPL_DOMAIN_PACKAGE) {
|
|
nr_pl = find_nr_power_limit(rd);
|
|
pr_debug("register package domain %s\n", rp->name);
|
|
power_zone = powercap_register_zone(&rd->power_zone,
|
|
rp->priv->control_type, rp->name,
|
|
NULL, &zone_ops[rd->id], nr_pl,
|
|
&constraint_ops);
|
|
if (IS_ERR(power_zone)) {
|
|
pr_debug("failed to register power zone %s\n",
|
|
rp->name);
|
|
return PTR_ERR(power_zone);
|
|
}
|
|
/* track parent zone in per package/socket data */
|
|
rp->power_zone = power_zone;
|
|
/* done, only one package domain per socket */
|
|
break;
|
|
}
|
|
}
|
|
if (!power_zone) {
|
|
pr_err("no package domain found, unknown topology!\n");
|
|
return -ENODEV;
|
|
}
|
|
/* now register domains as children of the socket/package */
|
|
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
|
|
struct powercap_zone *parent = rp->power_zone;
|
|
|
|
if (rd->id == RAPL_DOMAIN_PACKAGE)
|
|
continue;
|
|
if (rd->id == RAPL_DOMAIN_PLATFORM)
|
|
parent = NULL;
|
|
/* number of power limits per domain varies */
|
|
nr_pl = find_nr_power_limit(rd);
|
|
power_zone = powercap_register_zone(&rd->power_zone,
|
|
rp->priv->control_type,
|
|
rd->name, parent,
|
|
&zone_ops[rd->id], nr_pl,
|
|
&constraint_ops);
|
|
|
|
if (IS_ERR(power_zone)) {
|
|
pr_debug("failed to register power_zone, %s:%s\n",
|
|
rp->name, rd->name);
|
|
ret = PTR_ERR(power_zone);
|
|
goto err_cleanup;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
err_cleanup:
|
|
/*
|
|
* Clean up previously initialized domains within the package if we
|
|
* failed after the first domain setup.
|
|
*/
|
|
while (--rd >= rp->domains) {
|
|
pr_debug("unregister %s domain %s\n", rp->name, rd->name);
|
|
powercap_unregister_zone(rp->priv->control_type,
|
|
&rd->power_zone);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rapl_check_domain(int domain, struct rapl_package *rp)
|
|
{
|
|
struct reg_action ra;
|
|
|
|
switch (domain) {
|
|
case RAPL_DOMAIN_PACKAGE:
|
|
case RAPL_DOMAIN_PP0:
|
|
case RAPL_DOMAIN_PP1:
|
|
case RAPL_DOMAIN_DRAM:
|
|
case RAPL_DOMAIN_PLATFORM:
|
|
ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
|
|
break;
|
|
default:
|
|
pr_err("invalid domain id %d\n", domain);
|
|
return -EINVAL;
|
|
}
|
|
/* make sure domain counters are available and contains non-zero
|
|
* values, otherwise skip it.
|
|
*/
|
|
|
|
ra.mask = ENERGY_STATUS_MASK;
|
|
if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get per domain energy/power/time unit.
|
|
* RAPL Interfaces without per domain unit register will use the package
|
|
* scope unit register to set per domain units.
|
|
*/
|
|
static int rapl_get_domain_unit(struct rapl_domain *rd)
|
|
{
|
|
struct rapl_defaults *defaults = get_defaults(rd->rp);
|
|
int ret;
|
|
|
|
if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
|
|
if (!rd->rp->priv->reg_unit.val) {
|
|
pr_err("No valid Unit register found\n");
|
|
return -ENODEV;
|
|
}
|
|
rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
|
|
}
|
|
|
|
if (!defaults->check_unit) {
|
|
pr_err("missing .check_unit() callback\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = defaults->check_unit(rd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
|
|
rd->energy_unit = defaults->dram_domain_energy_unit;
|
|
if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
|
|
rd->energy_unit = defaults->psys_domain_energy_unit;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if power limits are available. Two cases when they are not available:
|
|
* 1. Locked by BIOS, in this case we still provide read-only access so that
|
|
* users can see what limit is set by the BIOS.
|
|
* 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
|
|
* exist at all. In this case, we do not show the constraints in powercap.
|
|
*
|
|
* Called after domains are detected and initialized.
|
|
*/
|
|
static void rapl_detect_powerlimit(struct rapl_domain *rd)
|
|
{
|
|
u64 val64;
|
|
int i;
|
|
|
|
for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
|
|
if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
|
|
if (val64) {
|
|
rd->rpl[i].locked = true;
|
|
pr_info("%s:%s:%s locked by BIOS\n",
|
|
rd->rp->name, rd->name, pl_names[i]);
|
|
}
|
|
}
|
|
|
|
if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
|
|
rd->rpl[i].name = NULL;
|
|
}
|
|
}
|
|
|
|
/* Detect active and valid domains for the given CPU, caller must
|
|
* ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
|
|
*/
|
|
static int rapl_detect_domains(struct rapl_package *rp)
|
|
{
|
|
struct rapl_domain *rd;
|
|
int i;
|
|
|
|
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
|
|
/* use physical package id to read counters */
|
|
if (!rapl_check_domain(i, rp)) {
|
|
rp->domain_map |= 1 << i;
|
|
pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
|
|
}
|
|
}
|
|
rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
|
|
if (!rp->nr_domains) {
|
|
pr_debug("no valid rapl domains found in %s\n", rp->name);
|
|
return -ENODEV;
|
|
}
|
|
pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
|
|
|
|
rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
|
|
GFP_KERNEL);
|
|
if (!rp->domains)
|
|
return -ENOMEM;
|
|
|
|
rapl_init_domains(rp);
|
|
|
|
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
|
|
rapl_get_domain_unit(rd);
|
|
rapl_detect_powerlimit(rd);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
|
|
/*
|
|
* Support for RAPL PMU
|
|
*
|
|
* Register a PMU if any of the registered RAPL Packages have the requirement
|
|
* of exposing its energy counters via Perf PMU.
|
|
*
|
|
* PMU Name:
|
|
* power
|
|
*
|
|
* Events:
|
|
* Name Event id RAPL Domain
|
|
* energy_cores 0x01 RAPL_DOMAIN_PP0
|
|
* energy_pkg 0x02 RAPL_DOMAIN_PACKAGE
|
|
* energy_ram 0x03 RAPL_DOMAIN_DRAM
|
|
* energy_gpu 0x04 RAPL_DOMAIN_PP1
|
|
* energy_psys 0x05 RAPL_DOMAIN_PLATFORM
|
|
*
|
|
* Unit:
|
|
* Joules
|
|
*
|
|
* Scale:
|
|
* 2.3283064365386962890625e-10
|
|
* The same RAPL domain in different RAPL Packages may have different
|
|
* energy units. Use 2.3283064365386962890625e-10 (2^-32) Joules as
|
|
* the fixed unit for all energy counters, and covert each hardware
|
|
* counter increase to N times of PMU event counter increases.
|
|
*
|
|
* This is fully compatible with the current MSR RAPL PMU. This means that
|
|
* userspace programs like turbostat can use the same code to handle RAPL Perf
|
|
* PMU, no matter what RAPL Interface driver (MSR/TPMI, etc) is running
|
|
* underlying on the platform.
|
|
*
|
|
* Note that RAPL Packages can be probed/removed dynamically, and the events
|
|
* supported by each TPMI RAPL device can be different. Thus the RAPL PMU
|
|
* support is done on demand, which means
|
|
* 1. PMU is registered only if it is needed by a RAPL Package. PMU events for
|
|
* unsupported counters are not exposed.
|
|
* 2. PMU is unregistered and registered when a new RAPL Package is probed and
|
|
* supports new counters that are not supported by current PMU.
|
|
* 3. PMU is unregistered when all registered RAPL Packages don't need PMU.
|
|
*/
|
|
|
|
struct rapl_pmu {
|
|
struct pmu pmu; /* Perf PMU structure */
|
|
u64 timer_ms; /* Maximum expiration time to avoid counter overflow */
|
|
unsigned long domain_map; /* Events supported by current registered PMU */
|
|
bool registered; /* Whether the PMU has been registered or not */
|
|
};
|
|
|
|
static struct rapl_pmu rapl_pmu;
|
|
|
|
/* PMU helpers */
|
|
|
|
static int get_pmu_cpu(struct rapl_package *rp)
|
|
{
|
|
int cpu;
|
|
|
|
if (!rp->has_pmu)
|
|
return nr_cpu_ids;
|
|
|
|
/* Only TPMI RAPL is supported for now */
|
|
if (rp->priv->type != RAPL_IF_TPMI)
|
|
return nr_cpu_ids;
|
|
|
|
/* TPMI RAPL uses any CPU in the package for PMU */
|
|
for_each_online_cpu(cpu)
|
|
if (topology_physical_package_id(cpu) == rp->id)
|
|
return cpu;
|
|
|
|
return nr_cpu_ids;
|
|
}
|
|
|
|
static bool is_rp_pmu_cpu(struct rapl_package *rp, int cpu)
|
|
{
|
|
if (!rp->has_pmu)
|
|
return false;
|
|
|
|
/* Only TPMI RAPL is supported for now */
|
|
if (rp->priv->type != RAPL_IF_TPMI)
|
|
return false;
|
|
|
|
/* TPMI RAPL uses any CPU in the package for PMU */
|
|
return topology_physical_package_id(cpu) == rp->id;
|
|
}
|
|
|
|
static struct rapl_package_pmu_data *event_to_pmu_data(struct perf_event *event)
|
|
{
|
|
struct rapl_package *rp = event->pmu_private;
|
|
|
|
return &rp->pmu_data;
|
|
}
|
|
|
|
/* PMU event callbacks */
|
|
|
|
static u64 event_read_counter(struct perf_event *event)
|
|
{
|
|
struct rapl_package *rp = event->pmu_private;
|
|
u64 val;
|
|
int ret;
|
|
|
|
/* Return 0 for unsupported events */
|
|
if (event->hw.idx < 0)
|
|
return 0;
|
|
|
|
ret = rapl_read_data_raw(&rp->domains[event->hw.idx], ENERGY_COUNTER, false, &val);
|
|
|
|
/* Return 0 for failed read */
|
|
if (ret)
|
|
return 0;
|
|
|
|
return val;
|
|
}
|
|
|
|
static void __rapl_pmu_event_start(struct perf_event *event)
|
|
{
|
|
struct rapl_package_pmu_data *data = event_to_pmu_data(event);
|
|
|
|
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
|
|
return;
|
|
|
|
event->hw.state = 0;
|
|
|
|
list_add_tail(&event->active_entry, &data->active_list);
|
|
|
|
local64_set(&event->hw.prev_count, event_read_counter(event));
|
|
if (++data->n_active == 1)
|
|
hrtimer_start(&data->hrtimer, data->timer_interval,
|
|
HRTIMER_MODE_REL_PINNED);
|
|
}
|
|
|
|
static void rapl_pmu_event_start(struct perf_event *event, int mode)
|
|
{
|
|
struct rapl_package_pmu_data *data = event_to_pmu_data(event);
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&data->lock, flags);
|
|
__rapl_pmu_event_start(event);
|
|
raw_spin_unlock_irqrestore(&data->lock, flags);
|
|
}
|
|
|
|
static u64 rapl_event_update(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct rapl_package_pmu_data *data = event_to_pmu_data(event);
|
|
u64 prev_raw_count, new_raw_count;
|
|
s64 delta, sdelta;
|
|
|
|
/*
|
|
* Follow the generic code to drain hwc->prev_count.
|
|
* The loop is not expected to run for multiple times.
|
|
*/
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
do {
|
|
new_raw_count = event_read_counter(event);
|
|
} while (!local64_try_cmpxchg(&hwc->prev_count,
|
|
&prev_raw_count, new_raw_count));
|
|
|
|
|
|
/*
|
|
* Now we have the new raw value and have updated the prev
|
|
* timestamp already. We can now calculate the elapsed delta
|
|
* (event-)time and add that to the generic event.
|
|
*/
|
|
delta = new_raw_count - prev_raw_count;
|
|
|
|
/*
|
|
* Scale delta to smallest unit (2^-32)
|
|
* users must then scale back: count * 1/(1e9*2^32) to get Joules
|
|
* or use ldexp(count, -32).
|
|
* Watts = Joules/Time delta
|
|
*/
|
|
sdelta = delta * data->scale[event->hw.flags];
|
|
|
|
local64_add(sdelta, &event->count);
|
|
|
|
return new_raw_count;
|
|
}
|
|
|
|
static void rapl_pmu_event_stop(struct perf_event *event, int mode)
|
|
{
|
|
struct rapl_package_pmu_data *data = event_to_pmu_data(event);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&data->lock, flags);
|
|
|
|
/* Mark event as deactivated and stopped */
|
|
if (!(hwc->state & PERF_HES_STOPPED)) {
|
|
WARN_ON_ONCE(data->n_active <= 0);
|
|
if (--data->n_active == 0)
|
|
hrtimer_cancel(&data->hrtimer);
|
|
|
|
list_del(&event->active_entry);
|
|
|
|
WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
|
|
hwc->state |= PERF_HES_STOPPED;
|
|
}
|
|
|
|
/* Check if update of sw counter is necessary */
|
|
if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
|
|
/*
|
|
* Drain the remaining delta count out of a event
|
|
* that we are disabling:
|
|
*/
|
|
rapl_event_update(event);
|
|
hwc->state |= PERF_HES_UPTODATE;
|
|
}
|
|
|
|
raw_spin_unlock_irqrestore(&data->lock, flags);
|
|
}
|
|
|
|
static int rapl_pmu_event_add(struct perf_event *event, int mode)
|
|
{
|
|
struct rapl_package_pmu_data *data = event_to_pmu_data(event);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&data->lock, flags);
|
|
|
|
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
|
|
|
|
if (mode & PERF_EF_START)
|
|
__rapl_pmu_event_start(event);
|
|
|
|
raw_spin_unlock_irqrestore(&data->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rapl_pmu_event_del(struct perf_event *event, int flags)
|
|
{
|
|
rapl_pmu_event_stop(event, PERF_EF_UPDATE);
|
|
}
|
|
|
|
/* RAPL PMU event ids, same as shown in sysfs */
|
|
enum perf_rapl_events {
|
|
PERF_RAPL_PP0 = 1, /* all cores */
|
|
PERF_RAPL_PKG, /* entire package */
|
|
PERF_RAPL_RAM, /* DRAM */
|
|
PERF_RAPL_PP1, /* gpu */
|
|
PERF_RAPL_PSYS, /* psys */
|
|
PERF_RAPL_MAX
|
|
};
|
|
#define RAPL_EVENT_MASK GENMASK(7, 0)
|
|
|
|
static const int event_to_domain[PERF_RAPL_MAX] = {
|
|
[PERF_RAPL_PP0] = RAPL_DOMAIN_PP0,
|
|
[PERF_RAPL_PKG] = RAPL_DOMAIN_PACKAGE,
|
|
[PERF_RAPL_RAM] = RAPL_DOMAIN_DRAM,
|
|
[PERF_RAPL_PP1] = RAPL_DOMAIN_PP1,
|
|
[PERF_RAPL_PSYS] = RAPL_DOMAIN_PLATFORM,
|
|
};
|
|
|
|
static int rapl_pmu_event_init(struct perf_event *event)
|
|
{
|
|
struct rapl_package *pos, *rp = NULL;
|
|
u64 cfg = event->attr.config & RAPL_EVENT_MASK;
|
|
int domain, idx;
|
|
|
|
/* Only look at RAPL events */
|
|
if (event->attr.type != event->pmu->type)
|
|
return -ENOENT;
|
|
|
|
/* Check for supported events only */
|
|
if (!cfg || cfg >= PERF_RAPL_MAX)
|
|
return -EINVAL;
|
|
|
|
if (event->cpu < 0)
|
|
return -EINVAL;
|
|
|
|
/* Find out which Package the event belongs to */
|
|
list_for_each_entry(pos, &rapl_packages, plist) {
|
|
if (is_rp_pmu_cpu(pos, event->cpu)) {
|
|
rp = pos;
|
|
break;
|
|
}
|
|
}
|
|
if (!rp)
|
|
return -ENODEV;
|
|
|
|
/* Find out which RAPL Domain the event belongs to */
|
|
domain = event_to_domain[cfg];
|
|
|
|
event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
|
|
event->pmu_private = rp; /* Which package */
|
|
event->hw.flags = domain; /* Which domain */
|
|
|
|
event->hw.idx = -1;
|
|
/* Find out the index in rp->domains[] to get domain pointer */
|
|
for (idx = 0; idx < rp->nr_domains; idx++) {
|
|
if (rp->domains[idx].id == domain) {
|
|
event->hw.idx = idx;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rapl_pmu_event_read(struct perf_event *event)
|
|
{
|
|
rapl_event_update(event);
|
|
}
|
|
|
|
static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer)
|
|
{
|
|
struct rapl_package_pmu_data *data =
|
|
container_of(hrtimer, struct rapl_package_pmu_data, hrtimer);
|
|
struct perf_event *event;
|
|
unsigned long flags;
|
|
|
|
if (!data->n_active)
|
|
return HRTIMER_NORESTART;
|
|
|
|
raw_spin_lock_irqsave(&data->lock, flags);
|
|
|
|
list_for_each_entry(event, &data->active_list, active_entry)
|
|
rapl_event_update(event);
|
|
|
|
raw_spin_unlock_irqrestore(&data->lock, flags);
|
|
|
|
hrtimer_forward_now(hrtimer, data->timer_interval);
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
/* PMU sysfs attributes */
|
|
|
|
/*
|
|
* There are no default events, but we need to create "events" group (with
|
|
* empty attrs) before updating it with detected events.
|
|
*/
|
|
static struct attribute *attrs_empty[] = {
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group pmu_events_group = {
|
|
.name = "events",
|
|
.attrs = attrs_empty,
|
|
};
|
|
|
|
static ssize_t cpumask_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct rapl_package *rp;
|
|
cpumask_var_t cpu_mask;
|
|
int cpu;
|
|
int ret;
|
|
|
|
if (!alloc_cpumask_var(&cpu_mask, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
cpus_read_lock();
|
|
|
|
cpumask_clear(cpu_mask);
|
|
|
|
/* Choose a cpu for each RAPL Package */
|
|
list_for_each_entry(rp, &rapl_packages, plist) {
|
|
cpu = get_pmu_cpu(rp);
|
|
if (cpu < nr_cpu_ids)
|
|
cpumask_set_cpu(cpu, cpu_mask);
|
|
}
|
|
cpus_read_unlock();
|
|
|
|
ret = cpumap_print_to_pagebuf(true, buf, cpu_mask);
|
|
|
|
free_cpumask_var(cpu_mask);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static DEVICE_ATTR_RO(cpumask);
|
|
|
|
static struct attribute *pmu_cpumask_attrs[] = {
|
|
&dev_attr_cpumask.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group pmu_cpumask_group = {
|
|
.attrs = pmu_cpumask_attrs,
|
|
};
|
|
|
|
PMU_FORMAT_ATTR(event, "config:0-7");
|
|
static struct attribute *pmu_format_attr[] = {
|
|
&format_attr_event.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group pmu_format_group = {
|
|
.name = "format",
|
|
.attrs = pmu_format_attr,
|
|
};
|
|
|
|
static const struct attribute_group *pmu_attr_groups[] = {
|
|
&pmu_events_group,
|
|
&pmu_cpumask_group,
|
|
&pmu_format_group,
|
|
NULL
|
|
};
|
|
|
|
#define RAPL_EVENT_ATTR_STR(_name, v, str) \
|
|
static struct perf_pmu_events_attr event_attr_##v = { \
|
|
.attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
|
|
.event_str = str, \
|
|
}
|
|
|
|
RAPL_EVENT_ATTR_STR(energy-cores, rapl_cores, "event=0x01");
|
|
RAPL_EVENT_ATTR_STR(energy-pkg, rapl_pkg, "event=0x02");
|
|
RAPL_EVENT_ATTR_STR(energy-ram, rapl_ram, "event=0x03");
|
|
RAPL_EVENT_ATTR_STR(energy-gpu, rapl_gpu, "event=0x04");
|
|
RAPL_EVENT_ATTR_STR(energy-psys, rapl_psys, "event=0x05");
|
|
|
|
RAPL_EVENT_ATTR_STR(energy-cores.unit, rapl_unit_cores, "Joules");
|
|
RAPL_EVENT_ATTR_STR(energy-pkg.unit, rapl_unit_pkg, "Joules");
|
|
RAPL_EVENT_ATTR_STR(energy-ram.unit, rapl_unit_ram, "Joules");
|
|
RAPL_EVENT_ATTR_STR(energy-gpu.unit, rapl_unit_gpu, "Joules");
|
|
RAPL_EVENT_ATTR_STR(energy-psys.unit, rapl_unit_psys, "Joules");
|
|
|
|
RAPL_EVENT_ATTR_STR(energy-cores.scale, rapl_scale_cores, "2.3283064365386962890625e-10");
|
|
RAPL_EVENT_ATTR_STR(energy-pkg.scale, rapl_scale_pkg, "2.3283064365386962890625e-10");
|
|
RAPL_EVENT_ATTR_STR(energy-ram.scale, rapl_scale_ram, "2.3283064365386962890625e-10");
|
|
RAPL_EVENT_ATTR_STR(energy-gpu.scale, rapl_scale_gpu, "2.3283064365386962890625e-10");
|
|
RAPL_EVENT_ATTR_STR(energy-psys.scale, rapl_scale_psys, "2.3283064365386962890625e-10");
|
|
|
|
#define RAPL_EVENT_GROUP(_name, domain) \
|
|
static struct attribute *pmu_attr_##_name[] = { \
|
|
&event_attr_rapl_##_name.attr.attr, \
|
|
&event_attr_rapl_unit_##_name.attr.attr, \
|
|
&event_attr_rapl_scale_##_name.attr.attr, \
|
|
NULL \
|
|
}; \
|
|
static umode_t is_visible_##_name(struct kobject *kobj, struct attribute *attr, int event) \
|
|
{ \
|
|
return rapl_pmu.domain_map & BIT(domain) ? attr->mode : 0; \
|
|
} \
|
|
static struct attribute_group pmu_group_##_name = { \
|
|
.name = "events", \
|
|
.attrs = pmu_attr_##_name, \
|
|
.is_visible = is_visible_##_name, \
|
|
}
|
|
|
|
RAPL_EVENT_GROUP(cores, RAPL_DOMAIN_PP0);
|
|
RAPL_EVENT_GROUP(pkg, RAPL_DOMAIN_PACKAGE);
|
|
RAPL_EVENT_GROUP(ram, RAPL_DOMAIN_DRAM);
|
|
RAPL_EVENT_GROUP(gpu, RAPL_DOMAIN_PP1);
|
|
RAPL_EVENT_GROUP(psys, RAPL_DOMAIN_PLATFORM);
|
|
|
|
static const struct attribute_group *pmu_attr_update[] = {
|
|
&pmu_group_cores,
|
|
&pmu_group_pkg,
|
|
&pmu_group_ram,
|
|
&pmu_group_gpu,
|
|
&pmu_group_psys,
|
|
NULL
|
|
};
|
|
|
|
static int rapl_pmu_update(struct rapl_package *rp)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Return if PMU already covers all events supported by current RAPL Package */
|
|
if (rapl_pmu.registered && !(rp->domain_map & (~rapl_pmu.domain_map)))
|
|
goto end;
|
|
|
|
/* Unregister previous registered PMU */
|
|
if (rapl_pmu.registered)
|
|
perf_pmu_unregister(&rapl_pmu.pmu);
|
|
|
|
rapl_pmu.registered = false;
|
|
rapl_pmu.domain_map |= rp->domain_map;
|
|
|
|
memset(&rapl_pmu.pmu, 0, sizeof(struct pmu));
|
|
rapl_pmu.pmu.attr_groups = pmu_attr_groups;
|
|
rapl_pmu.pmu.attr_update = pmu_attr_update;
|
|
rapl_pmu.pmu.task_ctx_nr = perf_invalid_context;
|
|
rapl_pmu.pmu.event_init = rapl_pmu_event_init;
|
|
rapl_pmu.pmu.add = rapl_pmu_event_add;
|
|
rapl_pmu.pmu.del = rapl_pmu_event_del;
|
|
rapl_pmu.pmu.start = rapl_pmu_event_start;
|
|
rapl_pmu.pmu.stop = rapl_pmu_event_stop;
|
|
rapl_pmu.pmu.read = rapl_pmu_event_read;
|
|
rapl_pmu.pmu.module = THIS_MODULE;
|
|
rapl_pmu.pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT;
|
|
ret = perf_pmu_register(&rapl_pmu.pmu, "power", -1);
|
|
if (ret) {
|
|
pr_info("Failed to register PMU\n");
|
|
return ret;
|
|
}
|
|
|
|
rapl_pmu.registered = true;
|
|
end:
|
|
rp->has_pmu = true;
|
|
return ret;
|
|
}
|
|
|
|
int rapl_package_add_pmu(struct rapl_package *rp)
|
|
{
|
|
struct rapl_package_pmu_data *data = &rp->pmu_data;
|
|
int idx;
|
|
|
|
if (rp->has_pmu)
|
|
return -EEXIST;
|
|
|
|
guard(cpus_read_lock)();
|
|
|
|
for (idx = 0; idx < rp->nr_domains; idx++) {
|
|
struct rapl_domain *rd = &rp->domains[idx];
|
|
int domain = rd->id;
|
|
u64 val;
|
|
|
|
if (!test_bit(domain, &rp->domain_map))
|
|
continue;
|
|
|
|
/*
|
|
* The RAPL PMU granularity is 2^-32 Joules
|
|
* data->scale[]: times of 2^-32 Joules for each ENERGY COUNTER increase
|
|
*/
|
|
val = rd->energy_unit * (1ULL << 32);
|
|
do_div(val, ENERGY_UNIT_SCALE * 1000000);
|
|
data->scale[domain] = val;
|
|
|
|
if (!rapl_pmu.timer_ms) {
|
|
struct rapl_primitive_info *rpi = get_rpi(rp, ENERGY_COUNTER);
|
|
|
|
/*
|
|
* Calculate the timer rate:
|
|
* Use reference of 200W for scaling the timeout to avoid counter
|
|
* overflows.
|
|
*
|
|
* max_count = rpi->mask >> rpi->shift + 1
|
|
* max_energy_pj = max_count * rd->energy_unit
|
|
* max_time_sec = (max_energy_pj / 1000000000) / 200w
|
|
*
|
|
* rapl_pmu.timer_ms = max_time_sec * 1000 / 2
|
|
*/
|
|
val = (rpi->mask >> rpi->shift) + 1;
|
|
val *= rd->energy_unit;
|
|
do_div(val, 1000000 * 200 * 2);
|
|
rapl_pmu.timer_ms = val;
|
|
|
|
pr_debug("%llu ms overflow timer\n", rapl_pmu.timer_ms);
|
|
}
|
|
|
|
pr_debug("Domain %s: hw unit %lld * 2^-32 Joules\n", rd->name, data->scale[domain]);
|
|
}
|
|
|
|
/* Initialize per package PMU data */
|
|
raw_spin_lock_init(&data->lock);
|
|
INIT_LIST_HEAD(&data->active_list);
|
|
data->timer_interval = ms_to_ktime(rapl_pmu.timer_ms);
|
|
hrtimer_init(&data->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
data->hrtimer.function = rapl_hrtimer_handle;
|
|
|
|
return rapl_pmu_update(rp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rapl_package_add_pmu);
|
|
|
|
void rapl_package_remove_pmu(struct rapl_package *rp)
|
|
{
|
|
struct rapl_package *pos;
|
|
|
|
if (!rp->has_pmu)
|
|
return;
|
|
|
|
guard(cpus_read_lock)();
|
|
|
|
list_for_each_entry(pos, &rapl_packages, plist) {
|
|
/* PMU is still needed */
|
|
if (pos->has_pmu && pos != rp)
|
|
return;
|
|
}
|
|
|
|
perf_pmu_unregister(&rapl_pmu.pmu);
|
|
memset(&rapl_pmu, 0, sizeof(struct rapl_pmu));
|
|
}
|
|
EXPORT_SYMBOL_GPL(rapl_package_remove_pmu);
|
|
#endif
|
|
|
|
/* called from CPU hotplug notifier, hotplug lock held */
|
|
void rapl_remove_package_cpuslocked(struct rapl_package *rp)
|
|
{
|
|
struct rapl_domain *rd, *rd_package = NULL;
|
|
|
|
package_power_limit_irq_restore(rp);
|
|
|
|
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
|
|
int i;
|
|
|
|
for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
|
|
rapl_write_pl_data(rd, i, PL_ENABLE, 0);
|
|
rapl_write_pl_data(rd, i, PL_CLAMP, 0);
|
|
}
|
|
|
|
if (rd->id == RAPL_DOMAIN_PACKAGE) {
|
|
rd_package = rd;
|
|
continue;
|
|
}
|
|
pr_debug("remove package, undo power limit on %s: %s\n",
|
|
rp->name, rd->name);
|
|
powercap_unregister_zone(rp->priv->control_type,
|
|
&rd->power_zone);
|
|
}
|
|
/* do parent zone last */
|
|
powercap_unregister_zone(rp->priv->control_type,
|
|
&rd_package->power_zone);
|
|
list_del(&rp->plist);
|
|
kfree(rp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
|
|
|
|
void rapl_remove_package(struct rapl_package *rp)
|
|
{
|
|
guard(cpus_read_lock)();
|
|
rapl_remove_package_cpuslocked(rp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rapl_remove_package);
|
|
|
|
/*
|
|
* RAPL Package energy counter scope:
|
|
* 1. AMD/HYGON platforms use per-PKG package energy counter
|
|
* 2. For Intel platforms
|
|
* 2.1 CLX-AP platform has per-DIE package energy counter
|
|
* 2.2 Other platforms that uses MSR RAPL are single die systems so the
|
|
* package energy counter can be considered as per-PKG/per-DIE,
|
|
* here it is considered as per-DIE.
|
|
* 2.3 New platforms that use TPMI RAPL doesn't care about the
|
|
* scope because they are not MSR/CPU based.
|
|
*/
|
|
#define rapl_msrs_are_pkg_scope() \
|
|
(boot_cpu_data.x86_vendor == X86_VENDOR_AMD || \
|
|
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
|
|
|
|
/* caller to ensure CPU hotplug lock is held */
|
|
struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
|
|
bool id_is_cpu)
|
|
{
|
|
struct rapl_package *rp;
|
|
int uid;
|
|
|
|
if (id_is_cpu) {
|
|
uid = rapl_msrs_are_pkg_scope() ?
|
|
topology_physical_package_id(id) : topology_logical_die_id(id);
|
|
if (uid < 0) {
|
|
pr_err("topology_logical_(package/die)_id() returned a negative value");
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
uid = id;
|
|
|
|
list_for_each_entry(rp, &rapl_packages, plist) {
|
|
if (rp->id == uid
|
|
&& rp->priv->control_type == priv->control_type)
|
|
return rp;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
|
|
|
|
struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
|
|
{
|
|
guard(cpus_read_lock)();
|
|
return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rapl_find_package_domain);
|
|
|
|
/* called from CPU hotplug notifier, hotplug lock held */
|
|
struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
|
|
{
|
|
struct rapl_package *rp;
|
|
int ret;
|
|
|
|
rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
|
|
if (!rp)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (id_is_cpu) {
|
|
rp->id = rapl_msrs_are_pkg_scope() ?
|
|
topology_physical_package_id(id) : topology_logical_die_id(id);
|
|
if ((int)(rp->id) < 0) {
|
|
pr_err("topology_logical_(package/die)_id() returned a negative value");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
rp->lead_cpu = id;
|
|
if (!rapl_msrs_are_pkg_scope() && topology_max_dies_per_package() > 1)
|
|
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
|
|
topology_physical_package_id(id), topology_die_id(id));
|
|
else
|
|
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
|
|
topology_physical_package_id(id));
|
|
} else {
|
|
rp->id = id;
|
|
rp->lead_cpu = -1;
|
|
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
|
|
}
|
|
|
|
rp->priv = priv;
|
|
ret = rapl_config(rp);
|
|
if (ret)
|
|
goto err_free_package;
|
|
|
|
/* check if the package contains valid domains */
|
|
if (rapl_detect_domains(rp)) {
|
|
ret = -ENODEV;
|
|
goto err_free_package;
|
|
}
|
|
ret = rapl_package_register_powercap(rp);
|
|
if (!ret) {
|
|
INIT_LIST_HEAD(&rp->plist);
|
|
list_add(&rp->plist, &rapl_packages);
|
|
return rp;
|
|
}
|
|
|
|
err_free_package:
|
|
kfree(rp->domains);
|
|
kfree(rp);
|
|
return ERR_PTR(ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
|
|
|
|
struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
|
|
{
|
|
guard(cpus_read_lock)();
|
|
return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rapl_add_package);
|
|
|
|
static void power_limit_state_save(void)
|
|
{
|
|
struct rapl_package *rp;
|
|
struct rapl_domain *rd;
|
|
int ret, i;
|
|
|
|
cpus_read_lock();
|
|
list_for_each_entry(rp, &rapl_packages, plist) {
|
|
if (!rp->power_zone)
|
|
continue;
|
|
rd = power_zone_to_rapl_domain(rp->power_zone);
|
|
for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
|
|
ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
|
|
&rd->rpl[i].last_power_limit);
|
|
if (ret)
|
|
rd->rpl[i].last_power_limit = 0;
|
|
}
|
|
}
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
static void power_limit_state_restore(void)
|
|
{
|
|
struct rapl_package *rp;
|
|
struct rapl_domain *rd;
|
|
int i;
|
|
|
|
cpus_read_lock();
|
|
list_for_each_entry(rp, &rapl_packages, plist) {
|
|
if (!rp->power_zone)
|
|
continue;
|
|
rd = power_zone_to_rapl_domain(rp->power_zone);
|
|
for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
|
|
if (rd->rpl[i].last_power_limit)
|
|
rapl_write_pl_data(rd, i, PL_LIMIT,
|
|
rd->rpl[i].last_power_limit);
|
|
}
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
static int rapl_pm_callback(struct notifier_block *nb,
|
|
unsigned long mode, void *_unused)
|
|
{
|
|
switch (mode) {
|
|
case PM_SUSPEND_PREPARE:
|
|
power_limit_state_save();
|
|
break;
|
|
case PM_POST_SUSPEND:
|
|
power_limit_state_restore();
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block rapl_pm_notifier = {
|
|
.notifier_call = rapl_pm_callback,
|
|
};
|
|
|
|
static struct platform_device *rapl_msr_platdev;
|
|
|
|
static int __init rapl_init(void)
|
|
{
|
|
const struct x86_cpu_id *id;
|
|
int ret;
|
|
|
|
id = x86_match_cpu(rapl_ids);
|
|
if (id) {
|
|
defaults_msr = (struct rapl_defaults *)id->driver_data;
|
|
|
|
rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
|
|
if (!rapl_msr_platdev)
|
|
return -ENOMEM;
|
|
|
|
ret = platform_device_add(rapl_msr_platdev);
|
|
if (ret) {
|
|
platform_device_put(rapl_msr_platdev);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = register_pm_notifier(&rapl_pm_notifier);
|
|
if (ret && rapl_msr_platdev) {
|
|
platform_device_del(rapl_msr_platdev);
|
|
platform_device_put(rapl_msr_platdev);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit rapl_exit(void)
|
|
{
|
|
platform_device_unregister(rapl_msr_platdev);
|
|
unregister_pm_notifier(&rapl_pm_notifier);
|
|
}
|
|
|
|
fs_initcall(rapl_init);
|
|
module_exit(rapl_exit);
|
|
|
|
MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
|
|
MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
|
|
MODULE_LICENSE("GPL v2");
|