linux-stable/drivers/rtc/rtc-tegra.c
Bartosz Golaszewski fdcfd85433 rtc: rework rtc_register_device() resource management
rtc_register_device() is a managed interface but it doesn't use devres
by itself - instead it marks an rtc_device as "registered" and the devres
callback for devm_rtc_allocate_device() takes care of resource release.

This doesn't correspond with the design behind devres where managed
structures should not be aware of being managed. The correct solution
here is to register a separate devres callback for unregistering the
device.

While at it: rename rtc_register_device() to devm_rtc_register_device()
and add it to the list of managed interfaces in devres.rst. This way we
can avoid any potential confusion of driver developers who may expect
there to exist a corresponding unregister function.

Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201109163409.24301-8-brgl@bgdev.pl
2020-11-19 12:50:12 +01:00

417 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* An RTC driver for the NVIDIA Tegra 200 series internal RTC.
*
* Copyright (c) 2010-2019, NVIDIA Corporation.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/rtc.h>
#include <linux/slab.h>
/* Set to 1 = busy every eight 32 kHz clocks during copy of sec+msec to AHB. */
#define TEGRA_RTC_REG_BUSY 0x004
#define TEGRA_RTC_REG_SECONDS 0x008
/* When msec is read, the seconds are buffered into shadow seconds. */
#define TEGRA_RTC_REG_SHADOW_SECONDS 0x00c
#define TEGRA_RTC_REG_MILLI_SECONDS 0x010
#define TEGRA_RTC_REG_SECONDS_ALARM0 0x014
#define TEGRA_RTC_REG_SECONDS_ALARM1 0x018
#define TEGRA_RTC_REG_MILLI_SECONDS_ALARM0 0x01c
#define TEGRA_RTC_REG_INTR_MASK 0x028
/* write 1 bits to clear status bits */
#define TEGRA_RTC_REG_INTR_STATUS 0x02c
/* bits in INTR_MASK */
#define TEGRA_RTC_INTR_MASK_MSEC_CDN_ALARM (1<<4)
#define TEGRA_RTC_INTR_MASK_SEC_CDN_ALARM (1<<3)
#define TEGRA_RTC_INTR_MASK_MSEC_ALARM (1<<2)
#define TEGRA_RTC_INTR_MASK_SEC_ALARM1 (1<<1)
#define TEGRA_RTC_INTR_MASK_SEC_ALARM0 (1<<0)
/* bits in INTR_STATUS */
#define TEGRA_RTC_INTR_STATUS_MSEC_CDN_ALARM (1<<4)
#define TEGRA_RTC_INTR_STATUS_SEC_CDN_ALARM (1<<3)
#define TEGRA_RTC_INTR_STATUS_MSEC_ALARM (1<<2)
#define TEGRA_RTC_INTR_STATUS_SEC_ALARM1 (1<<1)
#define TEGRA_RTC_INTR_STATUS_SEC_ALARM0 (1<<0)
struct tegra_rtc_info {
struct platform_device *pdev;
struct rtc_device *rtc;
void __iomem *base; /* NULL if not initialized */
struct clk *clk;
int irq; /* alarm and periodic IRQ */
spinlock_t lock;
};
/*
* RTC hardware is busy when it is updating its values over AHB once every
* eight 32 kHz clocks (~250 us). Outside of these updates the CPU is free to
* write. CPU is always free to read.
*/
static inline u32 tegra_rtc_check_busy(struct tegra_rtc_info *info)
{
return readl(info->base + TEGRA_RTC_REG_BUSY) & 1;
}
/*
* Wait for hardware to be ready for writing. This function tries to maximize
* the amount of time before the next update. It does this by waiting for the
* RTC to become busy with its periodic update, then returning once the RTC
* first becomes not busy.
*
* This periodic update (where the seconds and milliseconds are copied to the
* AHB side) occurs every eight 32 kHz clocks (~250 us). The behavior of this
* function allows us to make some assumptions without introducing a race,
* because 250 us is plenty of time to read/write a value.
*/
static int tegra_rtc_wait_while_busy(struct device *dev)
{
struct tegra_rtc_info *info = dev_get_drvdata(dev);
int retries = 500; /* ~490 us is the worst case, ~250 us is best */
/*
* First wait for the RTC to become busy. This is when it posts its
* updated seconds+msec registers to AHB side.
*/
while (tegra_rtc_check_busy(info)) {
if (!retries--)
goto retry_failed;
udelay(1);
}
/* now we have about 250 us to manipulate registers */
return 0;
retry_failed:
dev_err(dev, "write failed: retry count exceeded\n");
return -ETIMEDOUT;
}
static int tegra_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct tegra_rtc_info *info = dev_get_drvdata(dev);
unsigned long flags;
u32 sec;
/*
* RTC hardware copies seconds to shadow seconds when a read of
* milliseconds occurs. use a lock to keep other threads out.
*/
spin_lock_irqsave(&info->lock, flags);
readl(info->base + TEGRA_RTC_REG_MILLI_SECONDS);
sec = readl(info->base + TEGRA_RTC_REG_SHADOW_SECONDS);
spin_unlock_irqrestore(&info->lock, flags);
rtc_time64_to_tm(sec, tm);
dev_vdbg(dev, "time read as %u, %ptR\n", sec, tm);
return 0;
}
static int tegra_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct tegra_rtc_info *info = dev_get_drvdata(dev);
u32 sec;
int ret;
/* convert tm to seconds */
sec = rtc_tm_to_time64(tm);
dev_vdbg(dev, "time set to %u, %ptR\n", sec, tm);
/* seconds only written if wait succeeded */
ret = tegra_rtc_wait_while_busy(dev);
if (!ret)
writel(sec, info->base + TEGRA_RTC_REG_SECONDS);
dev_vdbg(dev, "time read back as %d\n",
readl(info->base + TEGRA_RTC_REG_SECONDS));
return ret;
}
static int tegra_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct tegra_rtc_info *info = dev_get_drvdata(dev);
u32 sec, value;
sec = readl(info->base + TEGRA_RTC_REG_SECONDS_ALARM0);
if (sec == 0) {
/* alarm is disabled */
alarm->enabled = 0;
} else {
/* alarm is enabled */
alarm->enabled = 1;
rtc_time64_to_tm(sec, &alarm->time);
}
value = readl(info->base + TEGRA_RTC_REG_INTR_STATUS);
alarm->pending = (value & TEGRA_RTC_INTR_STATUS_SEC_ALARM0) != 0;
return 0;
}
static int tegra_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct tegra_rtc_info *info = dev_get_drvdata(dev);
unsigned long flags;
u32 status;
tegra_rtc_wait_while_busy(dev);
spin_lock_irqsave(&info->lock, flags);
/* read the original value, and OR in the flag */
status = readl(info->base + TEGRA_RTC_REG_INTR_MASK);
if (enabled)
status |= TEGRA_RTC_INTR_MASK_SEC_ALARM0; /* set it */
else
status &= ~TEGRA_RTC_INTR_MASK_SEC_ALARM0; /* clear it */
writel(status, info->base + TEGRA_RTC_REG_INTR_MASK);
spin_unlock_irqrestore(&info->lock, flags);
return 0;
}
static int tegra_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct tegra_rtc_info *info = dev_get_drvdata(dev);
u32 sec;
if (alarm->enabled)
sec = rtc_tm_to_time64(&alarm->time);
else
sec = 0;
tegra_rtc_wait_while_busy(dev);
writel(sec, info->base + TEGRA_RTC_REG_SECONDS_ALARM0);
dev_vdbg(dev, "alarm read back as %d\n",
readl(info->base + TEGRA_RTC_REG_SECONDS_ALARM0));
/* if successfully written and alarm is enabled ... */
if (sec) {
tegra_rtc_alarm_irq_enable(dev, 1);
dev_vdbg(dev, "alarm set as %u, %ptR\n", sec, &alarm->time);
} else {
/* disable alarm if 0 or write error */
dev_vdbg(dev, "alarm disabled\n");
tegra_rtc_alarm_irq_enable(dev, 0);
}
return 0;
}
static int tegra_rtc_proc(struct device *dev, struct seq_file *seq)
{
if (!dev || !dev->driver)
return 0;
seq_printf(seq, "name\t\t: %s\n", dev_name(dev));
return 0;
}
static irqreturn_t tegra_rtc_irq_handler(int irq, void *data)
{
struct device *dev = data;
struct tegra_rtc_info *info = dev_get_drvdata(dev);
unsigned long events = 0, flags;
u32 status;
status = readl(info->base + TEGRA_RTC_REG_INTR_STATUS);
if (status) {
/* clear the interrupt masks and status on any IRQ */
tegra_rtc_wait_while_busy(dev);
spin_lock_irqsave(&info->lock, flags);
writel(0, info->base + TEGRA_RTC_REG_INTR_MASK);
writel(status, info->base + TEGRA_RTC_REG_INTR_STATUS);
spin_unlock_irqrestore(&info->lock, flags);
}
/* check if alarm */
if (status & TEGRA_RTC_INTR_STATUS_SEC_ALARM0)
events |= RTC_IRQF | RTC_AF;
/* check if periodic */
if (status & TEGRA_RTC_INTR_STATUS_SEC_CDN_ALARM)
events |= RTC_IRQF | RTC_PF;
rtc_update_irq(info->rtc, 1, events);
return IRQ_HANDLED;
}
static const struct rtc_class_ops tegra_rtc_ops = {
.read_time = tegra_rtc_read_time,
.set_time = tegra_rtc_set_time,
.read_alarm = tegra_rtc_read_alarm,
.set_alarm = tegra_rtc_set_alarm,
.proc = tegra_rtc_proc,
.alarm_irq_enable = tegra_rtc_alarm_irq_enable,
};
static const struct of_device_id tegra_rtc_dt_match[] = {
{ .compatible = "nvidia,tegra20-rtc", },
{}
};
MODULE_DEVICE_TABLE(of, tegra_rtc_dt_match);
static int tegra_rtc_probe(struct platform_device *pdev)
{
struct tegra_rtc_info *info;
int ret;
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(info->base))
return PTR_ERR(info->base);
ret = platform_get_irq(pdev, 0);
if (ret <= 0)
return ret;
info->irq = ret;
info->rtc = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(info->rtc))
return PTR_ERR(info->rtc);
info->rtc->ops = &tegra_rtc_ops;
info->rtc->range_max = U32_MAX;
info->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(info->clk))
return PTR_ERR(info->clk);
ret = clk_prepare_enable(info->clk);
if (ret < 0)
return ret;
/* set context info */
info->pdev = pdev;
spin_lock_init(&info->lock);
platform_set_drvdata(pdev, info);
/* clear out the hardware */
writel(0, info->base + TEGRA_RTC_REG_SECONDS_ALARM0);
writel(0xffffffff, info->base + TEGRA_RTC_REG_INTR_STATUS);
writel(0, info->base + TEGRA_RTC_REG_INTR_MASK);
device_init_wakeup(&pdev->dev, 1);
ret = devm_request_irq(&pdev->dev, info->irq, tegra_rtc_irq_handler,
IRQF_TRIGGER_HIGH, dev_name(&pdev->dev),
&pdev->dev);
if (ret) {
dev_err(&pdev->dev, "failed to request interrupt: %d\n", ret);
goto disable_clk;
}
ret = devm_rtc_register_device(info->rtc);
if (ret)
goto disable_clk;
dev_notice(&pdev->dev, "Tegra internal Real Time Clock\n");
return 0;
disable_clk:
clk_disable_unprepare(info->clk);
return ret;
}
static int tegra_rtc_remove(struct platform_device *pdev)
{
struct tegra_rtc_info *info = platform_get_drvdata(pdev);
clk_disable_unprepare(info->clk);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int tegra_rtc_suspend(struct device *dev)
{
struct tegra_rtc_info *info = dev_get_drvdata(dev);
tegra_rtc_wait_while_busy(dev);
/* only use ALARM0 as a wake source */
writel(0xffffffff, info->base + TEGRA_RTC_REG_INTR_STATUS);
writel(TEGRA_RTC_INTR_STATUS_SEC_ALARM0,
info->base + TEGRA_RTC_REG_INTR_MASK);
dev_vdbg(dev, "alarm sec = %d\n",
readl(info->base + TEGRA_RTC_REG_SECONDS_ALARM0));
dev_vdbg(dev, "Suspend (device_may_wakeup=%d) IRQ:%d\n",
device_may_wakeup(dev), info->irq);
/* leave the alarms on as a wake source */
if (device_may_wakeup(dev))
enable_irq_wake(info->irq);
return 0;
}
static int tegra_rtc_resume(struct device *dev)
{
struct tegra_rtc_info *info = dev_get_drvdata(dev);
dev_vdbg(dev, "Resume (device_may_wakeup=%d)\n",
device_may_wakeup(dev));
/* alarms were left on as a wake source, turn them off */
if (device_may_wakeup(dev))
disable_irq_wake(info->irq);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(tegra_rtc_pm_ops, tegra_rtc_suspend, tegra_rtc_resume);
static void tegra_rtc_shutdown(struct platform_device *pdev)
{
dev_vdbg(&pdev->dev, "disabling interrupts\n");
tegra_rtc_alarm_irq_enable(&pdev->dev, 0);
}
static struct platform_driver tegra_rtc_driver = {
.probe = tegra_rtc_probe,
.remove = tegra_rtc_remove,
.shutdown = tegra_rtc_shutdown,
.driver = {
.name = "tegra_rtc",
.of_match_table = tegra_rtc_dt_match,
.pm = &tegra_rtc_pm_ops,
},
};
module_platform_driver(tegra_rtc_driver);
MODULE_AUTHOR("Jon Mayo <jmayo@nvidia.com>");
MODULE_DESCRIPTION("driver for Tegra internal RTC");
MODULE_LICENSE("GPL");