mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 02:36:02 +00:00
9388637270
<tldr> skb network header of the single-tagged vlan packet continues to point the vlan payload (e.g. IP) after second vlan tag is pushed by tc act_vlan. This causes problem at the dissector which expects double-tagged packet network header to point to the inner vlan. The fix is to adjust network header in tcf_act_vlan.c but requires refactoring of skb_vlan_push function. </tldr> Consider the following shell script snippet configuring TC rules on the veth interface: ip link add veth0 type veth peer veth1 ip link set veth0 up ip link set veth1 up tc qdisc add dev veth0 clsact tc filter add dev veth0 ingress pref 10 chain 0 flower \ num_of_vlans 2 cvlan_ethtype 0x800 action goto chain 5 tc filter add dev veth0 ingress pref 20 chain 0 flower \ num_of_vlans 1 action vlan push id 100 \ protocol 0x8100 action goto chain 5 tc filter add dev veth0 ingress pref 30 chain 5 flower \ num_of_vlans 2 cvlan_ethtype 0x800 action simple sdata "success" Sending double-tagged vlan packet with the IP payload inside: cat <<ENDS | text2pcap - - | tcpreplay -i veth1 - 0000 00 00 00 00 00 11 00 00 00 00 00 22 81 00 00 64 ..........."...d 0010 81 00 00 14 08 00 45 04 00 26 04 d2 00 00 7f 11 ......E..&...... 0020 18 ef 0a 00 00 01 14 00 00 02 00 00 00 00 00 12 ................ 0030 e1 c7 00 00 00 00 00 00 00 00 00 00 ............ ENDS will match rule 10, goto rule 30 in chain 5 and correctly emit "success" to the dmesg. OTOH, sending single-tagged vlan packet: cat <<ENDS | text2pcap - - | tcpreplay -i veth1 - 0000 00 00 00 00 00 11 00 00 00 00 00 22 81 00 00 14 ...........".... 0010 08 00 45 04 00 2a 04 d2 00 00 7f 11 18 eb 0a 00 ..E..*.......... 0020 00 01 14 00 00 02 00 00 00 00 00 16 e1 bf 00 00 ................ 0030 00 00 00 00 00 00 00 00 00 00 00 00 ............ ENDS will match rule 20, will push the second vlan tag but will *not* match rule 30. IOW, the match at rule 30 fails if the second vlan was freshly pushed by the kernel. Lets look at __skb_flow_dissect working on the double-tagged vlan packet. Here is the relevant code from around net/core/flow_dissector.c:1277 copy-pasted here for convenience: if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX && skb && skb_vlan_tag_present(skb)) { proto = skb->protocol; } else { vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan); if (!vlan) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } proto = vlan->h_vlan_encapsulated_proto; nhoff += sizeof(*vlan); } The "else" clause above gets the protocol of the encapsulated packet from the skb data at the network header location. printk debugging has showed that in the good double-tagged packet case proto is htons(0x800 == ETH_P_IP) as expected. However in the single-tagged packet case proto is garbage leading to the failure to match tc filter 30. proto is being set from the skb header pointed by nhoff parameter which is defined at the beginning of __skb_flow_dissect (net/core/flow_dissector.c:1055 in the current version): nhoff = skb_network_offset(skb); Therefore the culprit seems to be that the skb network offset is different between double-tagged packet received from the interface and single-tagged packet having its vlan tag pushed by TC. Lets look at the interesting points of the lifetime of the single/double tagged packets as they traverse our packet flow. Both of them will start at __netif_receive_skb_core where the first vlan tag will be stripped: if (eth_type_vlan(skb->protocol)) { skb = skb_vlan_untag(skb); if (unlikely(!skb)) goto out; } At this stage in double-tagged case skb->data points to the second vlan tag while in single-tagged case skb->data points to the network (eg. IP) header. Looking at TC vlan push action (net/sched/act_vlan.c) we have the following code at tcf_vlan_act (interesting points are in square brackets): if (skb_at_tc_ingress(skb)) [1] skb_push_rcsum(skb, skb->mac_len); .... case TCA_VLAN_ACT_PUSH: err = skb_vlan_push(skb, p->tcfv_push_proto, p->tcfv_push_vid | (p->tcfv_push_prio << VLAN_PRIO_SHIFT), 0); if (err) goto drop; break; .... out: if (skb_at_tc_ingress(skb)) [3] skb_pull_rcsum(skb, skb->mac_len); And skb_vlan_push (net/core/skbuff.c:6204) function does: err = __vlan_insert_tag(skb, skb->vlan_proto, skb_vlan_tag_get(skb)); if (err) return err; skb->protocol = skb->vlan_proto; [2] skb->mac_len += VLAN_HLEN; in the case of pushing the second tag. Lets look at what happens with skb->data of the single-tagged packet at each of the above points: 1. As a result of the skb_push_rcsum, skb->data is moved back to the start of the packet. 2. First VLAN tag is moved from the skb into packet buffer, skb->mac_len is incremented, skb->data still points to the start of the packet. 3. As a result of the skb_pull_rcsum, skb->data is moved forward by the modified skb->mac_len, thus pointing to the network header again. Then __skb_flow_dissect will get confused by having double-tagged vlan packet with the skb->data at the network header. The solution for the bug is to preserve "skb->data at second vlan header" semantics in the skb_vlan_push function. We do this by manipulating skb->network_header rather than skb->mac_len. skb_vlan_push callers are updated to do skb_reset_mac_len. Signed-off-by: Boris Sukholitko <boris.sukholitko@broadcom.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
1730 lines
42 KiB
C
1730 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2007-2017 Nicira, Inc.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/skbuff.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/openvswitch.h>
|
|
#include <linux/sctp.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/in6.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <net/dst.h>
|
|
#include <net/gso.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/ip6_fib.h>
|
|
#include <net/checksum.h>
|
|
#include <net/dsfield.h>
|
|
#include <net/mpls.h>
|
|
|
|
#if IS_ENABLED(CONFIG_PSAMPLE)
|
|
#include <net/psample.h>
|
|
#endif
|
|
|
|
#include <net/sctp/checksum.h>
|
|
|
|
#include "datapath.h"
|
|
#include "drop.h"
|
|
#include "flow.h"
|
|
#include "conntrack.h"
|
|
#include "vport.h"
|
|
#include "flow_netlink.h"
|
|
#include "openvswitch_trace.h"
|
|
|
|
struct deferred_action {
|
|
struct sk_buff *skb;
|
|
const struct nlattr *actions;
|
|
int actions_len;
|
|
|
|
/* Store pkt_key clone when creating deferred action. */
|
|
struct sw_flow_key pkt_key;
|
|
};
|
|
|
|
#define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
|
|
struct ovs_frag_data {
|
|
unsigned long dst;
|
|
struct vport *vport;
|
|
struct ovs_skb_cb cb;
|
|
__be16 inner_protocol;
|
|
u16 network_offset; /* valid only for MPLS */
|
|
u16 vlan_tci;
|
|
__be16 vlan_proto;
|
|
unsigned int l2_len;
|
|
u8 mac_proto;
|
|
u8 l2_data[MAX_L2_LEN];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
|
|
|
|
#define DEFERRED_ACTION_FIFO_SIZE 10
|
|
#define OVS_RECURSION_LIMIT 5
|
|
#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
|
|
struct action_fifo {
|
|
int head;
|
|
int tail;
|
|
/* Deferred action fifo queue storage. */
|
|
struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
|
|
};
|
|
|
|
struct action_flow_keys {
|
|
struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
|
|
};
|
|
|
|
static struct action_fifo __percpu *action_fifos;
|
|
static struct action_flow_keys __percpu *flow_keys;
|
|
static DEFINE_PER_CPU(int, exec_actions_level);
|
|
|
|
/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
|
|
* space. Return NULL if out of key spaces.
|
|
*/
|
|
static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
|
|
{
|
|
struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
|
|
int level = this_cpu_read(exec_actions_level);
|
|
struct sw_flow_key *key = NULL;
|
|
|
|
if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
|
|
key = &keys->key[level - 1];
|
|
*key = *key_;
|
|
}
|
|
|
|
return key;
|
|
}
|
|
|
|
static void action_fifo_init(struct action_fifo *fifo)
|
|
{
|
|
fifo->head = 0;
|
|
fifo->tail = 0;
|
|
}
|
|
|
|
static bool action_fifo_is_empty(const struct action_fifo *fifo)
|
|
{
|
|
return (fifo->head == fifo->tail);
|
|
}
|
|
|
|
static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
|
|
{
|
|
if (action_fifo_is_empty(fifo))
|
|
return NULL;
|
|
|
|
return &fifo->fifo[fifo->tail++];
|
|
}
|
|
|
|
static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
|
|
{
|
|
if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
|
|
return NULL;
|
|
|
|
return &fifo->fifo[fifo->head++];
|
|
}
|
|
|
|
/* Return true if fifo is not full */
|
|
static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
|
|
const struct sw_flow_key *key,
|
|
const struct nlattr *actions,
|
|
const int actions_len)
|
|
{
|
|
struct action_fifo *fifo;
|
|
struct deferred_action *da;
|
|
|
|
fifo = this_cpu_ptr(action_fifos);
|
|
da = action_fifo_put(fifo);
|
|
if (da) {
|
|
da->skb = skb;
|
|
da->actions = actions;
|
|
da->actions_len = actions_len;
|
|
da->pkt_key = *key;
|
|
}
|
|
|
|
return da;
|
|
}
|
|
|
|
static void invalidate_flow_key(struct sw_flow_key *key)
|
|
{
|
|
key->mac_proto |= SW_FLOW_KEY_INVALID;
|
|
}
|
|
|
|
static bool is_flow_key_valid(const struct sw_flow_key *key)
|
|
{
|
|
return !(key->mac_proto & SW_FLOW_KEY_INVALID);
|
|
}
|
|
|
|
static int clone_execute(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
u32 recirc_id,
|
|
const struct nlattr *actions, int len,
|
|
bool last, bool clone_flow_key);
|
|
|
|
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *attr, int len);
|
|
|
|
static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
|
|
__be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
|
|
{
|
|
int err;
|
|
|
|
err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!mac_len)
|
|
key->mac_proto = MAC_PROTO_NONE;
|
|
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const __be16 ethertype)
|
|
{
|
|
int err;
|
|
|
|
err = skb_mpls_pop(skb, ethertype, skb->mac_len,
|
|
ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
|
|
if (err)
|
|
return err;
|
|
|
|
if (ethertype == htons(ETH_P_TEB))
|
|
key->mac_proto = MAC_PROTO_ETHERNET;
|
|
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const __be32 *mpls_lse, const __be32 *mask)
|
|
{
|
|
struct mpls_shim_hdr *stack;
|
|
__be32 lse;
|
|
int err;
|
|
|
|
if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
|
|
return -ENOMEM;
|
|
|
|
stack = mpls_hdr(skb);
|
|
lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
|
|
err = skb_mpls_update_lse(skb, lse);
|
|
if (err)
|
|
return err;
|
|
|
|
flow_key->mpls.lse[0] = lse;
|
|
return 0;
|
|
}
|
|
|
|
static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int err;
|
|
|
|
err = skb_vlan_pop(skb);
|
|
if (skb_vlan_tag_present(skb)) {
|
|
invalidate_flow_key(key);
|
|
} else {
|
|
key->eth.vlan.tci = 0;
|
|
key->eth.vlan.tpid = 0;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const struct ovs_action_push_vlan *vlan)
|
|
{
|
|
int err;
|
|
|
|
if (skb_vlan_tag_present(skb)) {
|
|
invalidate_flow_key(key);
|
|
} else {
|
|
key->eth.vlan.tci = vlan->vlan_tci;
|
|
key->eth.vlan.tpid = vlan->vlan_tpid;
|
|
}
|
|
err = skb_vlan_push(skb, vlan->vlan_tpid,
|
|
ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
|
|
skb_reset_mac_len(skb);
|
|
return err;
|
|
}
|
|
|
|
/* 'src' is already properly masked. */
|
|
static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
|
|
{
|
|
u16 *dst = (u16 *)dst_;
|
|
const u16 *src = (const u16 *)src_;
|
|
const u16 *mask = (const u16 *)mask_;
|
|
|
|
OVS_SET_MASKED(dst[0], src[0], mask[0]);
|
|
OVS_SET_MASKED(dst[1], src[1], mask[1]);
|
|
OVS_SET_MASKED(dst[2], src[2], mask[2]);
|
|
}
|
|
|
|
static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_ethernet *key,
|
|
const struct ovs_key_ethernet *mask)
|
|
{
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, ETH_HLEN);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
|
|
|
|
ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
|
|
mask->eth_src);
|
|
ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
|
|
mask->eth_dst);
|
|
|
|
skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
|
|
|
|
ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
|
|
ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
|
|
return 0;
|
|
}
|
|
|
|
/* pop_eth does not support VLAN packets as this action is never called
|
|
* for them.
|
|
*/
|
|
static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int err;
|
|
|
|
err = skb_eth_pop(skb);
|
|
if (err)
|
|
return err;
|
|
|
|
/* safe right before invalidate_flow_key */
|
|
key->mac_proto = MAC_PROTO_NONE;
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const struct ovs_action_push_eth *ethh)
|
|
{
|
|
int err;
|
|
|
|
err = skb_eth_push(skb, ethh->addresses.eth_dst,
|
|
ethh->addresses.eth_src);
|
|
if (err)
|
|
return err;
|
|
|
|
/* safe right before invalidate_flow_key */
|
|
key->mac_proto = MAC_PROTO_ETHERNET;
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static noinline_for_stack int push_nsh(struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *a)
|
|
{
|
|
u8 buffer[NSH_HDR_MAX_LEN];
|
|
struct nshhdr *nh = (struct nshhdr *)buffer;
|
|
int err;
|
|
|
|
err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
|
|
if (err)
|
|
return err;
|
|
|
|
err = nsh_push(skb, nh);
|
|
if (err)
|
|
return err;
|
|
|
|
/* safe right before invalidate_flow_key */
|
|
key->mac_proto = MAC_PROTO_NONE;
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int err;
|
|
|
|
err = nsh_pop(skb);
|
|
if (err)
|
|
return err;
|
|
|
|
/* safe right before invalidate_flow_key */
|
|
if (skb->protocol == htons(ETH_P_TEB))
|
|
key->mac_proto = MAC_PROTO_ETHERNET;
|
|
else
|
|
key->mac_proto = MAC_PROTO_NONE;
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
|
|
__be32 addr, __be32 new_addr)
|
|
{
|
|
int transport_len = skb->len - skb_transport_offset(skb);
|
|
|
|
if (nh->frag_off & htons(IP_OFFSET))
|
|
return;
|
|
|
|
if (nh->protocol == IPPROTO_TCP) {
|
|
if (likely(transport_len >= sizeof(struct tcphdr)))
|
|
inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
|
|
addr, new_addr, true);
|
|
} else if (nh->protocol == IPPROTO_UDP) {
|
|
if (likely(transport_len >= sizeof(struct udphdr))) {
|
|
struct udphdr *uh = udp_hdr(skb);
|
|
|
|
if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
inet_proto_csum_replace4(&uh->check, skb,
|
|
addr, new_addr, true);
|
|
if (!uh->check)
|
|
uh->check = CSUM_MANGLED_0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
|
|
__be32 *addr, __be32 new_addr)
|
|
{
|
|
update_ip_l4_checksum(skb, nh, *addr, new_addr);
|
|
csum_replace4(&nh->check, *addr, new_addr);
|
|
skb_clear_hash(skb);
|
|
ovs_ct_clear(skb, NULL);
|
|
*addr = new_addr;
|
|
}
|
|
|
|
static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
|
|
__be32 addr[4], const __be32 new_addr[4])
|
|
{
|
|
int transport_len = skb->len - skb_transport_offset(skb);
|
|
|
|
if (l4_proto == NEXTHDR_TCP) {
|
|
if (likely(transport_len >= sizeof(struct tcphdr)))
|
|
inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
|
|
addr, new_addr, true);
|
|
} else if (l4_proto == NEXTHDR_UDP) {
|
|
if (likely(transport_len >= sizeof(struct udphdr))) {
|
|
struct udphdr *uh = udp_hdr(skb);
|
|
|
|
if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
inet_proto_csum_replace16(&uh->check, skb,
|
|
addr, new_addr, true);
|
|
if (!uh->check)
|
|
uh->check = CSUM_MANGLED_0;
|
|
}
|
|
}
|
|
} else if (l4_proto == NEXTHDR_ICMP) {
|
|
if (likely(transport_len >= sizeof(struct icmp6hdr)))
|
|
inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
|
|
skb, addr, new_addr, true);
|
|
}
|
|
}
|
|
|
|
static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
|
|
const __be32 mask[4], __be32 masked[4])
|
|
{
|
|
masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
|
|
masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
|
|
masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
|
|
masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
|
|
}
|
|
|
|
static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
|
|
__be32 addr[4], const __be32 new_addr[4],
|
|
bool recalculate_csum)
|
|
{
|
|
if (recalculate_csum)
|
|
update_ipv6_checksum(skb, l4_proto, addr, new_addr);
|
|
|
|
skb_clear_hash(skb);
|
|
ovs_ct_clear(skb, NULL);
|
|
memcpy(addr, new_addr, sizeof(__be32[4]));
|
|
}
|
|
|
|
static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
|
|
{
|
|
u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
|
|
|
|
ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
|
|
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
|
|
(__force __wsum)(ipv6_tclass << 12));
|
|
|
|
ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
|
|
}
|
|
|
|
static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
|
|
{
|
|
u32 ofl;
|
|
|
|
ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2];
|
|
fl = OVS_MASKED(ofl, fl, mask);
|
|
|
|
/* Bits 21-24 are always unmasked, so this retains their values. */
|
|
nh->flow_lbl[0] = (u8)(fl >> 16);
|
|
nh->flow_lbl[1] = (u8)(fl >> 8);
|
|
nh->flow_lbl[2] = (u8)fl;
|
|
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
|
|
}
|
|
|
|
static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
|
|
{
|
|
new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
|
|
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
|
|
(__force __wsum)(new_ttl << 8));
|
|
nh->hop_limit = new_ttl;
|
|
}
|
|
|
|
static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
|
|
u8 mask)
|
|
{
|
|
new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
|
|
|
|
csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
|
|
nh->ttl = new_ttl;
|
|
}
|
|
|
|
static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_ipv4 *key,
|
|
const struct ovs_key_ipv4 *mask)
|
|
{
|
|
struct iphdr *nh;
|
|
__be32 new_addr;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
sizeof(struct iphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ip_hdr(skb);
|
|
|
|
/* Setting an IP addresses is typically only a side effect of
|
|
* matching on them in the current userspace implementation, so it
|
|
* makes sense to check if the value actually changed.
|
|
*/
|
|
if (mask->ipv4_src) {
|
|
new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
|
|
|
|
if (unlikely(new_addr != nh->saddr)) {
|
|
set_ip_addr(skb, nh, &nh->saddr, new_addr);
|
|
flow_key->ipv4.addr.src = new_addr;
|
|
}
|
|
}
|
|
if (mask->ipv4_dst) {
|
|
new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
|
|
|
|
if (unlikely(new_addr != nh->daddr)) {
|
|
set_ip_addr(skb, nh, &nh->daddr, new_addr);
|
|
flow_key->ipv4.addr.dst = new_addr;
|
|
}
|
|
}
|
|
if (mask->ipv4_tos) {
|
|
ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
|
|
flow_key->ip.tos = nh->tos;
|
|
}
|
|
if (mask->ipv4_ttl) {
|
|
set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
|
|
flow_key->ip.ttl = nh->ttl;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool is_ipv6_mask_nonzero(const __be32 addr[4])
|
|
{
|
|
return !!(addr[0] | addr[1] | addr[2] | addr[3]);
|
|
}
|
|
|
|
static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_ipv6 *key,
|
|
const struct ovs_key_ipv6 *mask)
|
|
{
|
|
struct ipv6hdr *nh;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
sizeof(struct ipv6hdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ipv6_hdr(skb);
|
|
|
|
/* Setting an IP addresses is typically only a side effect of
|
|
* matching on them in the current userspace implementation, so it
|
|
* makes sense to check if the value actually changed.
|
|
*/
|
|
if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
|
|
__be32 *saddr = (__be32 *)&nh->saddr;
|
|
__be32 masked[4];
|
|
|
|
mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
|
|
|
|
if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
|
|
set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
|
|
true);
|
|
memcpy(&flow_key->ipv6.addr.src, masked,
|
|
sizeof(flow_key->ipv6.addr.src));
|
|
}
|
|
}
|
|
if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
|
|
unsigned int offset = 0;
|
|
int flags = IP6_FH_F_SKIP_RH;
|
|
bool recalc_csum = true;
|
|
__be32 *daddr = (__be32 *)&nh->daddr;
|
|
__be32 masked[4];
|
|
|
|
mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
|
|
|
|
if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
|
|
if (ipv6_ext_hdr(nh->nexthdr))
|
|
recalc_csum = (ipv6_find_hdr(skb, &offset,
|
|
NEXTHDR_ROUTING,
|
|
NULL, &flags)
|
|
!= NEXTHDR_ROUTING);
|
|
|
|
set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
|
|
recalc_csum);
|
|
memcpy(&flow_key->ipv6.addr.dst, masked,
|
|
sizeof(flow_key->ipv6.addr.dst));
|
|
}
|
|
}
|
|
if (mask->ipv6_tclass) {
|
|
set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
|
|
flow_key->ip.tos = ipv6_get_dsfield(nh);
|
|
}
|
|
if (mask->ipv6_label) {
|
|
set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
|
|
ntohl(mask->ipv6_label));
|
|
flow_key->ipv6.label =
|
|
*(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
|
|
}
|
|
if (mask->ipv6_hlimit) {
|
|
set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
|
|
flow_key->ip.ttl = nh->hop_limit;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct nlattr *a)
|
|
{
|
|
struct nshhdr *nh;
|
|
size_t length;
|
|
int err;
|
|
u8 flags;
|
|
u8 ttl;
|
|
int i;
|
|
|
|
struct ovs_key_nsh key;
|
|
struct ovs_key_nsh mask;
|
|
|
|
err = nsh_key_from_nlattr(a, &key, &mask);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Make sure the NSH base header is there */
|
|
if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
|
|
return -ENOMEM;
|
|
|
|
nh = nsh_hdr(skb);
|
|
length = nsh_hdr_len(nh);
|
|
|
|
/* Make sure the whole NSH header is there */
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
length);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = nsh_hdr(skb);
|
|
skb_postpull_rcsum(skb, nh, length);
|
|
flags = nsh_get_flags(nh);
|
|
flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
|
|
flow_key->nsh.base.flags = flags;
|
|
ttl = nsh_get_ttl(nh);
|
|
ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
|
|
flow_key->nsh.base.ttl = ttl;
|
|
nsh_set_flags_and_ttl(nh, flags, ttl);
|
|
nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
|
|
mask.base.path_hdr);
|
|
flow_key->nsh.base.path_hdr = nh->path_hdr;
|
|
switch (nh->mdtype) {
|
|
case NSH_M_TYPE1:
|
|
for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
|
|
nh->md1.context[i] =
|
|
OVS_MASKED(nh->md1.context[i], key.context[i],
|
|
mask.context[i]);
|
|
}
|
|
memcpy(flow_key->nsh.context, nh->md1.context,
|
|
sizeof(nh->md1.context));
|
|
break;
|
|
case NSH_M_TYPE2:
|
|
memset(flow_key->nsh.context, 0,
|
|
sizeof(flow_key->nsh.context));
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
skb_postpush_rcsum(skb, nh, length);
|
|
return 0;
|
|
}
|
|
|
|
/* Must follow skb_ensure_writable() since that can move the skb data. */
|
|
static void set_tp_port(struct sk_buff *skb, __be16 *port,
|
|
__be16 new_port, __sum16 *check)
|
|
{
|
|
ovs_ct_clear(skb, NULL);
|
|
inet_proto_csum_replace2(check, skb, *port, new_port, false);
|
|
*port = new_port;
|
|
}
|
|
|
|
static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_udp *key,
|
|
const struct ovs_key_udp *mask)
|
|
{
|
|
struct udphdr *uh;
|
|
__be16 src, dst;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_transport_offset(skb) +
|
|
sizeof(struct udphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
uh = udp_hdr(skb);
|
|
/* Either of the masks is non-zero, so do not bother checking them. */
|
|
src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
|
|
dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
|
|
|
|
if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
|
|
if (likely(src != uh->source)) {
|
|
set_tp_port(skb, &uh->source, src, &uh->check);
|
|
flow_key->tp.src = src;
|
|
}
|
|
if (likely(dst != uh->dest)) {
|
|
set_tp_port(skb, &uh->dest, dst, &uh->check);
|
|
flow_key->tp.dst = dst;
|
|
}
|
|
|
|
if (unlikely(!uh->check))
|
|
uh->check = CSUM_MANGLED_0;
|
|
} else {
|
|
uh->source = src;
|
|
uh->dest = dst;
|
|
flow_key->tp.src = src;
|
|
flow_key->tp.dst = dst;
|
|
ovs_ct_clear(skb, NULL);
|
|
}
|
|
|
|
skb_clear_hash(skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_tcp *key,
|
|
const struct ovs_key_tcp *mask)
|
|
{
|
|
struct tcphdr *th;
|
|
__be16 src, dst;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_transport_offset(skb) +
|
|
sizeof(struct tcphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
th = tcp_hdr(skb);
|
|
src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
|
|
if (likely(src != th->source)) {
|
|
set_tp_port(skb, &th->source, src, &th->check);
|
|
flow_key->tp.src = src;
|
|
}
|
|
dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
|
|
if (likely(dst != th->dest)) {
|
|
set_tp_port(skb, &th->dest, dst, &th->check);
|
|
flow_key->tp.dst = dst;
|
|
}
|
|
skb_clear_hash(skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_sctp *key,
|
|
const struct ovs_key_sctp *mask)
|
|
{
|
|
unsigned int sctphoff = skb_transport_offset(skb);
|
|
struct sctphdr *sh;
|
|
__le32 old_correct_csum, new_csum, old_csum;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
sh = sctp_hdr(skb);
|
|
old_csum = sh->checksum;
|
|
old_correct_csum = sctp_compute_cksum(skb, sctphoff);
|
|
|
|
sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
|
|
sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
|
|
|
|
new_csum = sctp_compute_cksum(skb, sctphoff);
|
|
|
|
/* Carry any checksum errors through. */
|
|
sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
|
|
|
|
skb_clear_hash(skb);
|
|
ovs_ct_clear(skb, NULL);
|
|
|
|
flow_key->tp.src = sh->source;
|
|
flow_key->tp.dst = sh->dest;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ovs_vport_output(struct net *net, struct sock *sk,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
|
|
struct vport *vport = data->vport;
|
|
|
|
if (skb_cow_head(skb, data->l2_len) < 0) {
|
|
kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
__skb_dst_copy(skb, data->dst);
|
|
*OVS_CB(skb) = data->cb;
|
|
skb->inner_protocol = data->inner_protocol;
|
|
if (data->vlan_tci & VLAN_CFI_MASK)
|
|
__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
|
|
else
|
|
__vlan_hwaccel_clear_tag(skb);
|
|
|
|
/* Reconstruct the MAC header. */
|
|
skb_push(skb, data->l2_len);
|
|
memcpy(skb->data, &data->l2_data, data->l2_len);
|
|
skb_postpush_rcsum(skb, skb->data, data->l2_len);
|
|
skb_reset_mac_header(skb);
|
|
|
|
if (eth_p_mpls(skb->protocol)) {
|
|
skb->inner_network_header = skb->network_header;
|
|
skb_set_network_header(skb, data->network_offset);
|
|
skb_reset_mac_len(skb);
|
|
}
|
|
|
|
ovs_vport_send(vport, skb, data->mac_proto);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int
|
|
ovs_dst_get_mtu(const struct dst_entry *dst)
|
|
{
|
|
return dst->dev->mtu;
|
|
}
|
|
|
|
static struct dst_ops ovs_dst_ops = {
|
|
.family = AF_UNSPEC,
|
|
.mtu = ovs_dst_get_mtu,
|
|
};
|
|
|
|
/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
|
|
* ovs_vport_output(), which is called once per fragmented packet.
|
|
*/
|
|
static void prepare_frag(struct vport *vport, struct sk_buff *skb,
|
|
u16 orig_network_offset, u8 mac_proto)
|
|
{
|
|
unsigned int hlen = skb_network_offset(skb);
|
|
struct ovs_frag_data *data;
|
|
|
|
data = this_cpu_ptr(&ovs_frag_data_storage);
|
|
data->dst = skb->_skb_refdst;
|
|
data->vport = vport;
|
|
data->cb = *OVS_CB(skb);
|
|
data->inner_protocol = skb->inner_protocol;
|
|
data->network_offset = orig_network_offset;
|
|
if (skb_vlan_tag_present(skb))
|
|
data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
|
|
else
|
|
data->vlan_tci = 0;
|
|
data->vlan_proto = skb->vlan_proto;
|
|
data->mac_proto = mac_proto;
|
|
data->l2_len = hlen;
|
|
memcpy(&data->l2_data, skb->data, hlen);
|
|
|
|
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
|
|
skb_pull(skb, hlen);
|
|
}
|
|
|
|
static void ovs_fragment(struct net *net, struct vport *vport,
|
|
struct sk_buff *skb, u16 mru,
|
|
struct sw_flow_key *key)
|
|
{
|
|
enum ovs_drop_reason reason;
|
|
u16 orig_network_offset = 0;
|
|
|
|
if (eth_p_mpls(skb->protocol)) {
|
|
orig_network_offset = skb_network_offset(skb);
|
|
skb->network_header = skb->inner_network_header;
|
|
}
|
|
|
|
if (skb_network_offset(skb) > MAX_L2_LEN) {
|
|
OVS_NLERR(1, "L2 header too long to fragment");
|
|
reason = OVS_DROP_FRAG_L2_TOO_LONG;
|
|
goto err;
|
|
}
|
|
|
|
if (key->eth.type == htons(ETH_P_IP)) {
|
|
struct rtable ovs_rt = { 0 };
|
|
unsigned long orig_dst;
|
|
|
|
prepare_frag(vport, skb, orig_network_offset,
|
|
ovs_key_mac_proto(key));
|
|
dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
|
|
DST_OBSOLETE_NONE, DST_NOCOUNT);
|
|
ovs_rt.dst.dev = vport->dev;
|
|
|
|
orig_dst = skb->_skb_refdst;
|
|
skb_dst_set_noref(skb, &ovs_rt.dst);
|
|
IPCB(skb)->frag_max_size = mru;
|
|
|
|
ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
|
|
refdst_drop(orig_dst);
|
|
} else if (key->eth.type == htons(ETH_P_IPV6)) {
|
|
unsigned long orig_dst;
|
|
struct rt6_info ovs_rt;
|
|
|
|
prepare_frag(vport, skb, orig_network_offset,
|
|
ovs_key_mac_proto(key));
|
|
memset(&ovs_rt, 0, sizeof(ovs_rt));
|
|
dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
|
|
DST_OBSOLETE_NONE, DST_NOCOUNT);
|
|
ovs_rt.dst.dev = vport->dev;
|
|
|
|
orig_dst = skb->_skb_refdst;
|
|
skb_dst_set_noref(skb, &ovs_rt.dst);
|
|
IP6CB(skb)->frag_max_size = mru;
|
|
|
|
ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
|
|
refdst_drop(orig_dst);
|
|
} else {
|
|
WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
|
|
ovs_vport_name(vport), ntohs(key->eth.type), mru,
|
|
vport->dev->mtu);
|
|
reason = OVS_DROP_FRAG_INVALID_PROTO;
|
|
goto err;
|
|
}
|
|
|
|
return;
|
|
err:
|
|
ovs_kfree_skb_reason(skb, reason);
|
|
}
|
|
|
|
static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
|
|
struct sw_flow_key *key)
|
|
{
|
|
struct vport *vport = ovs_vport_rcu(dp, out_port);
|
|
|
|
if (likely(vport && netif_carrier_ok(vport->dev))) {
|
|
u16 mru = OVS_CB(skb)->mru;
|
|
u32 cutlen = OVS_CB(skb)->cutlen;
|
|
|
|
if (unlikely(cutlen > 0)) {
|
|
if (skb->len - cutlen > ovs_mac_header_len(key))
|
|
pskb_trim(skb, skb->len - cutlen);
|
|
else
|
|
pskb_trim(skb, ovs_mac_header_len(key));
|
|
}
|
|
|
|
/* Need to set the pkt_type to involve the routing layer. The
|
|
* packet movement through the OVS datapath doesn't generally
|
|
* use routing, but this is needed for tunnel cases.
|
|
*/
|
|
skb->pkt_type = PACKET_OUTGOING;
|
|
|
|
if (likely(!mru ||
|
|
(skb->len <= mru + vport->dev->hard_header_len))) {
|
|
ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
|
|
} else if (mru <= vport->dev->mtu) {
|
|
struct net *net = read_pnet(&dp->net);
|
|
|
|
ovs_fragment(net, vport, skb, mru, key);
|
|
} else {
|
|
kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
|
|
}
|
|
} else {
|
|
kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
|
|
}
|
|
}
|
|
|
|
static int output_userspace(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key, const struct nlattr *attr,
|
|
const struct nlattr *actions, int actions_len,
|
|
uint32_t cutlen)
|
|
{
|
|
struct dp_upcall_info upcall;
|
|
const struct nlattr *a;
|
|
int rem;
|
|
|
|
memset(&upcall, 0, sizeof(upcall));
|
|
upcall.cmd = OVS_PACKET_CMD_ACTION;
|
|
upcall.mru = OVS_CB(skb)->mru;
|
|
|
|
for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
|
|
a = nla_next(a, &rem)) {
|
|
switch (nla_type(a)) {
|
|
case OVS_USERSPACE_ATTR_USERDATA:
|
|
upcall.userdata = a;
|
|
break;
|
|
|
|
case OVS_USERSPACE_ATTR_PID:
|
|
if (dp->user_features &
|
|
OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
|
|
upcall.portid =
|
|
ovs_dp_get_upcall_portid(dp,
|
|
smp_processor_id());
|
|
else
|
|
upcall.portid = nla_get_u32(a);
|
|
break;
|
|
|
|
case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
|
|
/* Get out tunnel info. */
|
|
struct vport *vport;
|
|
|
|
vport = ovs_vport_rcu(dp, nla_get_u32(a));
|
|
if (vport) {
|
|
int err;
|
|
|
|
err = dev_fill_metadata_dst(vport->dev, skb);
|
|
if (!err)
|
|
upcall.egress_tun_info = skb_tunnel_info(skb);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case OVS_USERSPACE_ATTR_ACTIONS: {
|
|
/* Include actions. */
|
|
upcall.actions = actions;
|
|
upcall.actions_len = actions_len;
|
|
break;
|
|
}
|
|
|
|
} /* End of switch. */
|
|
}
|
|
|
|
return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
|
|
}
|
|
|
|
static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *attr)
|
|
{
|
|
/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
|
|
struct nlattr *actions = nla_data(attr);
|
|
|
|
if (nla_len(actions))
|
|
return clone_execute(dp, skb, key, 0, nla_data(actions),
|
|
nla_len(actions), true, false);
|
|
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
|
|
return 0;
|
|
}
|
|
|
|
/* When 'last' is true, sample() should always consume the 'skb'.
|
|
* Otherwise, sample() should keep 'skb' intact regardless what
|
|
* actions are executed within sample().
|
|
*/
|
|
static int sample(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key, const struct nlattr *attr,
|
|
bool last)
|
|
{
|
|
struct nlattr *actions;
|
|
struct nlattr *sample_arg;
|
|
int rem = nla_len(attr);
|
|
const struct sample_arg *arg;
|
|
u32 init_probability;
|
|
bool clone_flow_key;
|
|
int err;
|
|
|
|
/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
|
|
sample_arg = nla_data(attr);
|
|
arg = nla_data(sample_arg);
|
|
actions = nla_next(sample_arg, &rem);
|
|
init_probability = OVS_CB(skb)->probability;
|
|
|
|
if ((arg->probability != U32_MAX) &&
|
|
(!arg->probability || get_random_u32() > arg->probability)) {
|
|
if (last)
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
|
|
return 0;
|
|
}
|
|
|
|
OVS_CB(skb)->probability = arg->probability;
|
|
|
|
clone_flow_key = !arg->exec;
|
|
err = clone_execute(dp, skb, key, 0, actions, rem, last,
|
|
clone_flow_key);
|
|
|
|
if (!last)
|
|
OVS_CB(skb)->probability = init_probability;
|
|
|
|
return err;
|
|
}
|
|
|
|
/* When 'last' is true, clone() should always consume the 'skb'.
|
|
* Otherwise, clone() should keep 'skb' intact regardless what
|
|
* actions are executed within clone().
|
|
*/
|
|
static int clone(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key, const struct nlattr *attr,
|
|
bool last)
|
|
{
|
|
struct nlattr *actions;
|
|
struct nlattr *clone_arg;
|
|
int rem = nla_len(attr);
|
|
bool dont_clone_flow_key;
|
|
|
|
/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
|
|
clone_arg = nla_data(attr);
|
|
dont_clone_flow_key = nla_get_u32(clone_arg);
|
|
actions = nla_next(clone_arg, &rem);
|
|
|
|
return clone_execute(dp, skb, key, 0, actions, rem, last,
|
|
!dont_clone_flow_key);
|
|
}
|
|
|
|
static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const struct nlattr *attr)
|
|
{
|
|
struct ovs_action_hash *hash_act = nla_data(attr);
|
|
u32 hash = 0;
|
|
|
|
if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
|
|
/* OVS_HASH_ALG_L4 hasing type. */
|
|
hash = skb_get_hash(skb);
|
|
} else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
|
|
/* OVS_HASH_ALG_SYM_L4 hashing type. NOTE: this doesn't
|
|
* extend past an encapsulated header.
|
|
*/
|
|
hash = __skb_get_hash_symmetric(skb);
|
|
}
|
|
|
|
hash = jhash_1word(hash, hash_act->hash_basis);
|
|
if (!hash)
|
|
hash = 0x1;
|
|
|
|
key->ovs_flow_hash = hash;
|
|
}
|
|
|
|
static int execute_set_action(struct sk_buff *skb,
|
|
struct sw_flow_key *flow_key,
|
|
const struct nlattr *a)
|
|
{
|
|
/* Only tunnel set execution is supported without a mask. */
|
|
if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
|
|
struct ovs_tunnel_info *tun = nla_data(a);
|
|
|
|
skb_dst_drop(skb);
|
|
dst_hold((struct dst_entry *)tun->tun_dst);
|
|
skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Mask is at the midpoint of the data. */
|
|
#define get_mask(a, type) ((const type)nla_data(a) + 1)
|
|
|
|
static int execute_masked_set_action(struct sk_buff *skb,
|
|
struct sw_flow_key *flow_key,
|
|
const struct nlattr *a)
|
|
{
|
|
int err = 0;
|
|
|
|
switch (nla_type(a)) {
|
|
case OVS_KEY_ATTR_PRIORITY:
|
|
OVS_SET_MASKED(skb->priority, nla_get_u32(a),
|
|
*get_mask(a, u32 *));
|
|
flow_key->phy.priority = skb->priority;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_SKB_MARK:
|
|
OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
|
|
flow_key->phy.skb_mark = skb->mark;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_TUNNEL_INFO:
|
|
/* Masked data not supported for tunnel. */
|
|
err = -EINVAL;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_ETHERNET:
|
|
err = set_eth_addr(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_ethernet *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_NSH:
|
|
err = set_nsh(skb, flow_key, a);
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_IPV4:
|
|
err = set_ipv4(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_ipv4 *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_IPV6:
|
|
err = set_ipv6(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_ipv6 *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_TCP:
|
|
err = set_tcp(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_tcp *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_UDP:
|
|
err = set_udp(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_udp *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_SCTP:
|
|
err = set_sctp(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_sctp *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_MPLS:
|
|
err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
|
|
__be32 *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_CT_STATE:
|
|
case OVS_KEY_ATTR_CT_ZONE:
|
|
case OVS_KEY_ATTR_CT_MARK:
|
|
case OVS_KEY_ATTR_CT_LABELS:
|
|
case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
|
|
case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *a, bool last)
|
|
{
|
|
u32 recirc_id;
|
|
|
|
if (!is_flow_key_valid(key)) {
|
|
int err;
|
|
|
|
err = ovs_flow_key_update(skb, key);
|
|
if (err)
|
|
return err;
|
|
}
|
|
BUG_ON(!is_flow_key_valid(key));
|
|
|
|
recirc_id = nla_get_u32(a);
|
|
return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
|
|
}
|
|
|
|
static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *attr, bool last)
|
|
{
|
|
struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
|
|
const struct nlattr *actions, *cpl_arg;
|
|
int len, max_len, rem = nla_len(attr);
|
|
const struct check_pkt_len_arg *arg;
|
|
bool clone_flow_key;
|
|
|
|
/* The first netlink attribute in 'attr' is always
|
|
* 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
|
|
*/
|
|
cpl_arg = nla_data(attr);
|
|
arg = nla_data(cpl_arg);
|
|
|
|
len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
|
|
max_len = arg->pkt_len;
|
|
|
|
if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
|
|
len <= max_len) {
|
|
/* Second netlink attribute in 'attr' is always
|
|
* 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
|
|
*/
|
|
actions = nla_next(cpl_arg, &rem);
|
|
clone_flow_key = !arg->exec_for_lesser_equal;
|
|
} else {
|
|
/* Third netlink attribute in 'attr' is always
|
|
* 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
|
|
*/
|
|
actions = nla_next(cpl_arg, &rem);
|
|
actions = nla_next(actions, &rem);
|
|
clone_flow_key = !arg->exec_for_greater;
|
|
}
|
|
|
|
return clone_execute(dp, skb, key, 0, nla_data(actions),
|
|
nla_len(actions), last, clone_flow_key);
|
|
}
|
|
|
|
static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int err;
|
|
|
|
if (skb->protocol == htons(ETH_P_IPV6)) {
|
|
struct ipv6hdr *nh;
|
|
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
sizeof(*nh));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ipv6_hdr(skb);
|
|
|
|
if (nh->hop_limit <= 1)
|
|
return -EHOSTUNREACH;
|
|
|
|
key->ip.ttl = --nh->hop_limit;
|
|
} else if (skb->protocol == htons(ETH_P_IP)) {
|
|
struct iphdr *nh;
|
|
u8 old_ttl;
|
|
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
sizeof(*nh));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ip_hdr(skb);
|
|
if (nh->ttl <= 1)
|
|
return -EHOSTUNREACH;
|
|
|
|
old_ttl = nh->ttl--;
|
|
csum_replace2(&nh->check, htons(old_ttl << 8),
|
|
htons(nh->ttl << 8));
|
|
key->ip.ttl = nh->ttl;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_PSAMPLE)
|
|
static void execute_psample(struct datapath *dp, struct sk_buff *skb,
|
|
const struct nlattr *attr)
|
|
{
|
|
struct psample_group psample_group = {};
|
|
struct psample_metadata md = {};
|
|
const struct nlattr *a;
|
|
u32 rate;
|
|
int rem;
|
|
|
|
nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
|
|
switch (nla_type(a)) {
|
|
case OVS_PSAMPLE_ATTR_GROUP:
|
|
psample_group.group_num = nla_get_u32(a);
|
|
break;
|
|
|
|
case OVS_PSAMPLE_ATTR_COOKIE:
|
|
md.user_cookie = nla_data(a);
|
|
md.user_cookie_len = nla_len(a);
|
|
break;
|
|
}
|
|
}
|
|
|
|
psample_group.net = ovs_dp_get_net(dp);
|
|
md.in_ifindex = OVS_CB(skb)->input_vport->dev->ifindex;
|
|
md.trunc_size = skb->len - OVS_CB(skb)->cutlen;
|
|
md.rate_as_probability = 1;
|
|
|
|
rate = OVS_CB(skb)->probability ? OVS_CB(skb)->probability : U32_MAX;
|
|
|
|
psample_sample_packet(&psample_group, skb, rate, &md);
|
|
}
|
|
#else
|
|
static void execute_psample(struct datapath *dp, struct sk_buff *skb,
|
|
const struct nlattr *attr)
|
|
{}
|
|
#endif
|
|
|
|
/* Execute a list of actions against 'skb'. */
|
|
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *attr, int len)
|
|
{
|
|
const struct nlattr *a;
|
|
int rem;
|
|
|
|
for (a = attr, rem = len; rem > 0;
|
|
a = nla_next(a, &rem)) {
|
|
int err = 0;
|
|
|
|
if (trace_ovs_do_execute_action_enabled())
|
|
trace_ovs_do_execute_action(dp, skb, key, a, rem);
|
|
|
|
/* Actions that rightfully have to consume the skb should do it
|
|
* and return directly.
|
|
*/
|
|
switch (nla_type(a)) {
|
|
case OVS_ACTION_ATTR_OUTPUT: {
|
|
int port = nla_get_u32(a);
|
|
struct sk_buff *clone;
|
|
|
|
/* Every output action needs a separate clone
|
|
* of 'skb', In case the output action is the
|
|
* last action, cloning can be avoided.
|
|
*/
|
|
if (nla_is_last(a, rem)) {
|
|
do_output(dp, skb, port, key);
|
|
/* 'skb' has been used for output.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
clone = skb_clone(skb, GFP_ATOMIC);
|
|
if (clone)
|
|
do_output(dp, clone, port, key);
|
|
OVS_CB(skb)->cutlen = 0;
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_TRUNC: {
|
|
struct ovs_action_trunc *trunc = nla_data(a);
|
|
|
|
if (skb->len > trunc->max_len)
|
|
OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_USERSPACE:
|
|
output_userspace(dp, skb, key, a, attr,
|
|
len, OVS_CB(skb)->cutlen);
|
|
OVS_CB(skb)->cutlen = 0;
|
|
if (nla_is_last(a, rem)) {
|
|
consume_skb(skb);
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_HASH:
|
|
execute_hash(skb, key, a);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_MPLS: {
|
|
struct ovs_action_push_mpls *mpls = nla_data(a);
|
|
|
|
err = push_mpls(skb, key, mpls->mpls_lse,
|
|
mpls->mpls_ethertype, skb->mac_len);
|
|
break;
|
|
}
|
|
case OVS_ACTION_ATTR_ADD_MPLS: {
|
|
struct ovs_action_add_mpls *mpls = nla_data(a);
|
|
__u16 mac_len = 0;
|
|
|
|
if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
|
|
mac_len = skb->mac_len;
|
|
|
|
err = push_mpls(skb, key, mpls->mpls_lse,
|
|
mpls->mpls_ethertype, mac_len);
|
|
break;
|
|
}
|
|
case OVS_ACTION_ATTR_POP_MPLS:
|
|
err = pop_mpls(skb, key, nla_get_be16(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_VLAN:
|
|
err = push_vlan(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_POP_VLAN:
|
|
err = pop_vlan(skb, key);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_RECIRC: {
|
|
bool last = nla_is_last(a, rem);
|
|
|
|
err = execute_recirc(dp, skb, key, a, last);
|
|
if (last) {
|
|
/* If this is the last action, the skb has
|
|
* been consumed or freed.
|
|
* Return immediately.
|
|
*/
|
|
return err;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_SET:
|
|
err = execute_set_action(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SET_MASKED:
|
|
case OVS_ACTION_ATTR_SET_TO_MASKED:
|
|
err = execute_masked_set_action(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SAMPLE: {
|
|
bool last = nla_is_last(a, rem);
|
|
|
|
err = sample(dp, skb, key, a, last);
|
|
if (last)
|
|
return err;
|
|
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_CT:
|
|
if (!is_flow_key_valid(key)) {
|
|
err = ovs_flow_key_update(skb, key);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
|
|
nla_data(a));
|
|
|
|
/* Hide stolen IP fragments from user space. */
|
|
if (err)
|
|
return err == -EINPROGRESS ? 0 : err;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_CT_CLEAR:
|
|
err = ovs_ct_clear(skb, key);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_ETH:
|
|
err = push_eth(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_POP_ETH:
|
|
err = pop_eth(skb, key);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_NSH:
|
|
err = push_nsh(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_POP_NSH:
|
|
err = pop_nsh(skb, key);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_METER:
|
|
if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_METER);
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_CLONE: {
|
|
bool last = nla_is_last(a, rem);
|
|
|
|
err = clone(dp, skb, key, a, last);
|
|
if (last)
|
|
return err;
|
|
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
|
|
bool last = nla_is_last(a, rem);
|
|
|
|
err = execute_check_pkt_len(dp, skb, key, a, last);
|
|
if (last)
|
|
return err;
|
|
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_DEC_TTL:
|
|
err = execute_dec_ttl(skb, key);
|
|
if (err == -EHOSTUNREACH)
|
|
return dec_ttl_exception_handler(dp, skb,
|
|
key, a);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_DROP: {
|
|
enum ovs_drop_reason reason = nla_get_u32(a)
|
|
? OVS_DROP_EXPLICIT_WITH_ERROR
|
|
: OVS_DROP_EXPLICIT;
|
|
|
|
ovs_kfree_skb_reason(skb, reason);
|
|
return 0;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_PSAMPLE:
|
|
execute_psample(dp, skb, a);
|
|
OVS_CB(skb)->cutlen = 0;
|
|
if (nla_is_last(a, rem)) {
|
|
consume_skb(skb);
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (unlikely(err)) {
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
|
|
return 0;
|
|
}
|
|
|
|
/* Execute the actions on the clone of the packet. The effect of the
|
|
* execution does not affect the original 'skb' nor the original 'key'.
|
|
*
|
|
* The execution may be deferred in case the actions can not be executed
|
|
* immediately.
|
|
*/
|
|
static int clone_execute(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key, u32 recirc_id,
|
|
const struct nlattr *actions, int len,
|
|
bool last, bool clone_flow_key)
|
|
{
|
|
struct deferred_action *da;
|
|
struct sw_flow_key *clone;
|
|
|
|
skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
|
|
if (!skb) {
|
|
/* Out of memory, skip this action.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* When clone_flow_key is false, the 'key' will not be change
|
|
* by the actions, then the 'key' can be used directly.
|
|
* Otherwise, try to clone key from the next recursion level of
|
|
* 'flow_keys'. If clone is successful, execute the actions
|
|
* without deferring.
|
|
*/
|
|
clone = clone_flow_key ? clone_key(key) : key;
|
|
if (clone) {
|
|
int err = 0;
|
|
|
|
if (actions) { /* Sample action */
|
|
if (clone_flow_key)
|
|
__this_cpu_inc(exec_actions_level);
|
|
|
|
err = do_execute_actions(dp, skb, clone,
|
|
actions, len);
|
|
|
|
if (clone_flow_key)
|
|
__this_cpu_dec(exec_actions_level);
|
|
} else { /* Recirc action */
|
|
clone->recirc_id = recirc_id;
|
|
ovs_dp_process_packet(skb, clone);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* Out of 'flow_keys' space. Defer actions */
|
|
da = add_deferred_actions(skb, key, actions, len);
|
|
if (da) {
|
|
if (!actions) { /* Recirc action */
|
|
key = &da->pkt_key;
|
|
key->recirc_id = recirc_id;
|
|
}
|
|
} else {
|
|
/* Out of per CPU action FIFO space. Drop the 'skb' and
|
|
* log an error.
|
|
*/
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
|
|
|
|
if (net_ratelimit()) {
|
|
if (actions) { /* Sample action */
|
|
pr_warn("%s: deferred action limit reached, drop sample action\n",
|
|
ovs_dp_name(dp));
|
|
} else { /* Recirc action */
|
|
pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
|
|
ovs_dp_name(dp), recirc_id);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void process_deferred_actions(struct datapath *dp)
|
|
{
|
|
struct action_fifo *fifo = this_cpu_ptr(action_fifos);
|
|
|
|
/* Do not touch the FIFO in case there is no deferred actions. */
|
|
if (action_fifo_is_empty(fifo))
|
|
return;
|
|
|
|
/* Finishing executing all deferred actions. */
|
|
do {
|
|
struct deferred_action *da = action_fifo_get(fifo);
|
|
struct sk_buff *skb = da->skb;
|
|
struct sw_flow_key *key = &da->pkt_key;
|
|
const struct nlattr *actions = da->actions;
|
|
int actions_len = da->actions_len;
|
|
|
|
if (actions)
|
|
do_execute_actions(dp, skb, key, actions, actions_len);
|
|
else
|
|
ovs_dp_process_packet(skb, key);
|
|
} while (!action_fifo_is_empty(fifo));
|
|
|
|
/* Reset FIFO for the next packet. */
|
|
action_fifo_init(fifo);
|
|
}
|
|
|
|
/* Execute a list of actions against 'skb'. */
|
|
int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
|
|
const struct sw_flow_actions *acts,
|
|
struct sw_flow_key *key)
|
|
{
|
|
int err, level;
|
|
|
|
level = __this_cpu_inc_return(exec_actions_level);
|
|
if (unlikely(level > OVS_RECURSION_LIMIT)) {
|
|
net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
|
|
ovs_dp_name(dp));
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
|
|
err = -ENETDOWN;
|
|
goto out;
|
|
}
|
|
|
|
OVS_CB(skb)->acts_origlen = acts->orig_len;
|
|
err = do_execute_actions(dp, skb, key,
|
|
acts->actions, acts->actions_len);
|
|
|
|
if (level == 1)
|
|
process_deferred_actions(dp);
|
|
|
|
out:
|
|
__this_cpu_dec(exec_actions_level);
|
|
return err;
|
|
}
|
|
|
|
int action_fifos_init(void)
|
|
{
|
|
action_fifos = alloc_percpu(struct action_fifo);
|
|
if (!action_fifos)
|
|
return -ENOMEM;
|
|
|
|
flow_keys = alloc_percpu(struct action_flow_keys);
|
|
if (!flow_keys) {
|
|
free_percpu(action_fifos);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void action_fifos_exit(void)
|
|
{
|
|
free_percpu(action_fifos);
|
|
free_percpu(flow_keys);
|
|
}
|