linux-stable/drivers/clk/clk-scmi.c
Peng Fan fc953d40bd clk: scmi: add is_prepared hook
Some clocks maybe default enabled by hardware. For clocks that don't
have users, that will be left in hardware default state, because prepare
count and enable count is zero,if there is no is_prepared hook to get
the hardware state. So add is_prepared hook to detect the hardware
state. Then when disabling the unused clocks, they can be simply
turned OFF to save power during kernel boot.

Reviewed-by: Dhruva Gole <d-gole@ti.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Link: https://lore.kernel.org/r/20240806145601.1184337-1-peng.fan@oss.nxp.com
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2024-08-27 12:11:45 -07:00

512 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Power Interface (SCMI) Protocol based clock driver
*
* Copyright (C) 2018-2024 ARM Ltd.
*/
#include <linux/bits.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/scmi_protocol.h>
#include <asm/div64.h>
#define NOT_ATOMIC false
#define ATOMIC true
enum scmi_clk_feats {
SCMI_CLK_ATOMIC_SUPPORTED,
SCMI_CLK_STATE_CTRL_SUPPORTED,
SCMI_CLK_RATE_CTRL_SUPPORTED,
SCMI_CLK_PARENT_CTRL_SUPPORTED,
SCMI_CLK_DUTY_CYCLE_SUPPORTED,
SCMI_CLK_FEATS_COUNT
};
#define SCMI_MAX_CLK_OPS BIT(SCMI_CLK_FEATS_COUNT)
static const struct scmi_clk_proto_ops *scmi_proto_clk_ops;
struct scmi_clk {
u32 id;
struct device *dev;
struct clk_hw hw;
const struct scmi_clock_info *info;
const struct scmi_protocol_handle *ph;
struct clk_parent_data *parent_data;
};
#define to_scmi_clk(clk) container_of(clk, struct scmi_clk, hw)
static unsigned long scmi_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
int ret;
u64 rate;
struct scmi_clk *clk = to_scmi_clk(hw);
ret = scmi_proto_clk_ops->rate_get(clk->ph, clk->id, &rate);
if (ret)
return 0;
return rate;
}
static long scmi_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
u64 fmin, fmax, ftmp;
struct scmi_clk *clk = to_scmi_clk(hw);
/*
* We can't figure out what rate it will be, so just return the
* rate back to the caller. scmi_clk_recalc_rate() will be called
* after the rate is set and we'll know what rate the clock is
* running at then.
*/
if (clk->info->rate_discrete)
return rate;
fmin = clk->info->range.min_rate;
fmax = clk->info->range.max_rate;
if (rate <= fmin)
return fmin;
else if (rate >= fmax)
return fmax;
ftmp = rate - fmin;
ftmp += clk->info->range.step_size - 1; /* to round up */
do_div(ftmp, clk->info->range.step_size);
return ftmp * clk->info->range.step_size + fmin;
}
static int scmi_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct scmi_clk *clk = to_scmi_clk(hw);
return scmi_proto_clk_ops->rate_set(clk->ph, clk->id, rate);
}
static int scmi_clk_set_parent(struct clk_hw *hw, u8 parent_index)
{
struct scmi_clk *clk = to_scmi_clk(hw);
return scmi_proto_clk_ops->parent_set(clk->ph, clk->id, parent_index);
}
static u8 scmi_clk_get_parent(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
u32 parent_id, p_idx;
int ret;
ret = scmi_proto_clk_ops->parent_get(clk->ph, clk->id, &parent_id);
if (ret)
return 0;
for (p_idx = 0; p_idx < clk->info->num_parents; p_idx++) {
if (clk->parent_data[p_idx].index == parent_id)
break;
}
if (p_idx == clk->info->num_parents)
return 0;
return p_idx;
}
static int scmi_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
{
/*
* Suppose all the requested rates are supported, and let firmware
* to handle the left work.
*/
return 0;
}
static int scmi_clk_enable(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
return scmi_proto_clk_ops->enable(clk->ph, clk->id, NOT_ATOMIC);
}
static void scmi_clk_disable(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
scmi_proto_clk_ops->disable(clk->ph, clk->id, NOT_ATOMIC);
}
static int scmi_clk_atomic_enable(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
return scmi_proto_clk_ops->enable(clk->ph, clk->id, ATOMIC);
}
static void scmi_clk_atomic_disable(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
scmi_proto_clk_ops->disable(clk->ph, clk->id, ATOMIC);
}
static int __scmi_clk_is_enabled(struct clk_hw *hw, bool atomic)
{
int ret;
bool enabled = false;
struct scmi_clk *clk = to_scmi_clk(hw);
ret = scmi_proto_clk_ops->state_get(clk->ph, clk->id, &enabled, atomic);
if (ret)
dev_warn(clk->dev,
"Failed to get state for clock ID %d\n", clk->id);
return !!enabled;
}
static int scmi_clk_atomic_is_enabled(struct clk_hw *hw)
{
return __scmi_clk_is_enabled(hw, ATOMIC);
}
static int scmi_clk_is_enabled(struct clk_hw *hw)
{
return __scmi_clk_is_enabled(hw, NOT_ATOMIC);
}
static int scmi_clk_get_duty_cycle(struct clk_hw *hw, struct clk_duty *duty)
{
int ret;
u32 val;
struct scmi_clk *clk = to_scmi_clk(hw);
ret = scmi_proto_clk_ops->config_oem_get(clk->ph, clk->id,
SCMI_CLOCK_CFG_DUTY_CYCLE,
&val, NULL, false);
if (!ret) {
duty->num = val;
duty->den = 100;
} else {
dev_warn(clk->dev,
"Failed to get duty cycle for clock ID %d\n", clk->id);
}
return ret;
}
static int scmi_clk_set_duty_cycle(struct clk_hw *hw, struct clk_duty *duty)
{
int ret;
u32 val;
struct scmi_clk *clk = to_scmi_clk(hw);
/* SCMI OEM Duty Cycle is expressed as a percentage */
val = (duty->num * 100) / duty->den;
ret = scmi_proto_clk_ops->config_oem_set(clk->ph, clk->id,
SCMI_CLOCK_CFG_DUTY_CYCLE,
val, false);
if (ret)
dev_warn(clk->dev,
"Failed to set duty cycle(%u/%u) for clock ID %d\n",
duty->num, duty->den, clk->id);
return ret;
}
static int scmi_clk_ops_init(struct device *dev, struct scmi_clk *sclk,
const struct clk_ops *scmi_ops)
{
int ret;
unsigned long min_rate, max_rate;
struct clk_init_data init = {
.flags = CLK_GET_RATE_NOCACHE,
.num_parents = sclk->info->num_parents,
.ops = scmi_ops,
.name = sclk->info->name,
.parent_data = sclk->parent_data,
};
sclk->hw.init = &init;
ret = devm_clk_hw_register(dev, &sclk->hw);
if (ret)
return ret;
if (sclk->info->rate_discrete) {
int num_rates = sclk->info->list.num_rates;
if (num_rates <= 0)
return -EINVAL;
min_rate = sclk->info->list.rates[0];
max_rate = sclk->info->list.rates[num_rates - 1];
} else {
min_rate = sclk->info->range.min_rate;
max_rate = sclk->info->range.max_rate;
}
clk_hw_set_rate_range(&sclk->hw, min_rate, max_rate);
return ret;
}
/**
* scmi_clk_ops_alloc() - Alloc and configure clock operations
* @dev: A device reference for devres
* @feats_key: A bitmap representing the desired clk_ops capabilities
*
* Allocate and configure a proper set of clock operations depending on the
* specifically required SCMI clock features.
*
* Return: A pointer to the allocated and configured clk_ops on success,
* or NULL on allocation failure.
*/
static const struct clk_ops *
scmi_clk_ops_alloc(struct device *dev, unsigned long feats_key)
{
struct clk_ops *ops;
ops = devm_kzalloc(dev, sizeof(*ops), GFP_KERNEL);
if (!ops)
return NULL;
/*
* We can provide enable/disable/is_enabled atomic callbacks only if the
* underlying SCMI transport for an SCMI instance is configured to
* handle SCMI commands in an atomic manner.
*
* When no SCMI atomic transport support is available we instead provide
* only the prepare/unprepare API, as allowed by the clock framework
* when atomic calls are not available.
*/
if (feats_key & BIT(SCMI_CLK_STATE_CTRL_SUPPORTED)) {
if (feats_key & BIT(SCMI_CLK_ATOMIC_SUPPORTED)) {
ops->enable = scmi_clk_atomic_enable;
ops->disable = scmi_clk_atomic_disable;
} else {
ops->prepare = scmi_clk_enable;
ops->unprepare = scmi_clk_disable;
}
}
if (feats_key & BIT(SCMI_CLK_ATOMIC_SUPPORTED))
ops->is_enabled = scmi_clk_atomic_is_enabled;
else
ops->is_prepared = scmi_clk_is_enabled;
/* Rate ops */
ops->recalc_rate = scmi_clk_recalc_rate;
ops->round_rate = scmi_clk_round_rate;
ops->determine_rate = scmi_clk_determine_rate;
if (feats_key & BIT(SCMI_CLK_RATE_CTRL_SUPPORTED))
ops->set_rate = scmi_clk_set_rate;
/* Parent ops */
ops->get_parent = scmi_clk_get_parent;
if (feats_key & BIT(SCMI_CLK_PARENT_CTRL_SUPPORTED))
ops->set_parent = scmi_clk_set_parent;
/* Duty cycle */
if (feats_key & BIT(SCMI_CLK_DUTY_CYCLE_SUPPORTED)) {
ops->get_duty_cycle = scmi_clk_get_duty_cycle;
ops->set_duty_cycle = scmi_clk_set_duty_cycle;
}
return ops;
}
/**
* scmi_clk_ops_select() - Select a proper set of clock operations
* @sclk: A reference to an SCMI clock descriptor
* @atomic_capable: A flag to indicate if atomic mode is supported by the
* transport
* @atomic_threshold_us: Platform atomic threshold value in microseconds:
* clk_ops are atomic when clock enable latency is less
* than this threshold
* @clk_ops_db: A reference to the array used as a database to store all the
* created clock operations combinations.
* @db_size: Maximum number of entries held by @clk_ops_db
*
* After having built a bitmap descriptor to represent the set of features
* needed by this SCMI clock, at first use it to lookup into the set of
* previously allocated clk_ops to check if a suitable combination of clock
* operations was already created; when no match is found allocate a brand new
* set of clk_ops satisfying the required combination of features and save it
* for future references.
*
* In this way only one set of clk_ops is ever created for each different
* combination that is effectively needed by a driver instance.
*
* Return: A pointer to the allocated and configured clk_ops on success, or
* NULL otherwise.
*/
static const struct clk_ops *
scmi_clk_ops_select(struct scmi_clk *sclk, bool atomic_capable,
unsigned int atomic_threshold_us,
const struct clk_ops **clk_ops_db, size_t db_size)
{
const struct scmi_clock_info *ci = sclk->info;
unsigned int feats_key = 0;
const struct clk_ops *ops;
/*
* Note that when transport is atomic but SCMI protocol did not
* specify (or support) an enable_latency associated with a
* clock, we default to use atomic operations mode.
*/
if (atomic_capable && ci->enable_latency <= atomic_threshold_us)
feats_key |= BIT(SCMI_CLK_ATOMIC_SUPPORTED);
if (!ci->state_ctrl_forbidden)
feats_key |= BIT(SCMI_CLK_STATE_CTRL_SUPPORTED);
if (!ci->rate_ctrl_forbidden)
feats_key |= BIT(SCMI_CLK_RATE_CTRL_SUPPORTED);
if (!ci->parent_ctrl_forbidden)
feats_key |= BIT(SCMI_CLK_PARENT_CTRL_SUPPORTED);
if (ci->extended_config)
feats_key |= BIT(SCMI_CLK_DUTY_CYCLE_SUPPORTED);
if (WARN_ON(feats_key >= db_size))
return NULL;
/* Lookup previously allocated ops */
ops = clk_ops_db[feats_key];
if (ops)
return ops;
/* Did not find a pre-allocated clock_ops */
ops = scmi_clk_ops_alloc(sclk->dev, feats_key);
if (!ops)
return NULL;
/* Store new ops combinations */
clk_ops_db[feats_key] = ops;
return ops;
}
static int scmi_clocks_probe(struct scmi_device *sdev)
{
int idx, count, err;
unsigned int atomic_threshold_us;
bool transport_is_atomic;
struct clk_hw **hws;
struct clk_hw_onecell_data *clk_data;
struct device *dev = &sdev->dev;
struct device_node *np = dev->of_node;
const struct scmi_handle *handle = sdev->handle;
struct scmi_protocol_handle *ph;
const struct clk_ops *scmi_clk_ops_db[SCMI_MAX_CLK_OPS] = {};
if (!handle)
return -ENODEV;
scmi_proto_clk_ops =
handle->devm_protocol_get(sdev, SCMI_PROTOCOL_CLOCK, &ph);
if (IS_ERR(scmi_proto_clk_ops))
return PTR_ERR(scmi_proto_clk_ops);
count = scmi_proto_clk_ops->count_get(ph);
if (count < 0) {
dev_err(dev, "%pOFn: invalid clock output count\n", np);
return -EINVAL;
}
clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, count),
GFP_KERNEL);
if (!clk_data)
return -ENOMEM;
clk_data->num = count;
hws = clk_data->hws;
transport_is_atomic = handle->is_transport_atomic(handle,
&atomic_threshold_us);
for (idx = 0; idx < count; idx++) {
struct scmi_clk *sclk;
const struct clk_ops *scmi_ops;
sclk = devm_kzalloc(dev, sizeof(*sclk), GFP_KERNEL);
if (!sclk)
return -ENOMEM;
sclk->info = scmi_proto_clk_ops->info_get(ph, idx);
if (!sclk->info) {
dev_dbg(dev, "invalid clock info for idx %d\n", idx);
devm_kfree(dev, sclk);
continue;
}
sclk->id = idx;
sclk->ph = ph;
sclk->dev = dev;
/*
* Note that the scmi_clk_ops_db is on the stack, not global,
* because it cannot be shared between mulitple probe-sequences
* to avoid sharing the devm_ allocated clk_ops between multiple
* SCMI clk driver instances.
*/
scmi_ops = scmi_clk_ops_select(sclk, transport_is_atomic,
atomic_threshold_us,
scmi_clk_ops_db,
ARRAY_SIZE(scmi_clk_ops_db));
if (!scmi_ops)
return -ENOMEM;
/* Initialize clock parent data. */
if (sclk->info->num_parents > 0) {
sclk->parent_data = devm_kcalloc(dev, sclk->info->num_parents,
sizeof(*sclk->parent_data), GFP_KERNEL);
if (!sclk->parent_data)
return -ENOMEM;
for (int i = 0; i < sclk->info->num_parents; i++) {
sclk->parent_data[i].index = sclk->info->parents[i];
sclk->parent_data[i].hw = hws[sclk->info->parents[i]];
}
}
err = scmi_clk_ops_init(dev, sclk, scmi_ops);
if (err) {
dev_err(dev, "failed to register clock %d\n", idx);
devm_kfree(dev, sclk->parent_data);
devm_kfree(dev, sclk);
hws[idx] = NULL;
} else {
dev_dbg(dev, "Registered clock:%s%s\n",
sclk->info->name,
scmi_ops->enable ? " (atomic ops)" : "");
hws[idx] = &sclk->hw;
}
}
return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
clk_data);
}
static const struct scmi_device_id scmi_id_table[] = {
{ SCMI_PROTOCOL_CLOCK, "clocks" },
{ },
};
MODULE_DEVICE_TABLE(scmi, scmi_id_table);
static struct scmi_driver scmi_clocks_driver = {
.name = "scmi-clocks",
.probe = scmi_clocks_probe,
.id_table = scmi_id_table,
};
module_scmi_driver(scmi_clocks_driver);
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("ARM SCMI clock driver");
MODULE_LICENSE("GPL v2");