linux-stable/fs/affs/super.c
Eric Sandeen de25e36d83
affs: convert affs to use the new mount api
Convert the affs filesystem to use the new mount API.
Tested by comparing random mount & remount options before and after
the change.

Cc: David Sterba <dsterba@suse.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Link: https://lore.kernel.org/r/a1c72d1a-8389-45cb-9aa6-638bfa1ebc23@sandeen.net
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-09-18 11:44:43 +02:00

683 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/fs/affs/inode.c
*
* (c) 1996 Hans-Joachim Widmaier - Rewritten
*
* (C) 1993 Ray Burr - Modified for Amiga FFS filesystem.
*
* (C) 1992 Eric Youngdale Modified for ISO 9660 filesystem.
*
* (C) 1991 Linus Torvalds - minix filesystem
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/statfs.h>
#include <linux/fs_parser.h>
#include <linux/fs_context.h>
#include <linux/magic.h>
#include <linux/sched.h>
#include <linux/cred.h>
#include <linux/slab.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/seq_file.h>
#include <linux/iversion.h>
#include "affs.h"
static int affs_statfs(struct dentry *dentry, struct kstatfs *buf);
static int affs_show_options(struct seq_file *m, struct dentry *root);
static void
affs_commit_super(struct super_block *sb, int wait)
{
struct affs_sb_info *sbi = AFFS_SB(sb);
struct buffer_head *bh = sbi->s_root_bh;
struct affs_root_tail *tail = AFFS_ROOT_TAIL(sb, bh);
lock_buffer(bh);
affs_secs_to_datestamp(ktime_get_real_seconds(), &tail->disk_change);
affs_fix_checksum(sb, bh);
unlock_buffer(bh);
mark_buffer_dirty(bh);
if (wait)
sync_dirty_buffer(bh);
}
static void
affs_put_super(struct super_block *sb)
{
struct affs_sb_info *sbi = AFFS_SB(sb);
pr_debug("%s()\n", __func__);
cancel_delayed_work_sync(&sbi->sb_work);
}
static int
affs_sync_fs(struct super_block *sb, int wait)
{
affs_commit_super(sb, wait);
return 0;
}
static void flush_superblock(struct work_struct *work)
{
struct affs_sb_info *sbi;
struct super_block *sb;
sbi = container_of(work, struct affs_sb_info, sb_work.work);
sb = sbi->sb;
spin_lock(&sbi->work_lock);
sbi->work_queued = 0;
spin_unlock(&sbi->work_lock);
affs_commit_super(sb, 1);
}
void affs_mark_sb_dirty(struct super_block *sb)
{
struct affs_sb_info *sbi = AFFS_SB(sb);
unsigned long delay;
if (sb_rdonly(sb))
return;
spin_lock(&sbi->work_lock);
if (!sbi->work_queued) {
delay = msecs_to_jiffies(dirty_writeback_interval * 10);
queue_delayed_work(system_long_wq, &sbi->sb_work, delay);
sbi->work_queued = 1;
}
spin_unlock(&sbi->work_lock);
}
static struct kmem_cache * affs_inode_cachep;
static struct inode *affs_alloc_inode(struct super_block *sb)
{
struct affs_inode_info *i;
i = alloc_inode_sb(sb, affs_inode_cachep, GFP_KERNEL);
if (!i)
return NULL;
inode_set_iversion(&i->vfs_inode, 1);
i->i_lc = NULL;
i->i_ext_bh = NULL;
i->i_pa_cnt = 0;
return &i->vfs_inode;
}
static void affs_free_inode(struct inode *inode)
{
kmem_cache_free(affs_inode_cachep, AFFS_I(inode));
}
static void init_once(void *foo)
{
struct affs_inode_info *ei = (struct affs_inode_info *) foo;
mutex_init(&ei->i_link_lock);
mutex_init(&ei->i_ext_lock);
inode_init_once(&ei->vfs_inode);
}
static int __init init_inodecache(void)
{
affs_inode_cachep = kmem_cache_create("affs_inode_cache",
sizeof(struct affs_inode_info),
0, (SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT),
init_once);
if (affs_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(affs_inode_cachep);
}
static const struct super_operations affs_sops = {
.alloc_inode = affs_alloc_inode,
.free_inode = affs_free_inode,
.write_inode = affs_write_inode,
.evict_inode = affs_evict_inode,
.put_super = affs_put_super,
.sync_fs = affs_sync_fs,
.statfs = affs_statfs,
.show_options = affs_show_options,
};
enum {
Opt_bs, Opt_mode, Opt_mufs, Opt_notruncate, Opt_prefix, Opt_protect,
Opt_reserved, Opt_root, Opt_setgid, Opt_setuid,
Opt_verbose, Opt_volume, Opt_ignore,
};
struct affs_context {
kuid_t uid; /* uid to override */
kgid_t gid; /* gid to override */
unsigned int mode; /* mode to override */
unsigned int reserved; /* Number of reserved blocks */
int root_block; /* FFS root block number */
int blocksize; /* Initial device blksize */
char *prefix; /* Prefix for volumes and assigns */
char volume[32]; /* Vol. prefix for absolute symlinks */
unsigned long mount_flags; /* Options */
};
static const struct fs_parameter_spec affs_param_spec[] = {
fsparam_u32 ("bs", Opt_bs),
fsparam_u32oct ("mode", Opt_mode),
fsparam_flag ("mufs", Opt_mufs),
fsparam_flag ("nofilenametruncate", Opt_notruncate),
fsparam_string ("prefix", Opt_prefix),
fsparam_flag ("protect", Opt_protect),
fsparam_u32 ("reserved", Opt_reserved),
fsparam_u32 ("root", Opt_root),
fsparam_gid ("setgid", Opt_setgid),
fsparam_uid ("setuid", Opt_setuid),
fsparam_flag ("verbose", Opt_verbose),
fsparam_string ("volume", Opt_volume),
fsparam_flag ("grpquota", Opt_ignore),
fsparam_flag ("noquota", Opt_ignore),
fsparam_flag ("quota", Opt_ignore),
fsparam_flag ("usrquota", Opt_ignore),
{},
};
static int affs_parse_param(struct fs_context *fc, struct fs_parameter *param)
{
struct affs_context *ctx = fc->fs_private;
struct fs_parse_result result;
int n;
int opt;
opt = fs_parse(fc, affs_param_spec, param, &result);
if (opt < 0)
return opt;
switch (opt) {
case Opt_bs:
n = result.uint_32;
if (n != 512 && n != 1024 && n != 2048
&& n != 4096) {
pr_warn("Invalid blocksize (512, 1024, 2048, 4096 allowed)\n");
return -EINVAL;
}
ctx->blocksize = n;
break;
case Opt_mode:
ctx->mode = result.uint_32 & 0777;
affs_set_opt(ctx->mount_flags, SF_SETMODE);
break;
case Opt_mufs:
affs_set_opt(ctx->mount_flags, SF_MUFS);
break;
case Opt_notruncate:
affs_set_opt(ctx->mount_flags, SF_NO_TRUNCATE);
break;
case Opt_prefix:
kfree(ctx->prefix);
ctx->prefix = param->string;
param->string = NULL;
affs_set_opt(ctx->mount_flags, SF_PREFIX);
break;
case Opt_protect:
affs_set_opt(ctx->mount_flags, SF_IMMUTABLE);
break;
case Opt_reserved:
ctx->reserved = result.uint_32;
break;
case Opt_root:
ctx->root_block = result.uint_32;
break;
case Opt_setgid:
ctx->gid = result.gid;
affs_set_opt(ctx->mount_flags, SF_SETGID);
break;
case Opt_setuid:
ctx->uid = result.uid;
affs_set_opt(ctx->mount_flags, SF_SETUID);
break;
case Opt_verbose:
affs_set_opt(ctx->mount_flags, SF_VERBOSE);
break;
case Opt_volume:
strscpy(ctx->volume, param->string, 32);
break;
case Opt_ignore:
/* Silently ignore the quota options */
break;
default:
return -EINVAL;
}
return 0;
}
static int affs_show_options(struct seq_file *m, struct dentry *root)
{
struct super_block *sb = root->d_sb;
struct affs_sb_info *sbi = AFFS_SB(sb);
if (sb->s_blocksize)
seq_printf(m, ",bs=%lu", sb->s_blocksize);
if (affs_test_opt(sbi->s_flags, SF_SETMODE))
seq_printf(m, ",mode=%o", sbi->s_mode);
if (affs_test_opt(sbi->s_flags, SF_MUFS))
seq_puts(m, ",mufs");
if (affs_test_opt(sbi->s_flags, SF_NO_TRUNCATE))
seq_puts(m, ",nofilenametruncate");
if (affs_test_opt(sbi->s_flags, SF_PREFIX))
seq_printf(m, ",prefix=%s", sbi->s_prefix);
if (affs_test_opt(sbi->s_flags, SF_IMMUTABLE))
seq_puts(m, ",protect");
if (sbi->s_reserved != 2)
seq_printf(m, ",reserved=%u", sbi->s_reserved);
if (sbi->s_root_block != (sbi->s_reserved + sbi->s_partition_size - 1) / 2)
seq_printf(m, ",root=%u", sbi->s_root_block);
if (affs_test_opt(sbi->s_flags, SF_SETGID))
seq_printf(m, ",setgid=%u",
from_kgid_munged(&init_user_ns, sbi->s_gid));
if (affs_test_opt(sbi->s_flags, SF_SETUID))
seq_printf(m, ",setuid=%u",
from_kuid_munged(&init_user_ns, sbi->s_uid));
if (affs_test_opt(sbi->s_flags, SF_VERBOSE))
seq_puts(m, ",verbose");
if (sbi->s_volume[0])
seq_printf(m, ",volume=%s", sbi->s_volume);
return 0;
}
/* This function definitely needs to be split up. Some fine day I'll
* hopefully have the guts to do so. Until then: sorry for the mess.
*/
static int affs_fill_super(struct super_block *sb, struct fs_context *fc)
{
struct affs_sb_info *sbi;
struct affs_context *ctx = fc->fs_private;
struct buffer_head *root_bh = NULL;
struct buffer_head *boot_bh;
struct inode *root_inode = NULL;
int silent = fc->sb_flags & SB_SILENT;
int size, blocksize;
u32 chksum;
int num_bm;
int i, j;
int tmp_flags; /* fix remount prototype... */
u8 sig[4];
int ret;
sb->s_magic = AFFS_SUPER_MAGIC;
sb->s_op = &affs_sops;
sb->s_flags |= SB_NODIRATIME;
sb->s_time_gran = NSEC_PER_SEC;
sb->s_time_min = sys_tz.tz_minuteswest * 60 + AFFS_EPOCH_DELTA;
sb->s_time_max = 86400LL * U32_MAX + 86400 + sb->s_time_min;
sbi = kzalloc(sizeof(struct affs_sb_info), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sb->s_fs_info = sbi;
sbi->sb = sb;
mutex_init(&sbi->s_bmlock);
spin_lock_init(&sbi->symlink_lock);
spin_lock_init(&sbi->work_lock);
INIT_DELAYED_WORK(&sbi->sb_work, flush_superblock);
sbi->s_flags = ctx->mount_flags;
sbi->s_mode = ctx->mode;
sbi->s_uid = ctx->uid;
sbi->s_gid = ctx->gid;
sbi->s_reserved = ctx->reserved;
sbi->s_prefix = ctx->prefix;
ctx->prefix = NULL;
memcpy(sbi->s_volume, ctx->volume, 32);
/* N.B. after this point s_prefix must be released */
/* Get the size of the device in 512-byte blocks.
* If we later see that the partition uses bigger
* blocks, we will have to change it.
*/
size = bdev_nr_sectors(sb->s_bdev);
pr_debug("initial blocksize=%d, #blocks=%d\n", 512, size);
affs_set_blocksize(sb, PAGE_SIZE);
/* Try to find root block. Its location depends on the block size. */
i = bdev_logical_block_size(sb->s_bdev);
j = PAGE_SIZE;
blocksize = ctx->blocksize;
if (blocksize > 0) {
i = j = blocksize;
size = size / (blocksize / 512);
}
for (blocksize = i; blocksize <= j; blocksize <<= 1, size >>= 1) {
sbi->s_root_block = ctx->root_block;
if (ctx->root_block < 0)
sbi->s_root_block = (ctx->reserved + size - 1) / 2;
pr_debug("setting blocksize to %d\n", blocksize);
affs_set_blocksize(sb, blocksize);
sbi->s_partition_size = size;
/* The root block location that was calculated above is not
* correct if the partition size is an odd number of 512-
* byte blocks, which will be rounded down to a number of
* 1024-byte blocks, and if there were an even number of
* reserved blocks. Ideally, all partition checkers should
* report the real number of blocks of the real blocksize,
* but since this just cannot be done, we have to try to
* find the root block anyways. In the above case, it is one
* block behind the calculated one. So we check this one, too.
*/
for (num_bm = 0; num_bm < 2; num_bm++) {
pr_debug("Dev %s, trying root=%u, bs=%d, "
"size=%d, reserved=%d\n",
sb->s_id,
sbi->s_root_block + num_bm,
ctx->blocksize, size, ctx->reserved);
root_bh = affs_bread(sb, sbi->s_root_block + num_bm);
if (!root_bh)
continue;
if (!affs_checksum_block(sb, root_bh) &&
be32_to_cpu(AFFS_ROOT_HEAD(root_bh)->ptype) == T_SHORT &&
be32_to_cpu(AFFS_ROOT_TAIL(sb, root_bh)->stype) == ST_ROOT) {
sbi->s_hashsize = blocksize / 4 - 56;
sbi->s_root_block += num_bm;
goto got_root;
}
affs_brelse(root_bh);
root_bh = NULL;
}
}
if (!silent)
pr_err("No valid root block on device %s\n", sb->s_id);
return -EINVAL;
/* N.B. after this point bh must be released */
got_root:
/* Keep super block in cache */
sbi->s_root_bh = root_bh;
ctx->root_block = sbi->s_root_block;
/* Find out which kind of FS we have */
boot_bh = sb_bread(sb, 0);
if (!boot_bh) {
pr_err("Cannot read boot block\n");
return -EINVAL;
}
memcpy(sig, boot_bh->b_data, 4);
brelse(boot_bh);
chksum = be32_to_cpu(*(__be32 *)sig);
/* Dircache filesystems are compatible with non-dircache ones
* when reading. As long as they aren't supported, writing is
* not recommended.
*/
if ((chksum == FS_DCFFS || chksum == MUFS_DCFFS || chksum == FS_DCOFS
|| chksum == MUFS_DCOFS) && !sb_rdonly(sb)) {
pr_notice("Dircache FS - mounting %s read only\n", sb->s_id);
sb->s_flags |= SB_RDONLY;
}
switch (chksum) {
case MUFS_FS:
case MUFS_INTLFFS:
case MUFS_DCFFS:
affs_set_opt(sbi->s_flags, SF_MUFS);
fallthrough;
case FS_INTLFFS:
case FS_DCFFS:
affs_set_opt(sbi->s_flags, SF_INTL);
break;
case MUFS_FFS:
affs_set_opt(sbi->s_flags, SF_MUFS);
break;
case FS_FFS:
break;
case MUFS_OFS:
affs_set_opt(sbi->s_flags, SF_MUFS);
fallthrough;
case FS_OFS:
affs_set_opt(sbi->s_flags, SF_OFS);
sb->s_flags |= SB_NOEXEC;
break;
case MUFS_DCOFS:
case MUFS_INTLOFS:
affs_set_opt(sbi->s_flags, SF_MUFS);
fallthrough;
case FS_DCOFS:
case FS_INTLOFS:
affs_set_opt(sbi->s_flags, SF_INTL);
affs_set_opt(sbi->s_flags, SF_OFS);
sb->s_flags |= SB_NOEXEC;
break;
default:
pr_err("Unknown filesystem on device %s: %08X\n",
sb->s_id, chksum);
return -EINVAL;
}
if (affs_test_opt(ctx->mount_flags, SF_VERBOSE)) {
u8 len = AFFS_ROOT_TAIL(sb, root_bh)->disk_name[0];
pr_notice("Mounting volume \"%.*s\": Type=%.3s\\%c, Blocksize=%d\n",
len > 31 ? 31 : len,
AFFS_ROOT_TAIL(sb, root_bh)->disk_name + 1,
sig, sig[3] + '0', blocksize);
}
sb->s_flags |= SB_NODEV | SB_NOSUID;
sbi->s_data_blksize = sb->s_blocksize;
if (affs_test_opt(sbi->s_flags, SF_OFS))
sbi->s_data_blksize -= 24;
tmp_flags = sb->s_flags;
ret = affs_init_bitmap(sb, &tmp_flags);
if (ret)
return ret;
sb->s_flags = tmp_flags;
/* set up enough so that it can read an inode */
root_inode = affs_iget(sb, ctx->root_block);
if (IS_ERR(root_inode))
return PTR_ERR(root_inode);
if (affs_test_opt(AFFS_SB(sb)->s_flags, SF_INTL))
sb->s_d_op = &affs_intl_dentry_operations;
else
sb->s_d_op = &affs_dentry_operations;
sb->s_root = d_make_root(root_inode);
if (!sb->s_root) {
pr_err("AFFS: Get root inode failed\n");
return -ENOMEM;
}
sb->s_export_op = &affs_export_ops;
pr_debug("s_flags=%lX\n", sb->s_flags);
return 0;
}
static int affs_reconfigure(struct fs_context *fc)
{
struct super_block *sb = fc->root->d_sb;
struct affs_context *ctx = fc->fs_private;
struct affs_sb_info *sbi = AFFS_SB(sb);
int res = 0;
sync_filesystem(sb);
fc->sb_flags |= SB_NODIRATIME;
flush_delayed_work(&sbi->sb_work);
/*
* NB: Historically, only mount_flags, mode, uid, gic, prefix,
* and volume are accepted during remount.
*/
sbi->s_flags = ctx->mount_flags;
sbi->s_mode = ctx->mode;
sbi->s_uid = ctx->uid;
sbi->s_gid = ctx->gid;
/* protect against readers */
spin_lock(&sbi->symlink_lock);
if (ctx->prefix) {
kfree(sbi->s_prefix);
sbi->s_prefix = ctx->prefix;
ctx->prefix = NULL;
}
memcpy(sbi->s_volume, ctx->volume, 32);
spin_unlock(&sbi->symlink_lock);
if ((bool)(fc->sb_flags & SB_RDONLY) == sb_rdonly(sb))
return 0;
if (fc->sb_flags & SB_RDONLY)
affs_free_bitmap(sb);
else
res = affs_init_bitmap(sb, &fc->sb_flags);
return res;
}
static int
affs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
int free;
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
pr_debug("%s() partsize=%d, reserved=%d\n",
__func__, AFFS_SB(sb)->s_partition_size,
AFFS_SB(sb)->s_reserved);
free = affs_count_free_blocks(sb);
buf->f_type = AFFS_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = AFFS_SB(sb)->s_partition_size - AFFS_SB(sb)->s_reserved;
buf->f_bfree = free;
buf->f_bavail = free;
buf->f_fsid = u64_to_fsid(id);
buf->f_namelen = AFFSNAMEMAX;
return 0;
}
static int affs_get_tree(struct fs_context *fc)
{
return get_tree_bdev(fc, affs_fill_super);
}
static void affs_kill_sb(struct super_block *sb)
{
struct affs_sb_info *sbi = AFFS_SB(sb);
kill_block_super(sb);
if (sbi) {
affs_free_bitmap(sb);
affs_brelse(sbi->s_root_bh);
kfree(sbi->s_prefix);
mutex_destroy(&sbi->s_bmlock);
kfree_rcu(sbi, rcu);
}
}
static void affs_free_fc(struct fs_context *fc)
{
struct affs_context *ctx = fc->fs_private;
kfree(ctx->prefix);
kfree(ctx);
}
static const struct fs_context_operations affs_context_ops = {
.parse_param = affs_parse_param,
.get_tree = affs_get_tree,
.reconfigure = affs_reconfigure,
.free = affs_free_fc,
};
static int affs_init_fs_context(struct fs_context *fc)
{
struct affs_context *ctx;
ctx = kzalloc(sizeof(struct affs_context), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
struct super_block *sb = fc->root->d_sb;
struct affs_sb_info *sbi = AFFS_SB(sb);
/*
* NB: historically, no options other than volume were
* preserved across a remount unless they were explicitly
* passed in.
*/
memcpy(ctx->volume, sbi->s_volume, 32);
} else {
ctx->uid = current_uid();
ctx->gid = current_gid();
ctx->reserved = 2;
ctx->root_block = -1;
ctx->blocksize = -1;
ctx->volume[0] = ':';
}
fc->ops = &affs_context_ops;
fc->fs_private = ctx;
return 0;
}
static struct file_system_type affs_fs_type = {
.owner = THIS_MODULE,
.name = "affs",
.kill_sb = affs_kill_sb,
.fs_flags = FS_REQUIRES_DEV,
.init_fs_context = affs_init_fs_context,
.parameters = affs_param_spec,
};
MODULE_ALIAS_FS("affs");
static int __init init_affs_fs(void)
{
int err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&affs_fs_type);
if (err)
goto out;
return 0;
out:
destroy_inodecache();
out1:
return err;
}
static void __exit exit_affs_fs(void)
{
unregister_filesystem(&affs_fs_type);
destroy_inodecache();
}
MODULE_DESCRIPTION("Amiga filesystem support for Linux");
MODULE_LICENSE("GPL");
module_init(init_affs_fs)
module_exit(exit_affs_fs)