linux-stable/drivers/char/tpm/tpm2-sessions.c
Al Viro 5f60d5f6bb move asm/unaligned.h to linux/unaligned.h
asm/unaligned.h is always an include of asm-generic/unaligned.h;
might as well move that thing to linux/unaligned.h and include
that - there's nothing arch-specific in that header.

auto-generated by the following:

for i in `git grep -l -w asm/unaligned.h`; do
	sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i
done
for i in `git grep -l -w asm-generic/unaligned.h`; do
	sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i
done
git mv include/asm-generic/unaligned.h include/linux/unaligned.h
git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h
sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild
sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
2024-10-02 17:23:23 -04:00

1367 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 James.Bottomley@HansenPartnership.com
*
* Cryptographic helper routines for handling TPM2 sessions for
* authorization HMAC and request response encryption.
*
* The idea is to ensure that every TPM command is HMAC protected by a
* session, meaning in-flight tampering would be detected and in
* addition all sensitive inputs and responses should be encrypted.
*
* The basic way this works is to use a TPM feature called salted
* sessions where a random secret used in session construction is
* encrypted to the public part of a known TPM key. The problem is we
* have no known keys, so initially a primary Elliptic Curve key is
* derived from the NULL seed (we use EC because most TPMs generate
* these keys much faster than RSA ones). The curve used is NIST_P256
* because that's now mandated to be present in 'TCG TPM v2.0
* Provisioning Guidance'
*
* Threat problems: the initial TPM2_CreatePrimary is not (and cannot
* be) session protected, so a clever Man in the Middle could return a
* public key they control to this command and from there intercept
* and decode all subsequent session based transactions. The kernel
* cannot mitigate this threat but, after boot, userspace can get
* proof this has not happened by asking the TPM to certify the NULL
* key. This certification would chain back to the TPM Endorsement
* Certificate and prove the NULL seed primary had not been tampered
* with and thus all sessions must have been cryptographically secure.
* To assist with this, the initial NULL seed public key name is made
* available in a sysfs file.
*
* Use of these functions:
*
* The design is all the crypto, hash and hmac gunk is confined in this
* file and never needs to be seen even by the kernel internal user. To
* the user there's an init function tpm2_sessions_init() that needs to
* be called once per TPM which generates the NULL seed primary key.
*
* These are the usage functions:
*
* tpm2_start_auth_session() which allocates the opaque auth structure
* and gets a session from the TPM. This must be called before
* any of the following functions. The session is protected by a
* session_key which is derived from a random salt value
* encrypted to the NULL seed.
* tpm2_end_auth_session() kills the session and frees the resources.
* Under normal operation this function is done by
* tpm_buf_check_hmac_response(), so this is only to be used on
* error legs where the latter is not executed.
* tpm_buf_append_name() to add a handle to the buffer. This must be
* used in place of the usual tpm_buf_append_u32() for adding
* handles because handles have to be processed specially when
* calculating the HMAC. In particular, for NV, volatile and
* permanent objects you now need to provide the name.
* tpm_buf_append_hmac_session() which appends the hmac session to the
* buf in the same way tpm_buf_append_auth does().
* tpm_buf_fill_hmac_session() This calculates the correct hash and
* places it in the buffer. It must be called after the complete
* command buffer is finalized so it can fill in the correct HMAC
* based on the parameters.
* tpm_buf_check_hmac_response() which checks the session response in
* the buffer and calculates what it should be. If there's a
* mismatch it will log a warning and return an error. If
* tpm_buf_append_hmac_session() did not specify
* TPM_SA_CONTINUE_SESSION then the session will be closed (if it
* hasn't been consumed) and the auth structure freed.
*/
#include "tpm.h"
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <linux/unaligned.h>
#include <crypto/kpp.h>
#include <crypto/ecdh.h>
#include <crypto/hash.h>
#include <crypto/hmac.h>
/* maximum number of names the TPM must remember for authorization */
#define AUTH_MAX_NAMES 3
#define AES_KEY_BYTES AES_KEYSIZE_128
#define AES_KEY_BITS (AES_KEY_BYTES*8)
/*
* This is the structure that carries all the auth information (like
* session handle, nonces, session key and auth) from use to use it is
* designed to be opaque to anything outside.
*/
struct tpm2_auth {
u32 handle;
/*
* This has two meanings: before tpm_buf_fill_hmac_session()
* it marks the offset in the buffer of the start of the
* sessions (i.e. after all the handles). Once the buffer has
* been filled it markes the session number of our auth
* session so we can find it again in the response buffer.
*
* The two cases are distinguished because the first offset
* must always be greater than TPM_HEADER_SIZE and the second
* must be less than or equal to 5.
*/
u32 session;
/*
* the size here is variable and set by the size of our_nonce
* which must be between 16 and the name hash length. we set
* the maximum sha256 size for the greatest protection
*/
u8 our_nonce[SHA256_DIGEST_SIZE];
u8 tpm_nonce[SHA256_DIGEST_SIZE];
/*
* the salt is only used across the session command/response
* after that it can be used as a scratch area
*/
union {
u8 salt[EC_PT_SZ];
/* scratch for key + IV */
u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE];
};
/*
* the session key and passphrase are the same size as the
* name digest (sha256 again). The session key is constant
* for the use of the session and the passphrase can change
* with every invocation.
*
* Note: these fields must be adjacent and in this order
* because several HMAC/KDF schemes use the combination of the
* session_key and passphrase.
*/
u8 session_key[SHA256_DIGEST_SIZE];
u8 passphrase[SHA256_DIGEST_SIZE];
int passphrase_len;
struct crypto_aes_ctx aes_ctx;
/* saved session attributes: */
u8 attrs;
__be32 ordinal;
/*
* memory for three authorization handles. We know them by
* handle, but they are part of the session by name, which
* we must compute and remember
*/
u32 name_h[AUTH_MAX_NAMES];
u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE];
};
#ifdef CONFIG_TCG_TPM2_HMAC
/*
* Name Size based on TPM algorithm (assumes no hash bigger than 255)
*/
static u8 name_size(const u8 *name)
{
static u8 size_map[] = {
[TPM_ALG_SHA1] = SHA1_DIGEST_SIZE,
[TPM_ALG_SHA256] = SHA256_DIGEST_SIZE,
[TPM_ALG_SHA384] = SHA384_DIGEST_SIZE,
[TPM_ALG_SHA512] = SHA512_DIGEST_SIZE,
};
u16 alg = get_unaligned_be16(name);
return size_map[alg] + 2;
}
static int tpm2_parse_read_public(char *name, struct tpm_buf *buf)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
off_t offset = TPM_HEADER_SIZE;
u32 tot_len = be32_to_cpu(head->length);
u32 val;
/* we're starting after the header so adjust the length */
tot_len -= TPM_HEADER_SIZE;
/* skip public */
val = tpm_buf_read_u16(buf, &offset);
if (val > tot_len)
return -EINVAL;
offset += val;
/* name */
val = tpm_buf_read_u16(buf, &offset);
if (val != name_size(&buf->data[offset]))
return -EINVAL;
memcpy(name, &buf->data[offset], val);
/* forget the rest */
return 0;
}
static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name)
{
struct tpm_buf buf;
int rc;
rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC);
if (rc)
return rc;
tpm_buf_append_u32(&buf, handle);
rc = tpm_transmit_cmd(chip, &buf, 0, "read public");
if (rc == TPM2_RC_SUCCESS)
rc = tpm2_parse_read_public(name, &buf);
tpm_buf_destroy(&buf);
return rc;
}
#endif /* CONFIG_TCG_TPM2_HMAC */
/**
* tpm_buf_append_name() - add a handle area to the buffer
* @chip: the TPM chip structure
* @buf: The buffer to be appended
* @handle: The handle to be appended
* @name: The name of the handle (may be NULL)
*
* In order to compute session HMACs, we need to know the names of the
* objects pointed to by the handles. For most objects, this is simply
* the actual 4 byte handle or an empty buf (in these cases @name
* should be NULL) but for volatile objects, permanent objects and NV
* areas, the name is defined as the hash (according to the name
* algorithm which should be set to sha256) of the public area to
* which the two byte algorithm id has been appended. For these
* objects, the @name pointer should point to this. If a name is
* required but @name is NULL, then TPM2_ReadPublic() will be called
* on the handle to obtain the name.
*
* As with most tpm_buf operations, success is assumed because failure
* will be caused by an incorrect programming model and indicated by a
* kernel message.
*/
void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
u32 handle, u8 *name)
{
#ifdef CONFIG_TCG_TPM2_HMAC
enum tpm2_mso_type mso = tpm2_handle_mso(handle);
struct tpm2_auth *auth;
int slot;
#endif
if (!tpm2_chip_auth(chip)) {
tpm_buf_append_u32(buf, handle);
/* count the number of handles in the upper bits of flags */
buf->handles++;
return;
}
#ifdef CONFIG_TCG_TPM2_HMAC
slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE) / 4;
if (slot >= AUTH_MAX_NAMES) {
dev_err(&chip->dev, "TPM: too many handles\n");
return;
}
auth = chip->auth;
WARN(auth->session != tpm_buf_length(buf),
"name added in wrong place\n");
tpm_buf_append_u32(buf, handle);
auth->session += 4;
if (mso == TPM2_MSO_PERSISTENT ||
mso == TPM2_MSO_VOLATILE ||
mso == TPM2_MSO_NVRAM) {
if (!name)
tpm2_read_public(chip, handle, auth->name[slot]);
} else {
if (name)
dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n");
}
auth->name_h[slot] = handle;
if (name)
memcpy(auth->name[slot], name, name_size(name));
#endif
}
EXPORT_SYMBOL_GPL(tpm_buf_append_name);
/**
* tpm_buf_append_hmac_session() - Append a TPM session element
* @chip: the TPM chip structure
* @buf: The buffer to be appended
* @attributes: The session attributes
* @passphrase: The session authority (NULL if none)
* @passphrase_len: The length of the session authority (0 if none)
*
* This fills in a session structure in the TPM command buffer, except
* for the HMAC which cannot be computed until the command buffer is
* complete. The type of session is controlled by the @attributes,
* the main ones of which are TPM2_SA_CONTINUE_SESSION which means the
* session won't terminate after tpm_buf_check_hmac_response(),
* TPM2_SA_DECRYPT which means this buffers first parameter should be
* encrypted with a session key and TPM2_SA_ENCRYPT, which means the
* response buffer's first parameter needs to be decrypted (confusing,
* but the defines are written from the point of view of the TPM).
*
* Any session appended by this command must be finalized by calling
* tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect
* and the TPM will reject the command.
*
* As with most tpm_buf operations, success is assumed because failure
* will be caused by an incorrect programming model and indicated by a
* kernel message.
*/
void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
u8 attributes, u8 *passphrase,
int passphrase_len)
{
#ifdef CONFIG_TCG_TPM2_HMAC
u8 nonce[SHA256_DIGEST_SIZE];
struct tpm2_auth *auth;
u32 len;
#endif
if (!tpm2_chip_auth(chip)) {
/* offset tells us where the sessions area begins */
int offset = buf->handles * 4 + TPM_HEADER_SIZE;
u32 len = 9 + passphrase_len;
if (tpm_buf_length(buf) != offset) {
/* not the first session so update the existing length */
len += get_unaligned_be32(&buf->data[offset]);
put_unaligned_be32(len, &buf->data[offset]);
} else {
tpm_buf_append_u32(buf, len);
}
/* auth handle */
tpm_buf_append_u32(buf, TPM2_RS_PW);
/* nonce */
tpm_buf_append_u16(buf, 0);
/* attributes */
tpm_buf_append_u8(buf, 0);
/* passphrase */
tpm_buf_append_u16(buf, passphrase_len);
tpm_buf_append(buf, passphrase, passphrase_len);
return;
}
#ifdef CONFIG_TCG_TPM2_HMAC
/*
* The Architecture Guide requires us to strip trailing zeros
* before computing the HMAC
*/
while (passphrase && passphrase_len > 0 && passphrase[passphrase_len - 1] == '\0')
passphrase_len--;
auth = chip->auth;
auth->attrs = attributes;
auth->passphrase_len = passphrase_len;
if (passphrase_len)
memcpy(auth->passphrase, passphrase, passphrase_len);
if (auth->session != tpm_buf_length(buf)) {
/* we're not the first session */
len = get_unaligned_be32(&buf->data[auth->session]);
if (4 + len + auth->session != tpm_buf_length(buf)) {
WARN(1, "session length mismatch, cannot append");
return;
}
/* add our new session */
len += 9 + 2 * SHA256_DIGEST_SIZE;
put_unaligned_be32(len, &buf->data[auth->session]);
} else {
tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE);
}
/* random number for our nonce */
get_random_bytes(nonce, sizeof(nonce));
memcpy(auth->our_nonce, nonce, sizeof(nonce));
tpm_buf_append_u32(buf, auth->handle);
/* our new nonce */
tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
tpm_buf_append_u8(buf, auth->attrs);
/* and put a placeholder for the hmac */
tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
#endif
}
EXPORT_SYMBOL_GPL(tpm_buf_append_hmac_session);
#ifdef CONFIG_TCG_TPM2_HMAC
static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
u32 *handle, u8 *name);
/*
* It turns out the crypto hmac(sha256) is hard for us to consume
* because it assumes a fixed key and the TPM seems to change the key
* on every operation, so we weld the hmac init and final functions in
* here to give it the same usage characteristics as a regular hash
*/
static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len)
{
u8 pad[SHA256_BLOCK_SIZE];
int i;
sha256_init(sctx);
for (i = 0; i < sizeof(pad); i++) {
if (i < key_len)
pad[i] = key[i];
else
pad[i] = 0;
pad[i] ^= HMAC_IPAD_VALUE;
}
sha256_update(sctx, pad, sizeof(pad));
}
static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len,
u8 *out)
{
u8 pad[SHA256_BLOCK_SIZE];
int i;
for (i = 0; i < sizeof(pad); i++) {
if (i < key_len)
pad[i] = key[i];
else
pad[i] = 0;
pad[i] ^= HMAC_OPAD_VALUE;
}
/* collect the final hash; use out as temporary storage */
sha256_final(sctx, out);
sha256_init(sctx);
sha256_update(sctx, pad, sizeof(pad));
sha256_update(sctx, out, SHA256_DIGEST_SIZE);
sha256_final(sctx, out);
}
/*
* assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
* otherwise standard tpm2_KDFa. Note output is in bytes not bits.
*/
static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u,
u8 *v, u32 bytes, u8 *out)
{
u32 counter = 1;
const __be32 bits = cpu_to_be32(bytes * 8);
while (bytes > 0) {
struct sha256_state sctx;
__be32 c = cpu_to_be32(counter);
tpm2_hmac_init(&sctx, key, key_len);
sha256_update(&sctx, (u8 *)&c, sizeof(c));
sha256_update(&sctx, label, strlen(label)+1);
sha256_update(&sctx, u, SHA256_DIGEST_SIZE);
sha256_update(&sctx, v, SHA256_DIGEST_SIZE);
sha256_update(&sctx, (u8 *)&bits, sizeof(bits));
tpm2_hmac_final(&sctx, key, key_len, out);
bytes -= SHA256_DIGEST_SIZE;
counter++;
out += SHA256_DIGEST_SIZE;
}
}
/*
* Somewhat of a bastardization of the real KDFe. We're assuming
* we're working with known point sizes for the input parameters and
* the hash algorithm is fixed at sha256. Because we know that the
* point size is 32 bytes like the hash size, there's no need to loop
* in this KDF.
*/
static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
u8 *out)
{
struct sha256_state sctx;
/*
* this should be an iterative counter, but because we know
* we're only taking 32 bytes for the point using a sha256
* hash which is also 32 bytes, there's only one loop
*/
__be32 c = cpu_to_be32(1);
sha256_init(&sctx);
/* counter (BE) */
sha256_update(&sctx, (u8 *)&c, sizeof(c));
/* secret value */
sha256_update(&sctx, z, EC_PT_SZ);
/* string including trailing zero */
sha256_update(&sctx, str, strlen(str)+1);
sha256_update(&sctx, pt_u, EC_PT_SZ);
sha256_update(&sctx, pt_v, EC_PT_SZ);
sha256_final(&sctx, out);
}
static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip)
{
struct crypto_kpp *kpp;
struct kpp_request *req;
struct scatterlist s[2], d[1];
struct ecdh p = {0};
u8 encoded_key[EC_PT_SZ], *x, *y;
unsigned int buf_len;
/* secret is two sized points */
tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
/*
* we cheat here and append uninitialized data to form
* the points. All we care about is getting the two
* co-ordinate pointers, which will be used to overwrite
* the uninitialized data
*/
tpm_buf_append_u16(buf, EC_PT_SZ);
x = &buf->data[tpm_buf_length(buf)];
tpm_buf_append(buf, encoded_key, EC_PT_SZ);
tpm_buf_append_u16(buf, EC_PT_SZ);
y = &buf->data[tpm_buf_length(buf)];
tpm_buf_append(buf, encoded_key, EC_PT_SZ);
sg_init_table(s, 2);
sg_set_buf(&s[0], x, EC_PT_SZ);
sg_set_buf(&s[1], y, EC_PT_SZ);
kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
if (IS_ERR(kpp)) {
dev_err(&chip->dev, "crypto ecdh allocation failed\n");
return;
}
buf_len = crypto_ecdh_key_len(&p);
if (sizeof(encoded_key) < buf_len) {
dev_err(&chip->dev, "salt buffer too small needs %d\n",
buf_len);
goto out;
}
crypto_ecdh_encode_key(encoded_key, buf_len, &p);
/* this generates a random private key */
crypto_kpp_set_secret(kpp, encoded_key, buf_len);
/* salt is now the public point of this private key */
req = kpp_request_alloc(kpp, GFP_KERNEL);
if (!req)
goto out;
kpp_request_set_input(req, NULL, 0);
kpp_request_set_output(req, s, EC_PT_SZ*2);
crypto_kpp_generate_public_key(req);
/*
* we're not done: now we have to compute the shared secret
* which is our private key multiplied by the tpm_key public
* point, we actually only take the x point and discard the y
* point and feed it through KDFe to get the final secret salt
*/
sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
kpp_request_set_input(req, s, EC_PT_SZ*2);
sg_init_one(d, chip->auth->salt, EC_PT_SZ);
kpp_request_set_output(req, d, EC_PT_SZ);
crypto_kpp_compute_shared_secret(req);
kpp_request_free(req);
/*
* pass the shared secret through KDFe for salt. Note salt
* area is used both for input shared secret and output salt.
* This works because KDFe fully consumes the secret before it
* writes the salt
*/
tpm2_KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x,
chip->auth->salt);
out:
crypto_free_kpp(kpp);
}
/**
* tpm_buf_fill_hmac_session() - finalize the session HMAC
* @chip: the TPM chip structure
* @buf: The buffer to be appended
*
* This command must not be called until all of the parameters have
* been appended to @buf otherwise the computed HMAC will be
* incorrect.
*
* This function computes and fills in the session HMAC using the
* session key and, if TPM2_SA_DECRYPT was specified, computes the
* encryption key and encrypts the first parameter of the command
* buffer with it.
*
* As with most tpm_buf operations, success is assumed because failure
* will be caused by an incorrect programming model and indicated by a
* kernel message.
*/
void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf)
{
u32 cc, handles, val;
struct tpm2_auth *auth = chip->auth;
int i;
struct tpm_header *head = (struct tpm_header *)buf->data;
off_t offset_s = TPM_HEADER_SIZE, offset_p;
u8 *hmac = NULL;
u32 attrs;
u8 cphash[SHA256_DIGEST_SIZE];
struct sha256_state sctx;
if (!auth)
return;
/* save the command code in BE format */
auth->ordinal = head->ordinal;
cc = be32_to_cpu(head->ordinal);
i = tpm2_find_cc(chip, cc);
if (i < 0) {
dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc);
return;
}
attrs = chip->cc_attrs_tbl[i];
handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0);
/*
* just check the names, it's easy to make mistakes. This
* would happen if someone added a handle via
* tpm_buf_append_u32() instead of tpm_buf_append_name()
*/
for (i = 0; i < handles; i++) {
u32 handle = tpm_buf_read_u32(buf, &offset_s);
if (auth->name_h[i] != handle) {
dev_err(&chip->dev, "TPM: handle %d wrong for name\n",
i);
return;
}
}
/* point offset_s to the start of the sessions */
val = tpm_buf_read_u32(buf, &offset_s);
/* point offset_p to the start of the parameters */
offset_p = offset_s + val;
for (i = 1; offset_s < offset_p; i++) {
u32 handle = tpm_buf_read_u32(buf, &offset_s);
u16 len;
u8 a;
/* nonce (already in auth) */
len = tpm_buf_read_u16(buf, &offset_s);
offset_s += len;
a = tpm_buf_read_u8(buf, &offset_s);
len = tpm_buf_read_u16(buf, &offset_s);
if (handle == auth->handle && auth->attrs == a) {
hmac = &buf->data[offset_s];
/*
* save our session number so we know which
* session in the response belongs to us
*/
auth->session = i;
}
offset_s += len;
}
if (offset_s != offset_p) {
dev_err(&chip->dev, "TPM session length is incorrect\n");
return;
}
if (!hmac) {
dev_err(&chip->dev, "TPM could not find HMAC session\n");
return;
}
/* encrypt before HMAC */
if (auth->attrs & TPM2_SA_DECRYPT) {
u16 len;
/* need key and IV */
tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
+ auth->passphrase_len, "CFB", auth->our_nonce,
auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
auth->scratch);
len = tpm_buf_read_u16(buf, &offset_p);
aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p],
&buf->data[offset_p], len,
auth->scratch + AES_KEY_BYTES);
/* reset p to beginning of parameters for HMAC */
offset_p -= 2;
}
sha256_init(&sctx);
/* ordinal is already BE */
sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal));
/* add the handle names */
for (i = 0; i < handles; i++) {
enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]);
if (mso == TPM2_MSO_PERSISTENT ||
mso == TPM2_MSO_VOLATILE ||
mso == TPM2_MSO_NVRAM) {
sha256_update(&sctx, auth->name[i],
name_size(auth->name[i]));
} else {
__be32 h = cpu_to_be32(auth->name_h[i]);
sha256_update(&sctx, (u8 *)&h, 4);
}
}
if (offset_s != tpm_buf_length(buf))
sha256_update(&sctx, &buf->data[offset_s],
tpm_buf_length(buf) - offset_s);
sha256_final(&sctx, cphash);
/* now calculate the hmac */
tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
+ auth->passphrase_len);
sha256_update(&sctx, cphash, sizeof(cphash));
sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
sha256_update(&sctx, &auth->attrs, 1);
tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
+ auth->passphrase_len, hmac);
}
EXPORT_SYMBOL(tpm_buf_fill_hmac_session);
/**
* tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness
* @chip: the TPM chip structure
* @buf: the original command buffer (which now contains the response)
* @rc: the return code from tpm_transmit_cmd
*
* If @rc is non zero, @buf may not contain an actual return, so @rc
* is passed through as the return and the session cleaned up and
* de-allocated if required (this is required if
* TPM2_SA_CONTINUE_SESSION was not specified as a session flag).
*
* If @rc is zero, the response HMAC is computed against the returned
* @buf and matched to the TPM one in the session area. If there is a
* mismatch, an error is logged and -EINVAL returned.
*
* The reason for this is that the command issue and HMAC check
* sequence should look like:
*
* rc = tpm_transmit_cmd(...);
* rc = tpm_buf_check_hmac_response(&buf, auth, rc);
* if (rc)
* ...
*
* Which is easily layered into the current contrl flow.
*
* Returns: 0 on success or an error.
*/
int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
int rc)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
struct tpm2_auth *auth = chip->auth;
off_t offset_s, offset_p;
u8 rphash[SHA256_DIGEST_SIZE];
u32 attrs, cc;
struct sha256_state sctx;
u16 tag = be16_to_cpu(head->tag);
int parm_len, len, i, handles;
if (!auth)
return rc;
cc = be32_to_cpu(auth->ordinal);
if (auth->session >= TPM_HEADER_SIZE) {
WARN(1, "tpm session not filled correctly\n");
goto out;
}
if (rc != 0)
/* pass non success rc through and close the session */
goto out;
rc = -EINVAL;
if (tag != TPM2_ST_SESSIONS) {
dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n");
goto out;
}
i = tpm2_find_cc(chip, cc);
if (i < 0)
goto out;
attrs = chip->cc_attrs_tbl[i];
handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1;
/* point to area beyond handles */
offset_s = TPM_HEADER_SIZE + handles * 4;
parm_len = tpm_buf_read_u32(buf, &offset_s);
offset_p = offset_s;
offset_s += parm_len;
/* skip over any sessions before ours */
for (i = 0; i < auth->session - 1; i++) {
len = tpm_buf_read_u16(buf, &offset_s);
offset_s += len + 1;
len = tpm_buf_read_u16(buf, &offset_s);
offset_s += len;
}
/* TPM nonce */
len = tpm_buf_read_u16(buf, &offset_s);
if (offset_s + len > tpm_buf_length(buf))
goto out;
if (len != SHA256_DIGEST_SIZE)
goto out;
memcpy(auth->tpm_nonce, &buf->data[offset_s], len);
offset_s += len;
attrs = tpm_buf_read_u8(buf, &offset_s);
len = tpm_buf_read_u16(buf, &offset_s);
if (offset_s + len != tpm_buf_length(buf))
goto out;
if (len != SHA256_DIGEST_SIZE)
goto out;
/*
* offset_s points to the HMAC. now calculate comparison, beginning
* with rphash
*/
sha256_init(&sctx);
/* yes, I know this is now zero, but it's what the standard says */
sha256_update(&sctx, (u8 *)&head->return_code,
sizeof(head->return_code));
/* ordinal is already BE */
sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal));
sha256_update(&sctx, &buf->data[offset_p], parm_len);
sha256_final(&sctx, rphash);
/* now calculate the hmac */
tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
+ auth->passphrase_len);
sha256_update(&sctx, rphash, sizeof(rphash));
sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
sha256_update(&sctx, &auth->attrs, 1);
/* we're done with the rphash, so put our idea of the hmac there */
tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
+ auth->passphrase_len, rphash);
if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) {
rc = 0;
} else {
dev_err(&chip->dev, "TPM: HMAC check failed\n");
goto out;
}
/* now do response decryption */
if (auth->attrs & TPM2_SA_ENCRYPT) {
/* need key and IV */
tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
+ auth->passphrase_len, "CFB", auth->tpm_nonce,
auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
auth->scratch);
len = tpm_buf_read_u16(buf, &offset_p);
aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p],
&buf->data[offset_p], len,
auth->scratch + AES_KEY_BYTES);
}
out:
if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) {
if (rc)
/* manually close the session if it wasn't consumed */
tpm2_flush_context(chip, auth->handle);
memzero_explicit(auth, sizeof(*auth));
} else {
/* reset for next use */
auth->session = TPM_HEADER_SIZE;
}
return rc;
}
EXPORT_SYMBOL(tpm_buf_check_hmac_response);
/**
* tpm2_end_auth_session() - kill the allocated auth session
* @chip: the TPM chip structure
*
* ends the session started by tpm2_start_auth_session and frees all
* the resources. Under normal conditions,
* tpm_buf_check_hmac_response() will correctly end the session if
* required, so this function is only for use in error legs that will
* bypass the normal invocation of tpm_buf_check_hmac_response().
*/
void tpm2_end_auth_session(struct tpm_chip *chip)
{
struct tpm2_auth *auth = chip->auth;
if (!auth)
return;
tpm2_flush_context(chip, auth->handle);
memzero_explicit(auth, sizeof(*auth));
}
EXPORT_SYMBOL(tpm2_end_auth_session);
static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
struct tpm_buf *buf)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
u32 tot_len = be32_to_cpu(head->length);
off_t offset = TPM_HEADER_SIZE;
u32 val;
/* we're starting after the header so adjust the length */
tot_len -= TPM_HEADER_SIZE;
/* should have handle plus nonce */
if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
return -EINVAL;
auth->handle = tpm_buf_read_u32(buf, &offset);
val = tpm_buf_read_u16(buf, &offset);
if (val != sizeof(auth->tpm_nonce))
return -EINVAL;
memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
/* now compute the session key from the nonces */
tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
auth->our_nonce, sizeof(auth->session_key),
auth->session_key);
return 0;
}
static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
{
int rc;
unsigned int offset = 0; /* dummy offset for null seed context */
u8 name[SHA256_DIGEST_SIZE + 2];
rc = tpm2_load_context(chip, chip->null_key_context, &offset,
null_key);
if (rc != -EINVAL)
return rc;
/* an integrity failure may mean the TPM has been reset */
dev_err(&chip->dev, "NULL key integrity failure!\n");
/* check the null name against what we know */
tpm2_create_primary(chip, TPM2_RH_NULL, NULL, name);
if (memcmp(name, chip->null_key_name, sizeof(name)) == 0)
/* name unchanged, assume transient integrity failure */
return rc;
/*
* Fatal TPM failure: the NULL seed has actually changed, so
* the TPM must have been illegally reset. All in-kernel TPM
* operations will fail because the NULL primary can't be
* loaded to salt the sessions, but disable the TPM anyway so
* userspace programmes can't be compromised by it.
*/
dev_err(&chip->dev, "NULL name has changed, disabling TPM due to interference\n");
chip->flags |= TPM_CHIP_FLAG_DISABLE;
return rc;
}
/**
* tpm2_start_auth_session() - create a HMAC authentication session with the TPM
* @chip: the TPM chip structure to create the session with
*
* This function loads the NULL seed from its saved context and starts
* an authentication session on the null seed, fills in the
* @chip->auth structure to contain all the session details necessary
* for performing the HMAC, encrypt and decrypt operations and
* returns. The NULL seed is flushed before this function returns.
*
* Return: zero on success or actual error encountered.
*/
int tpm2_start_auth_session(struct tpm_chip *chip)
{
struct tpm_buf buf;
struct tpm2_auth *auth = chip->auth;
int rc;
u32 null_key;
if (!auth) {
dev_warn_once(&chip->dev, "auth session is not active\n");
return 0;
}
rc = tpm2_load_null(chip, &null_key);
if (rc)
goto out;
auth->session = TPM_HEADER_SIZE;
rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
if (rc)
goto out;
/* salt key handle */
tpm_buf_append_u32(&buf, null_key);
/* bind key handle */
tpm_buf_append_u32(&buf, TPM2_RH_NULL);
/* nonce caller */
get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
/* append encrypted salt and squirrel away unencrypted in auth */
tpm_buf_append_salt(&buf, chip);
/* session type (HMAC, audit or policy) */
tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
/* symmetric encryption parameters */
/* symmetric algorithm */
tpm_buf_append_u16(&buf, TPM_ALG_AES);
/* bits for symmetric algorithm */
tpm_buf_append_u16(&buf, AES_KEY_BITS);
/* symmetric algorithm mode (must be CFB) */
tpm_buf_append_u16(&buf, TPM_ALG_CFB);
/* hash algorithm for session */
tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session");
tpm2_flush_context(chip, null_key);
if (rc == TPM2_RC_SUCCESS)
rc = tpm2_parse_start_auth_session(auth, &buf);
tpm_buf_destroy(&buf);
if (rc)
goto out;
out:
return rc;
}
EXPORT_SYMBOL(tpm2_start_auth_session);
/*
* A mask containing the object attributes for the kernel held null primary key
* used in HMAC encryption. For more information on specific attributes look up
* to "8.3 TPMA_OBJECT (Object Attributes)".
*/
#define TPM2_OA_NULL_KEY ( \
TPM2_OA_NO_DA | \
TPM2_OA_FIXED_TPM | \
TPM2_OA_FIXED_PARENT | \
TPM2_OA_SENSITIVE_DATA_ORIGIN | \
TPM2_OA_USER_WITH_AUTH | \
TPM2_OA_DECRYPT | \
TPM2_OA_RESTRICTED)
/**
* tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY
*
* @chip: The TPM the primary was created under
* @buf: The response buffer from the chip
* @handle: pointer to be filled in with the return handle of the primary
* @hierarchy: The hierarchy the primary was created for
* @name: pointer to be filled in with the primary key name
*
* Return:
* * 0 - OK
* * -errno - A system error
* * TPM_RC - A TPM error
*/
static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf,
u32 *handle, u32 hierarchy, u8 *name)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
off_t offset_r = TPM_HEADER_SIZE, offset_t;
u16 len = TPM_HEADER_SIZE;
u32 total_len = be32_to_cpu(head->length);
u32 val, param_len, keyhandle;
keyhandle = tpm_buf_read_u32(buf, &offset_r);
if (handle)
*handle = keyhandle;
else
tpm2_flush_context(chip, keyhandle);
param_len = tpm_buf_read_u32(buf, &offset_r);
/*
* param_len doesn't include the header, but all the other
* lengths and offsets do, so add it to parm len to make
* the comparisons easier
*/
param_len += TPM_HEADER_SIZE;
if (param_len + 8 > total_len)
return -EINVAL;
len = tpm_buf_read_u16(buf, &offset_r);
offset_t = offset_r;
if (name) {
/*
* now we have the public area, compute the name of
* the object
*/
put_unaligned_be16(TPM_ALG_SHA256, name);
sha256(&buf->data[offset_r], len, name + 2);
}
/* validate the public key */
val = tpm_buf_read_u16(buf, &offset_t);
/* key type (must be what we asked for) */
if (val != TPM_ALG_ECC)
return -EINVAL;
val = tpm_buf_read_u16(buf, &offset_t);
/* name algorithm */
if (val != TPM_ALG_SHA256)
return -EINVAL;
val = tpm_buf_read_u32(buf, &offset_t);
/* object properties */
if (val != TPM2_OA_NULL_KEY)
return -EINVAL;
/* auth policy (empty) */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != 0)
return -EINVAL;
/* symmetric key parameters */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != TPM_ALG_AES)
return -EINVAL;
/* symmetric key length */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != AES_KEY_BITS)
return -EINVAL;
/* symmetric encryption scheme */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != TPM_ALG_CFB)
return -EINVAL;
/* signing scheme */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != TPM_ALG_NULL)
return -EINVAL;
/* ECC Curve */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != TPM2_ECC_NIST_P256)
return -EINVAL;
/* KDF Scheme */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != TPM_ALG_NULL)
return -EINVAL;
/* extract public key (x and y points) */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != EC_PT_SZ)
return -EINVAL;
memcpy(chip->null_ec_key_x, &buf->data[offset_t], val);
offset_t += val;
val = tpm_buf_read_u16(buf, &offset_t);
if (val != EC_PT_SZ)
return -EINVAL;
memcpy(chip->null_ec_key_y, &buf->data[offset_t], val);
offset_t += val;
/* original length of the whole TPM2B */
offset_r += len;
/* should have exactly consumed the TPM2B public structure */
if (offset_t != offset_r)
return -EINVAL;
if (offset_r > param_len)
return -EINVAL;
/* creation data (skip) */
len = tpm_buf_read_u16(buf, &offset_r);
offset_r += len;
if (offset_r > param_len)
return -EINVAL;
/* creation digest (must be sha256) */
len = tpm_buf_read_u16(buf, &offset_r);
offset_r += len;
if (len != SHA256_DIGEST_SIZE || offset_r > param_len)
return -EINVAL;
/* TPMT_TK_CREATION follows */
/* tag, must be TPM_ST_CREATION (0x8021) */
val = tpm_buf_read_u16(buf, &offset_r);
if (val != TPM2_ST_CREATION || offset_r > param_len)
return -EINVAL;
/* hierarchy */
val = tpm_buf_read_u32(buf, &offset_r);
if (val != hierarchy || offset_r > param_len)
return -EINVAL;
/* the ticket digest HMAC (might not be sha256) */
len = tpm_buf_read_u16(buf, &offset_r);
offset_r += len;
if (offset_r > param_len)
return -EINVAL;
/*
* finally we have the name, which is a sha256 digest plus a 2
* byte algorithm type
*/
len = tpm_buf_read_u16(buf, &offset_r);
if (offset_r + len != param_len + 8)
return -EINVAL;
if (len != SHA256_DIGEST_SIZE + 2)
return -EINVAL;
if (memcmp(chip->null_key_name, &buf->data[offset_r],
SHA256_DIGEST_SIZE + 2) != 0) {
dev_err(&chip->dev, "NULL Seed name comparison failed\n");
return -EINVAL;
}
return 0;
}
/**
* tpm2_create_primary() - create a primary key using a fixed P-256 template
*
* @chip: the TPM chip to create under
* @hierarchy: The hierarchy handle to create under
* @handle: The returned volatile handle on success
* @name: The name of the returned key
*
* For platforms that might not have a persistent primary, this can be
* used to create one quickly on the fly (it uses Elliptic Curve not
* RSA, so even slow TPMs can create one fast). The template uses the
* TCG mandated H one for non-endorsement ECC primaries, i.e. P-256
* elliptic curve (the only current one all TPM2s are required to
* have) a sha256 name hash and no policy.
*
* Return:
* * 0 - OK
* * -errno - A system error
* * TPM_RC - A TPM error
*/
static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
u32 *handle, u8 *name)
{
int rc;
struct tpm_buf buf;
struct tpm_buf template;
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY);
if (rc)
return rc;
rc = tpm_buf_init_sized(&template);
if (rc) {
tpm_buf_destroy(&buf);
return rc;
}
/*
* create the template. Note: in order for userspace to
* verify the security of the system, it will have to create
* and certify this NULL primary, meaning all the template
* parameters will have to be identical, so conform exactly to
* the TCG TPM v2.0 Provisioning Guidance for the SRK ECC
* key H template (H has zero size unique points)
*/
/* key type */
tpm_buf_append_u16(&template, TPM_ALG_ECC);
/* name algorithm */
tpm_buf_append_u16(&template, TPM_ALG_SHA256);
/* object properties */
tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY);
/* sauth policy (empty) */
tpm_buf_append_u16(&template, 0);
/* BEGIN parameters: key specific; for ECC*/
/* symmetric algorithm */
tpm_buf_append_u16(&template, TPM_ALG_AES);
/* bits for symmetric algorithm */
tpm_buf_append_u16(&template, AES_KEY_BITS);
/* algorithm mode (must be CFB) */
tpm_buf_append_u16(&template, TPM_ALG_CFB);
/* scheme (NULL means any scheme) */
tpm_buf_append_u16(&template, TPM_ALG_NULL);
/* ECC Curve ID */
tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256);
/* KDF Scheme */
tpm_buf_append_u16(&template, TPM_ALG_NULL);
/* unique: key specific; for ECC it is two zero size points */
tpm_buf_append_u16(&template, 0);
tpm_buf_append_u16(&template, 0);
/* END parameters */
/* primary handle */
tpm_buf_append_u32(&buf, hierarchy);
tpm_buf_append_empty_auth(&buf, TPM2_RS_PW);
/* sensitive create size is 4 for two empty buffers */
tpm_buf_append_u16(&buf, 4);
/* sensitive create auth data (empty) */
tpm_buf_append_u16(&buf, 0);
/* sensitive create sensitive data (empty) */
tpm_buf_append_u16(&buf, 0);
/* the public template */
tpm_buf_append(&buf, template.data, template.length);
tpm_buf_destroy(&template);
/* outside info (empty) */
tpm_buf_append_u16(&buf, 0);
/* creation PCR (none) */
tpm_buf_append_u32(&buf, 0);
rc = tpm_transmit_cmd(chip, &buf, 0,
"attempting to create NULL primary");
if (rc == TPM2_RC_SUCCESS)
rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy,
name);
tpm_buf_destroy(&buf);
return rc;
}
static int tpm2_create_null_primary(struct tpm_chip *chip)
{
u32 null_key;
int rc;
rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key,
chip->null_key_name);
if (rc == TPM2_RC_SUCCESS) {
unsigned int offset = 0; /* dummy offset for null key context */
rc = tpm2_save_context(chip, null_key, chip->null_key_context,
sizeof(chip->null_key_context), &offset);
tpm2_flush_context(chip, null_key);
}
return rc;
}
/**
* tpm2_sessions_init() - start of day initialization for the sessions code
* @chip: TPM chip
*
* Derive and context save the null primary and allocate memory in the
* struct tpm_chip for the authorizations.
*/
int tpm2_sessions_init(struct tpm_chip *chip)
{
int rc;
rc = tpm2_create_null_primary(chip);
if (rc)
dev_err(&chip->dev, "TPM: security failed (NULL seed derivation): %d\n", rc);
chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL);
if (!chip->auth)
return -ENOMEM;
return rc;
}
EXPORT_SYMBOL(tpm2_sessions_init);
#endif /* CONFIG_TCG_TPM2_HMAC */