Vladimir Oltean 89153ed6eb net: dsa: propagate extack to .port_vlan_filtering
Some drivers can't dynamically change the VLAN filtering option, or
impose some restrictions, it would be nice to propagate this info
through netlink instead of printing it to a kernel log that might never
be read. Also netlink extack includes the module that emitted the
message, which means that it's easier to figure out which ones are
driver-generated errors as opposed to command misuse.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 17:38:12 -08:00

1515 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2009 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2011-2012 Gabor Juhos <juhosg@openwrt.org>
* Copyright (c) 2015, 2019, The Linux Foundation. All rights reserved.
* Copyright (c) 2016 John Crispin <john@phrozen.org>
*/
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/netdevice.h>
#include <net/dsa.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/if_bridge.h>
#include <linux/mdio.h>
#include <linux/phylink.h>
#include <linux/gpio/consumer.h>
#include <linux/etherdevice.h>
#include "qca8k.h"
#define MIB_DESC(_s, _o, _n) \
{ \
.size = (_s), \
.offset = (_o), \
.name = (_n), \
}
static const struct qca8k_mib_desc ar8327_mib[] = {
MIB_DESC(1, 0x00, "RxBroad"),
MIB_DESC(1, 0x04, "RxPause"),
MIB_DESC(1, 0x08, "RxMulti"),
MIB_DESC(1, 0x0c, "RxFcsErr"),
MIB_DESC(1, 0x10, "RxAlignErr"),
MIB_DESC(1, 0x14, "RxRunt"),
MIB_DESC(1, 0x18, "RxFragment"),
MIB_DESC(1, 0x1c, "Rx64Byte"),
MIB_DESC(1, 0x20, "Rx128Byte"),
MIB_DESC(1, 0x24, "Rx256Byte"),
MIB_DESC(1, 0x28, "Rx512Byte"),
MIB_DESC(1, 0x2c, "Rx1024Byte"),
MIB_DESC(1, 0x30, "Rx1518Byte"),
MIB_DESC(1, 0x34, "RxMaxByte"),
MIB_DESC(1, 0x38, "RxTooLong"),
MIB_DESC(2, 0x3c, "RxGoodByte"),
MIB_DESC(2, 0x44, "RxBadByte"),
MIB_DESC(1, 0x4c, "RxOverFlow"),
MIB_DESC(1, 0x50, "Filtered"),
MIB_DESC(1, 0x54, "TxBroad"),
MIB_DESC(1, 0x58, "TxPause"),
MIB_DESC(1, 0x5c, "TxMulti"),
MIB_DESC(1, 0x60, "TxUnderRun"),
MIB_DESC(1, 0x64, "Tx64Byte"),
MIB_DESC(1, 0x68, "Tx128Byte"),
MIB_DESC(1, 0x6c, "Tx256Byte"),
MIB_DESC(1, 0x70, "Tx512Byte"),
MIB_DESC(1, 0x74, "Tx1024Byte"),
MIB_DESC(1, 0x78, "Tx1518Byte"),
MIB_DESC(1, 0x7c, "TxMaxByte"),
MIB_DESC(1, 0x80, "TxOverSize"),
MIB_DESC(2, 0x84, "TxByte"),
MIB_DESC(1, 0x8c, "TxCollision"),
MIB_DESC(1, 0x90, "TxAbortCol"),
MIB_DESC(1, 0x94, "TxMultiCol"),
MIB_DESC(1, 0x98, "TxSingleCol"),
MIB_DESC(1, 0x9c, "TxExcDefer"),
MIB_DESC(1, 0xa0, "TxDefer"),
MIB_DESC(1, 0xa4, "TxLateCol"),
};
/* The 32bit switch registers are accessed indirectly. To achieve this we need
* to set the page of the register. Track the last page that was set to reduce
* mdio writes
*/
static u16 qca8k_current_page = 0xffff;
static void
qca8k_split_addr(u32 regaddr, u16 *r1, u16 *r2, u16 *page)
{
regaddr >>= 1;
*r1 = regaddr & 0x1e;
regaddr >>= 5;
*r2 = regaddr & 0x7;
regaddr >>= 3;
*page = regaddr & 0x3ff;
}
static u32
qca8k_mii_read32(struct mii_bus *bus, int phy_id, u32 regnum)
{
u32 val;
int ret;
ret = bus->read(bus, phy_id, regnum);
if (ret >= 0) {
val = ret;
ret = bus->read(bus, phy_id, regnum + 1);
val |= ret << 16;
}
if (ret < 0) {
dev_err_ratelimited(&bus->dev,
"failed to read qca8k 32bit register\n");
return ret;
}
return val;
}
static void
qca8k_mii_write32(struct mii_bus *bus, int phy_id, u32 regnum, u32 val)
{
u16 lo, hi;
int ret;
lo = val & 0xffff;
hi = (u16)(val >> 16);
ret = bus->write(bus, phy_id, regnum, lo);
if (ret >= 0)
ret = bus->write(bus, phy_id, regnum + 1, hi);
if (ret < 0)
dev_err_ratelimited(&bus->dev,
"failed to write qca8k 32bit register\n");
}
static void
qca8k_set_page(struct mii_bus *bus, u16 page)
{
if (page == qca8k_current_page)
return;
if (bus->write(bus, 0x18, 0, page) < 0)
dev_err_ratelimited(&bus->dev,
"failed to set qca8k page\n");
qca8k_current_page = page;
}
static u32
qca8k_read(struct qca8k_priv *priv, u32 reg)
{
u16 r1, r2, page;
u32 val;
qca8k_split_addr(reg, &r1, &r2, &page);
mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
qca8k_set_page(priv->bus, page);
val = qca8k_mii_read32(priv->bus, 0x10 | r2, r1);
mutex_unlock(&priv->bus->mdio_lock);
return val;
}
static void
qca8k_write(struct qca8k_priv *priv, u32 reg, u32 val)
{
u16 r1, r2, page;
qca8k_split_addr(reg, &r1, &r2, &page);
mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
qca8k_set_page(priv->bus, page);
qca8k_mii_write32(priv->bus, 0x10 | r2, r1, val);
mutex_unlock(&priv->bus->mdio_lock);
}
static u32
qca8k_rmw(struct qca8k_priv *priv, u32 reg, u32 mask, u32 val)
{
u16 r1, r2, page;
u32 ret;
qca8k_split_addr(reg, &r1, &r2, &page);
mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
qca8k_set_page(priv->bus, page);
ret = qca8k_mii_read32(priv->bus, 0x10 | r2, r1);
ret &= ~mask;
ret |= val;
qca8k_mii_write32(priv->bus, 0x10 | r2, r1, ret);
mutex_unlock(&priv->bus->mdio_lock);
return ret;
}
static void
qca8k_reg_set(struct qca8k_priv *priv, u32 reg, u32 val)
{
qca8k_rmw(priv, reg, 0, val);
}
static void
qca8k_reg_clear(struct qca8k_priv *priv, u32 reg, u32 val)
{
qca8k_rmw(priv, reg, val, 0);
}
static int
qca8k_regmap_read(void *ctx, uint32_t reg, uint32_t *val)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ctx;
*val = qca8k_read(priv, reg);
return 0;
}
static int
qca8k_regmap_write(void *ctx, uint32_t reg, uint32_t val)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ctx;
qca8k_write(priv, reg, val);
return 0;
}
static const struct regmap_range qca8k_readable_ranges[] = {
regmap_reg_range(0x0000, 0x00e4), /* Global control */
regmap_reg_range(0x0100, 0x0168), /* EEE control */
regmap_reg_range(0x0200, 0x0270), /* Parser control */
regmap_reg_range(0x0400, 0x0454), /* ACL */
regmap_reg_range(0x0600, 0x0718), /* Lookup */
regmap_reg_range(0x0800, 0x0b70), /* QM */
regmap_reg_range(0x0c00, 0x0c80), /* PKT */
regmap_reg_range(0x0e00, 0x0e98), /* L3 */
regmap_reg_range(0x1000, 0x10ac), /* MIB - Port0 */
regmap_reg_range(0x1100, 0x11ac), /* MIB - Port1 */
regmap_reg_range(0x1200, 0x12ac), /* MIB - Port2 */
regmap_reg_range(0x1300, 0x13ac), /* MIB - Port3 */
regmap_reg_range(0x1400, 0x14ac), /* MIB - Port4 */
regmap_reg_range(0x1500, 0x15ac), /* MIB - Port5 */
regmap_reg_range(0x1600, 0x16ac), /* MIB - Port6 */
};
static const struct regmap_access_table qca8k_readable_table = {
.yes_ranges = qca8k_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(qca8k_readable_ranges),
};
static struct regmap_config qca8k_regmap_config = {
.reg_bits = 16,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x16ac, /* end MIB - Port6 range */
.reg_read = qca8k_regmap_read,
.reg_write = qca8k_regmap_write,
.rd_table = &qca8k_readable_table,
};
static int
qca8k_busy_wait(struct qca8k_priv *priv, u32 reg, u32 mask)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(20);
/* loop until the busy flag has cleared */
do {
u32 val = qca8k_read(priv, reg);
int busy = val & mask;
if (!busy)
break;
cond_resched();
} while (!time_after_eq(jiffies, timeout));
return time_after_eq(jiffies, timeout);
}
static void
qca8k_fdb_read(struct qca8k_priv *priv, struct qca8k_fdb *fdb)
{
u32 reg[4];
int i;
/* load the ARL table into an array */
for (i = 0; i < 4; i++)
reg[i] = qca8k_read(priv, QCA8K_REG_ATU_DATA0 + (i * 4));
/* vid - 83:72 */
fdb->vid = (reg[2] >> QCA8K_ATU_VID_S) & QCA8K_ATU_VID_M;
/* aging - 67:64 */
fdb->aging = reg[2] & QCA8K_ATU_STATUS_M;
/* portmask - 54:48 */
fdb->port_mask = (reg[1] >> QCA8K_ATU_PORT_S) & QCA8K_ATU_PORT_M;
/* mac - 47:0 */
fdb->mac[0] = (reg[1] >> QCA8K_ATU_ADDR0_S) & 0xff;
fdb->mac[1] = reg[1] & 0xff;
fdb->mac[2] = (reg[0] >> QCA8K_ATU_ADDR2_S) & 0xff;
fdb->mac[3] = (reg[0] >> QCA8K_ATU_ADDR3_S) & 0xff;
fdb->mac[4] = (reg[0] >> QCA8K_ATU_ADDR4_S) & 0xff;
fdb->mac[5] = reg[0] & 0xff;
}
static void
qca8k_fdb_write(struct qca8k_priv *priv, u16 vid, u8 port_mask, const u8 *mac,
u8 aging)
{
u32 reg[3] = { 0 };
int i;
/* vid - 83:72 */
reg[2] = (vid & QCA8K_ATU_VID_M) << QCA8K_ATU_VID_S;
/* aging - 67:64 */
reg[2] |= aging & QCA8K_ATU_STATUS_M;
/* portmask - 54:48 */
reg[1] = (port_mask & QCA8K_ATU_PORT_M) << QCA8K_ATU_PORT_S;
/* mac - 47:0 */
reg[1] |= mac[0] << QCA8K_ATU_ADDR0_S;
reg[1] |= mac[1];
reg[0] |= mac[2] << QCA8K_ATU_ADDR2_S;
reg[0] |= mac[3] << QCA8K_ATU_ADDR3_S;
reg[0] |= mac[4] << QCA8K_ATU_ADDR4_S;
reg[0] |= mac[5];
/* load the array into the ARL table */
for (i = 0; i < 3; i++)
qca8k_write(priv, QCA8K_REG_ATU_DATA0 + (i * 4), reg[i]);
}
static int
qca8k_fdb_access(struct qca8k_priv *priv, enum qca8k_fdb_cmd cmd, int port)
{
u32 reg;
/* Set the command and FDB index */
reg = QCA8K_ATU_FUNC_BUSY;
reg |= cmd;
if (port >= 0) {
reg |= QCA8K_ATU_FUNC_PORT_EN;
reg |= (port & QCA8K_ATU_FUNC_PORT_M) << QCA8K_ATU_FUNC_PORT_S;
}
/* Write the function register triggering the table access */
qca8k_write(priv, QCA8K_REG_ATU_FUNC, reg);
/* wait for completion */
if (qca8k_busy_wait(priv, QCA8K_REG_ATU_FUNC, QCA8K_ATU_FUNC_BUSY))
return -1;
/* Check for table full violation when adding an entry */
if (cmd == QCA8K_FDB_LOAD) {
reg = qca8k_read(priv, QCA8K_REG_ATU_FUNC);
if (reg & QCA8K_ATU_FUNC_FULL)
return -1;
}
return 0;
}
static int
qca8k_fdb_next(struct qca8k_priv *priv, struct qca8k_fdb *fdb, int port)
{
int ret;
qca8k_fdb_write(priv, fdb->vid, fdb->port_mask, fdb->mac, fdb->aging);
ret = qca8k_fdb_access(priv, QCA8K_FDB_NEXT, port);
if (ret >= 0)
qca8k_fdb_read(priv, fdb);
return ret;
}
static int
qca8k_fdb_add(struct qca8k_priv *priv, const u8 *mac, u16 port_mask,
u16 vid, u8 aging)
{
int ret;
mutex_lock(&priv->reg_mutex);
qca8k_fdb_write(priv, vid, port_mask, mac, aging);
ret = qca8k_fdb_access(priv, QCA8K_FDB_LOAD, -1);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
qca8k_fdb_del(struct qca8k_priv *priv, const u8 *mac, u16 port_mask, u16 vid)
{
int ret;
mutex_lock(&priv->reg_mutex);
qca8k_fdb_write(priv, vid, port_mask, mac, 0);
ret = qca8k_fdb_access(priv, QCA8K_FDB_PURGE, -1);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static void
qca8k_fdb_flush(struct qca8k_priv *priv)
{
mutex_lock(&priv->reg_mutex);
qca8k_fdb_access(priv, QCA8K_FDB_FLUSH, -1);
mutex_unlock(&priv->reg_mutex);
}
static int
qca8k_vlan_access(struct qca8k_priv *priv, enum qca8k_vlan_cmd cmd, u16 vid)
{
u32 reg;
/* Set the command and VLAN index */
reg = QCA8K_VTU_FUNC1_BUSY;
reg |= cmd;
reg |= vid << QCA8K_VTU_FUNC1_VID_S;
/* Write the function register triggering the table access */
qca8k_write(priv, QCA8K_REG_VTU_FUNC1, reg);
/* wait for completion */
if (qca8k_busy_wait(priv, QCA8K_REG_VTU_FUNC1, QCA8K_VTU_FUNC1_BUSY))
return -ETIMEDOUT;
/* Check for table full violation when adding an entry */
if (cmd == QCA8K_VLAN_LOAD) {
reg = qca8k_read(priv, QCA8K_REG_VTU_FUNC1);
if (reg & QCA8K_VTU_FUNC1_FULL)
return -ENOMEM;
}
return 0;
}
static int
qca8k_vlan_add(struct qca8k_priv *priv, u8 port, u16 vid, bool untagged)
{
u32 reg;
int ret;
/*
We do the right thing with VLAN 0 and treat it as untagged while
preserving the tag on egress.
*/
if (vid == 0)
return 0;
mutex_lock(&priv->reg_mutex);
ret = qca8k_vlan_access(priv, QCA8K_VLAN_READ, vid);
if (ret < 0)
goto out;
reg = qca8k_read(priv, QCA8K_REG_VTU_FUNC0);
reg |= QCA8K_VTU_FUNC0_VALID | QCA8K_VTU_FUNC0_IVL_EN;
reg &= ~(QCA8K_VTU_FUNC0_EG_MODE_MASK << QCA8K_VTU_FUNC0_EG_MODE_S(port));
if (untagged)
reg |= QCA8K_VTU_FUNC0_EG_MODE_UNTAG <<
QCA8K_VTU_FUNC0_EG_MODE_S(port);
else
reg |= QCA8K_VTU_FUNC0_EG_MODE_TAG <<
QCA8K_VTU_FUNC0_EG_MODE_S(port);
qca8k_write(priv, QCA8K_REG_VTU_FUNC0, reg);
ret = qca8k_vlan_access(priv, QCA8K_VLAN_LOAD, vid);
out:
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
qca8k_vlan_del(struct qca8k_priv *priv, u8 port, u16 vid)
{
u32 reg, mask;
int ret, i;
bool del;
mutex_lock(&priv->reg_mutex);
ret = qca8k_vlan_access(priv, QCA8K_VLAN_READ, vid);
if (ret < 0)
goto out;
reg = qca8k_read(priv, QCA8K_REG_VTU_FUNC0);
reg &= ~(3 << QCA8K_VTU_FUNC0_EG_MODE_S(port));
reg |= QCA8K_VTU_FUNC0_EG_MODE_NOT <<
QCA8K_VTU_FUNC0_EG_MODE_S(port);
/* Check if we're the last member to be removed */
del = true;
for (i = 0; i < QCA8K_NUM_PORTS; i++) {
mask = QCA8K_VTU_FUNC0_EG_MODE_NOT;
mask <<= QCA8K_VTU_FUNC0_EG_MODE_S(i);
if ((reg & mask) != mask) {
del = false;
break;
}
}
if (del) {
ret = qca8k_vlan_access(priv, QCA8K_VLAN_PURGE, vid);
} else {
qca8k_write(priv, QCA8K_REG_VTU_FUNC0, reg);
ret = qca8k_vlan_access(priv, QCA8K_VLAN_LOAD, vid);
}
out:
mutex_unlock(&priv->reg_mutex);
return ret;
}
static void
qca8k_mib_init(struct qca8k_priv *priv)
{
mutex_lock(&priv->reg_mutex);
qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_FLUSH | QCA8K_MIB_BUSY);
qca8k_busy_wait(priv, QCA8K_REG_MIB, QCA8K_MIB_BUSY);
qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_CPU_KEEP);
qca8k_write(priv, QCA8K_REG_MODULE_EN, QCA8K_MODULE_EN_MIB);
mutex_unlock(&priv->reg_mutex);
}
static void
qca8k_port_set_status(struct qca8k_priv *priv, int port, int enable)
{
u32 mask = QCA8K_PORT_STATUS_TXMAC | QCA8K_PORT_STATUS_RXMAC;
/* Port 0 and 6 have no internal PHY */
if (port > 0 && port < 6)
mask |= QCA8K_PORT_STATUS_LINK_AUTO;
if (enable)
qca8k_reg_set(priv, QCA8K_REG_PORT_STATUS(port), mask);
else
qca8k_reg_clear(priv, QCA8K_REG_PORT_STATUS(port), mask);
}
static u32
qca8k_port_to_phy(int port)
{
/* From Andrew Lunn:
* Port 0 has no internal phy.
* Port 1 has an internal PHY at MDIO address 0.
* Port 2 has an internal PHY at MDIO address 1.
* ...
* Port 5 has an internal PHY at MDIO address 4.
* Port 6 has no internal PHY.
*/
return port - 1;
}
static int
qca8k_mdio_write(struct qca8k_priv *priv, int port, u32 regnum, u16 data)
{
u32 phy, val;
if (regnum >= QCA8K_MDIO_MASTER_MAX_REG)
return -EINVAL;
/* callee is responsible for not passing bad ports,
* but we still would like to make spills impossible.
*/
phy = qca8k_port_to_phy(port) % PHY_MAX_ADDR;
val = QCA8K_MDIO_MASTER_BUSY | QCA8K_MDIO_MASTER_EN |
QCA8K_MDIO_MASTER_WRITE | QCA8K_MDIO_MASTER_PHY_ADDR(phy) |
QCA8K_MDIO_MASTER_REG_ADDR(regnum) |
QCA8K_MDIO_MASTER_DATA(data);
qca8k_write(priv, QCA8K_MDIO_MASTER_CTRL, val);
return qca8k_busy_wait(priv, QCA8K_MDIO_MASTER_CTRL,
QCA8K_MDIO_MASTER_BUSY);
}
static int
qca8k_mdio_read(struct qca8k_priv *priv, int port, u32 regnum)
{
u32 phy, val;
if (regnum >= QCA8K_MDIO_MASTER_MAX_REG)
return -EINVAL;
/* callee is responsible for not passing bad ports,
* but we still would like to make spills impossible.
*/
phy = qca8k_port_to_phy(port) % PHY_MAX_ADDR;
val = QCA8K_MDIO_MASTER_BUSY | QCA8K_MDIO_MASTER_EN |
QCA8K_MDIO_MASTER_READ | QCA8K_MDIO_MASTER_PHY_ADDR(phy) |
QCA8K_MDIO_MASTER_REG_ADDR(regnum);
qca8k_write(priv, QCA8K_MDIO_MASTER_CTRL, val);
if (qca8k_busy_wait(priv, QCA8K_MDIO_MASTER_CTRL,
QCA8K_MDIO_MASTER_BUSY))
return -ETIMEDOUT;
val = (qca8k_read(priv, QCA8K_MDIO_MASTER_CTRL) &
QCA8K_MDIO_MASTER_DATA_MASK);
return val;
}
static int
qca8k_phy_write(struct dsa_switch *ds, int port, int regnum, u16 data)
{
struct qca8k_priv *priv = ds->priv;
return qca8k_mdio_write(priv, port, regnum, data);
}
static int
qca8k_phy_read(struct dsa_switch *ds, int port, int regnum)
{
struct qca8k_priv *priv = ds->priv;
int ret;
ret = qca8k_mdio_read(priv, port, regnum);
if (ret < 0)
return 0xffff;
return ret;
}
static int
qca8k_setup_mdio_bus(struct qca8k_priv *priv)
{
u32 internal_mdio_mask = 0, external_mdio_mask = 0, reg;
struct device_node *ports, *port;
int err;
ports = of_get_child_by_name(priv->dev->of_node, "ports");
if (!ports)
return -EINVAL;
for_each_available_child_of_node(ports, port) {
err = of_property_read_u32(port, "reg", &reg);
if (err) {
of_node_put(port);
of_node_put(ports);
return err;
}
if (!dsa_is_user_port(priv->ds, reg))
continue;
if (of_property_read_bool(port, "phy-handle"))
external_mdio_mask |= BIT(reg);
else
internal_mdio_mask |= BIT(reg);
}
of_node_put(ports);
if (!external_mdio_mask && !internal_mdio_mask) {
dev_err(priv->dev, "no PHYs are defined.\n");
return -EINVAL;
}
/* The QCA8K_MDIO_MASTER_EN Bit, which grants access to PHYs through
* the MDIO_MASTER register also _disconnects_ the external MDC
* passthrough to the internal PHYs. It's not possible to use both
* configurations at the same time!
*
* Because this came up during the review process:
* If the external mdio-bus driver is capable magically disabling
* the QCA8K_MDIO_MASTER_EN and mutex/spin-locking out the qca8k's
* accessors for the time being, it would be possible to pull this
* off.
*/
if (!!external_mdio_mask && !!internal_mdio_mask) {
dev_err(priv->dev, "either internal or external mdio bus configuration is supported.\n");
return -EINVAL;
}
if (external_mdio_mask) {
/* Make sure to disable the internal mdio bus in cases
* a dt-overlay and driver reload changed the configuration
*/
qca8k_reg_clear(priv, QCA8K_MDIO_MASTER_CTRL,
QCA8K_MDIO_MASTER_EN);
return 0;
}
priv->ops.phy_read = qca8k_phy_read;
priv->ops.phy_write = qca8k_phy_write;
return 0;
}
static int
qca8k_setup(struct dsa_switch *ds)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
int ret, i;
/* Make sure that port 0 is the cpu port */
if (!dsa_is_cpu_port(ds, 0)) {
pr_err("port 0 is not the CPU port\n");
return -EINVAL;
}
mutex_init(&priv->reg_mutex);
/* Start by setting up the register mapping */
priv->regmap = devm_regmap_init(ds->dev, NULL, priv,
&qca8k_regmap_config);
if (IS_ERR(priv->regmap))
pr_warn("regmap initialization failed");
ret = qca8k_setup_mdio_bus(priv);
if (ret)
return ret;
/* Enable CPU Port */
qca8k_reg_set(priv, QCA8K_REG_GLOBAL_FW_CTRL0,
QCA8K_GLOBAL_FW_CTRL0_CPU_PORT_EN);
/* Enable MIB counters */
qca8k_mib_init(priv);
/* Enable QCA header mode on the cpu port */
qca8k_write(priv, QCA8K_REG_PORT_HDR_CTRL(QCA8K_CPU_PORT),
QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_TX_S |
QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_RX_S);
/* Disable forwarding by default on all ports */
for (i = 0; i < QCA8K_NUM_PORTS; i++)
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(i),
QCA8K_PORT_LOOKUP_MEMBER, 0);
/* Disable MAC by default on all ports */
for (i = 1; i < QCA8K_NUM_PORTS; i++)
qca8k_port_set_status(priv, i, 0);
/* Forward all unknown frames to CPU port for Linux processing */
qca8k_write(priv, QCA8K_REG_GLOBAL_FW_CTRL1,
BIT(0) << QCA8K_GLOBAL_FW_CTRL1_IGMP_DP_S |
BIT(0) << QCA8K_GLOBAL_FW_CTRL1_BC_DP_S |
BIT(0) << QCA8K_GLOBAL_FW_CTRL1_MC_DP_S |
BIT(0) << QCA8K_GLOBAL_FW_CTRL1_UC_DP_S);
/* Setup connection between CPU port & user ports */
for (i = 0; i < QCA8K_NUM_PORTS; i++) {
/* CPU port gets connected to all user ports of the switch */
if (dsa_is_cpu_port(ds, i)) {
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(QCA8K_CPU_PORT),
QCA8K_PORT_LOOKUP_MEMBER, dsa_user_ports(ds));
}
/* Individual user ports get connected to CPU port only */
if (dsa_is_user_port(ds, i)) {
int shift = 16 * (i % 2);
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(i),
QCA8K_PORT_LOOKUP_MEMBER,
BIT(QCA8K_CPU_PORT));
/* Enable ARP Auto-learning by default */
qca8k_reg_set(priv, QCA8K_PORT_LOOKUP_CTRL(i),
QCA8K_PORT_LOOKUP_LEARN);
/* For port based vlans to work we need to set the
* default egress vid
*/
qca8k_rmw(priv, QCA8K_EGRESS_VLAN(i),
0xfff << shift,
QCA8K_PORT_VID_DEF << shift);
qca8k_write(priv, QCA8K_REG_PORT_VLAN_CTRL0(i),
QCA8K_PORT_VLAN_CVID(QCA8K_PORT_VID_DEF) |
QCA8K_PORT_VLAN_SVID(QCA8K_PORT_VID_DEF));
}
}
/* Setup our port MTUs to match power on defaults */
for (i = 0; i < QCA8K_NUM_PORTS; i++)
priv->port_mtu[i] = ETH_FRAME_LEN + ETH_FCS_LEN;
qca8k_write(priv, QCA8K_MAX_FRAME_SIZE, ETH_FRAME_LEN + ETH_FCS_LEN);
/* Flush the FDB table */
qca8k_fdb_flush(priv);
/* We don't have interrupts for link changes, so we need to poll */
ds->pcs_poll = true;
return 0;
}
static void
qca8k_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
const struct phylink_link_state *state)
{
struct qca8k_priv *priv = ds->priv;
u32 reg, val;
switch (port) {
case 0: /* 1st CPU port */
if (state->interface != PHY_INTERFACE_MODE_RGMII &&
state->interface != PHY_INTERFACE_MODE_RGMII_ID &&
state->interface != PHY_INTERFACE_MODE_SGMII)
return;
reg = QCA8K_REG_PORT0_PAD_CTRL;
break;
case 1:
case 2:
case 3:
case 4:
case 5:
/* Internal PHY, nothing to do */
return;
case 6: /* 2nd CPU port / external PHY */
if (state->interface != PHY_INTERFACE_MODE_RGMII &&
state->interface != PHY_INTERFACE_MODE_RGMII_ID &&
state->interface != PHY_INTERFACE_MODE_SGMII &&
state->interface != PHY_INTERFACE_MODE_1000BASEX)
return;
reg = QCA8K_REG_PORT6_PAD_CTRL;
break;
default:
dev_err(ds->dev, "%s: unsupported port: %i\n", __func__, port);
return;
}
if (port != 6 && phylink_autoneg_inband(mode)) {
dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
__func__);
return;
}
switch (state->interface) {
case PHY_INTERFACE_MODE_RGMII:
/* RGMII mode means no delay so don't enable the delay */
qca8k_write(priv, reg, QCA8K_PORT_PAD_RGMII_EN);
break;
case PHY_INTERFACE_MODE_RGMII_ID:
/* RGMII_ID needs internal delay. This is enabled through
* PORT5_PAD_CTRL for all ports, rather than individual port
* registers
*/
qca8k_write(priv, reg,
QCA8K_PORT_PAD_RGMII_EN |
QCA8K_PORT_PAD_RGMII_TX_DELAY(QCA8K_MAX_DELAY) |
QCA8K_PORT_PAD_RGMII_RX_DELAY(QCA8K_MAX_DELAY));
qca8k_write(priv, QCA8K_REG_PORT5_PAD_CTRL,
QCA8K_PORT_PAD_RGMII_RX_DELAY_EN);
break;
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
/* Enable SGMII on the port */
qca8k_write(priv, reg, QCA8K_PORT_PAD_SGMII_EN);
/* Enable/disable SerDes auto-negotiation as necessary */
val = qca8k_read(priv, QCA8K_REG_PWS);
if (phylink_autoneg_inband(mode))
val &= ~QCA8K_PWS_SERDES_AEN_DIS;
else
val |= QCA8K_PWS_SERDES_AEN_DIS;
qca8k_write(priv, QCA8K_REG_PWS, val);
/* Configure the SGMII parameters */
val = qca8k_read(priv, QCA8K_REG_SGMII_CTRL);
val |= QCA8K_SGMII_EN_PLL | QCA8K_SGMII_EN_RX |
QCA8K_SGMII_EN_TX | QCA8K_SGMII_EN_SD;
if (dsa_is_cpu_port(ds, port)) {
/* CPU port, we're talking to the CPU MAC, be a PHY */
val &= ~QCA8K_SGMII_MODE_CTRL_MASK;
val |= QCA8K_SGMII_MODE_CTRL_PHY;
} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
val &= ~QCA8K_SGMII_MODE_CTRL_MASK;
val |= QCA8K_SGMII_MODE_CTRL_MAC;
} else if (state->interface == PHY_INTERFACE_MODE_1000BASEX) {
val &= ~QCA8K_SGMII_MODE_CTRL_MASK;
val |= QCA8K_SGMII_MODE_CTRL_BASEX;
}
qca8k_write(priv, QCA8K_REG_SGMII_CTRL, val);
break;
default:
dev_err(ds->dev, "xMII mode %s not supported for port %d\n",
phy_modes(state->interface), port);
return;
}
}
static void
qca8k_phylink_validate(struct dsa_switch *ds, int port,
unsigned long *supported,
struct phylink_link_state *state)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
switch (port) {
case 0: /* 1st CPU port */
if (state->interface != PHY_INTERFACE_MODE_NA &&
state->interface != PHY_INTERFACE_MODE_RGMII &&
state->interface != PHY_INTERFACE_MODE_RGMII_ID &&
state->interface != PHY_INTERFACE_MODE_SGMII)
goto unsupported;
break;
case 1:
case 2:
case 3:
case 4:
case 5:
/* Internal PHY */
if (state->interface != PHY_INTERFACE_MODE_NA &&
state->interface != PHY_INTERFACE_MODE_GMII)
goto unsupported;
break;
case 6: /* 2nd CPU port / external PHY */
if (state->interface != PHY_INTERFACE_MODE_NA &&
state->interface != PHY_INTERFACE_MODE_RGMII &&
state->interface != PHY_INTERFACE_MODE_RGMII_ID &&
state->interface != PHY_INTERFACE_MODE_SGMII &&
state->interface != PHY_INTERFACE_MODE_1000BASEX)
goto unsupported;
break;
default:
unsupported:
linkmode_zero(supported);
return;
}
phylink_set_port_modes(mask);
phylink_set(mask, Autoneg);
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 10baseT_Half);
phylink_set(mask, 10baseT_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
if (state->interface == PHY_INTERFACE_MODE_1000BASEX)
phylink_set(mask, 1000baseX_Full);
phylink_set(mask, Pause);
phylink_set(mask, Asym_Pause);
linkmode_and(supported, supported, mask);
linkmode_and(state->advertising, state->advertising, mask);
}
static int
qca8k_phylink_mac_link_state(struct dsa_switch *ds, int port,
struct phylink_link_state *state)
{
struct qca8k_priv *priv = ds->priv;
u32 reg;
reg = qca8k_read(priv, QCA8K_REG_PORT_STATUS(port));
state->link = !!(reg & QCA8K_PORT_STATUS_LINK_UP);
state->an_complete = state->link;
state->an_enabled = !!(reg & QCA8K_PORT_STATUS_LINK_AUTO);
state->duplex = (reg & QCA8K_PORT_STATUS_DUPLEX) ? DUPLEX_FULL :
DUPLEX_HALF;
switch (reg & QCA8K_PORT_STATUS_SPEED) {
case QCA8K_PORT_STATUS_SPEED_10:
state->speed = SPEED_10;
break;
case QCA8K_PORT_STATUS_SPEED_100:
state->speed = SPEED_100;
break;
case QCA8K_PORT_STATUS_SPEED_1000:
state->speed = SPEED_1000;
break;
default:
state->speed = SPEED_UNKNOWN;
break;
}
state->pause = MLO_PAUSE_NONE;
if (reg & QCA8K_PORT_STATUS_RXFLOW)
state->pause |= MLO_PAUSE_RX;
if (reg & QCA8K_PORT_STATUS_TXFLOW)
state->pause |= MLO_PAUSE_TX;
return 1;
}
static void
qca8k_phylink_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode,
phy_interface_t interface)
{
struct qca8k_priv *priv = ds->priv;
qca8k_port_set_status(priv, port, 0);
}
static void
qca8k_phylink_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode,
phy_interface_t interface, struct phy_device *phydev,
int speed, int duplex, bool tx_pause, bool rx_pause)
{
struct qca8k_priv *priv = ds->priv;
u32 reg;
if (phylink_autoneg_inband(mode)) {
reg = QCA8K_PORT_STATUS_LINK_AUTO;
} else {
switch (speed) {
case SPEED_10:
reg = QCA8K_PORT_STATUS_SPEED_10;
break;
case SPEED_100:
reg = QCA8K_PORT_STATUS_SPEED_100;
break;
case SPEED_1000:
reg = QCA8K_PORT_STATUS_SPEED_1000;
break;
default:
reg = QCA8K_PORT_STATUS_LINK_AUTO;
break;
}
if (duplex == DUPLEX_FULL)
reg |= QCA8K_PORT_STATUS_DUPLEX;
if (rx_pause || dsa_is_cpu_port(ds, port))
reg |= QCA8K_PORT_STATUS_RXFLOW;
if (tx_pause || dsa_is_cpu_port(ds, port))
reg |= QCA8K_PORT_STATUS_TXFLOW;
}
reg |= QCA8K_PORT_STATUS_TXMAC | QCA8K_PORT_STATUS_RXMAC;
qca8k_write(priv, QCA8K_REG_PORT_STATUS(port), reg);
}
static void
qca8k_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++)
strncpy(data + i * ETH_GSTRING_LEN, ar8327_mib[i].name,
ETH_GSTRING_LEN);
}
static void
qca8k_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
const struct qca8k_mib_desc *mib;
u32 reg, i;
u64 hi;
for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++) {
mib = &ar8327_mib[i];
reg = QCA8K_PORT_MIB_COUNTER(port) + mib->offset;
data[i] = qca8k_read(priv, reg);
if (mib->size == 2) {
hi = qca8k_read(priv, reg + 4);
data[i] |= hi << 32;
}
}
}
static int
qca8k_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return ARRAY_SIZE(ar8327_mib);
}
static int
qca8k_set_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *eee)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
u32 lpi_en = QCA8K_REG_EEE_CTRL_LPI_EN(port);
u32 reg;
mutex_lock(&priv->reg_mutex);
reg = qca8k_read(priv, QCA8K_REG_EEE_CTRL);
if (eee->eee_enabled)
reg |= lpi_en;
else
reg &= ~lpi_en;
qca8k_write(priv, QCA8K_REG_EEE_CTRL, reg);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
qca8k_get_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
/* Nothing to do on the port's MAC */
return 0;
}
static void
qca8k_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
u32 stp_state;
switch (state) {
case BR_STATE_DISABLED:
stp_state = QCA8K_PORT_LOOKUP_STATE_DISABLED;
break;
case BR_STATE_BLOCKING:
stp_state = QCA8K_PORT_LOOKUP_STATE_BLOCKING;
break;
case BR_STATE_LISTENING:
stp_state = QCA8K_PORT_LOOKUP_STATE_LISTENING;
break;
case BR_STATE_LEARNING:
stp_state = QCA8K_PORT_LOOKUP_STATE_LEARNING;
break;
case BR_STATE_FORWARDING:
default:
stp_state = QCA8K_PORT_LOOKUP_STATE_FORWARD;
break;
}
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_STATE_MASK, stp_state);
}
static int
qca8k_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *br)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
int port_mask = BIT(QCA8K_CPU_PORT);
int i;
for (i = 1; i < QCA8K_NUM_PORTS; i++) {
if (dsa_to_port(ds, i)->bridge_dev != br)
continue;
/* Add this port to the portvlan mask of the other ports
* in the bridge
*/
qca8k_reg_set(priv,
QCA8K_PORT_LOOKUP_CTRL(i),
BIT(port));
if (i != port)
port_mask |= BIT(i);
}
/* Add all other ports to this ports portvlan mask */
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_MEMBER, port_mask);
return 0;
}
static void
qca8k_port_bridge_leave(struct dsa_switch *ds, int port, struct net_device *br)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
int i;
for (i = 1; i < QCA8K_NUM_PORTS; i++) {
if (dsa_to_port(ds, i)->bridge_dev != br)
continue;
/* Remove this port to the portvlan mask of the other ports
* in the bridge
*/
qca8k_reg_clear(priv,
QCA8K_PORT_LOOKUP_CTRL(i),
BIT(port));
}
/* Set the cpu port to be the only one in the portvlan mask of
* this port
*/
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_MEMBER, BIT(QCA8K_CPU_PORT));
}
static int
qca8k_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
qca8k_port_set_status(priv, port, 1);
priv->port_sts[port].enabled = 1;
if (dsa_is_user_port(ds, port))
phy_support_asym_pause(phy);
return 0;
}
static void
qca8k_port_disable(struct dsa_switch *ds, int port)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
qca8k_port_set_status(priv, port, 0);
priv->port_sts[port].enabled = 0;
}
static int
qca8k_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct qca8k_priv *priv = ds->priv;
int i, mtu = 0;
priv->port_mtu[port] = new_mtu;
for (i = 0; i < QCA8K_NUM_PORTS; i++)
if (priv->port_mtu[i] > mtu)
mtu = priv->port_mtu[i];
/* Include L2 header / FCS length */
qca8k_write(priv, QCA8K_MAX_FRAME_SIZE, mtu + ETH_HLEN + ETH_FCS_LEN);
return 0;
}
static int
qca8k_port_max_mtu(struct dsa_switch *ds, int port)
{
return QCA8K_MAX_MTU;
}
static int
qca8k_port_fdb_insert(struct qca8k_priv *priv, const u8 *addr,
u16 port_mask, u16 vid)
{
/* Set the vid to the port vlan id if no vid is set */
if (!vid)
vid = QCA8K_PORT_VID_DEF;
return qca8k_fdb_add(priv, addr, port_mask, vid,
QCA8K_ATU_STATUS_STATIC);
}
static int
qca8k_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
u16 port_mask = BIT(port);
return qca8k_port_fdb_insert(priv, addr, port_mask, vid);
}
static int
qca8k_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
u16 port_mask = BIT(port);
if (!vid)
vid = QCA8K_PORT_VID_DEF;
return qca8k_fdb_del(priv, addr, port_mask, vid);
}
static int
qca8k_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
struct qca8k_fdb _fdb = { 0 };
int cnt = QCA8K_NUM_FDB_RECORDS;
bool is_static;
int ret = 0;
mutex_lock(&priv->reg_mutex);
while (cnt-- && !qca8k_fdb_next(priv, &_fdb, port)) {
if (!_fdb.aging)
break;
is_static = (_fdb.aging == QCA8K_ATU_STATUS_STATIC);
ret = cb(_fdb.mac, _fdb.vid, is_static, data);
if (ret)
break;
}
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
qca8k_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
struct netlink_ext_ack *extack)
{
struct qca8k_priv *priv = ds->priv;
if (vlan_filtering) {
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_VLAN_MODE,
QCA8K_PORT_LOOKUP_VLAN_MODE_SECURE);
} else {
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_VLAN_MODE,
QCA8K_PORT_LOOKUP_VLAN_MODE_NONE);
}
return 0;
}
static int
qca8k_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
struct qca8k_priv *priv = ds->priv;
int ret = 0;
ret = qca8k_vlan_add(priv, port, vlan->vid, untagged);
if (ret) {
dev_err(priv->dev, "Failed to add VLAN to port %d (%d)", port, ret);
return ret;
}
if (pvid) {
int shift = 16 * (port % 2);
qca8k_rmw(priv, QCA8K_EGRESS_VLAN(port),
0xfff << shift, vlan->vid << shift);
qca8k_write(priv, QCA8K_REG_PORT_VLAN_CTRL0(port),
QCA8K_PORT_VLAN_CVID(vlan->vid) |
QCA8K_PORT_VLAN_SVID(vlan->vid));
}
return 0;
}
static int
qca8k_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct qca8k_priv *priv = ds->priv;
int ret = 0;
ret = qca8k_vlan_del(priv, port, vlan->vid);
if (ret)
dev_err(priv->dev, "Failed to delete VLAN from port %d (%d)", port, ret);
return ret;
}
static enum dsa_tag_protocol
qca8k_get_tag_protocol(struct dsa_switch *ds, int port,
enum dsa_tag_protocol mp)
{
return DSA_TAG_PROTO_QCA;
}
static const struct dsa_switch_ops qca8k_switch_ops = {
.get_tag_protocol = qca8k_get_tag_protocol,
.setup = qca8k_setup,
.get_strings = qca8k_get_strings,
.get_ethtool_stats = qca8k_get_ethtool_stats,
.get_sset_count = qca8k_get_sset_count,
.get_mac_eee = qca8k_get_mac_eee,
.set_mac_eee = qca8k_set_mac_eee,
.port_enable = qca8k_port_enable,
.port_disable = qca8k_port_disable,
.port_change_mtu = qca8k_port_change_mtu,
.port_max_mtu = qca8k_port_max_mtu,
.port_stp_state_set = qca8k_port_stp_state_set,
.port_bridge_join = qca8k_port_bridge_join,
.port_bridge_leave = qca8k_port_bridge_leave,
.port_fdb_add = qca8k_port_fdb_add,
.port_fdb_del = qca8k_port_fdb_del,
.port_fdb_dump = qca8k_port_fdb_dump,
.port_vlan_filtering = qca8k_port_vlan_filtering,
.port_vlan_add = qca8k_port_vlan_add,
.port_vlan_del = qca8k_port_vlan_del,
.phylink_validate = qca8k_phylink_validate,
.phylink_mac_link_state = qca8k_phylink_mac_link_state,
.phylink_mac_config = qca8k_phylink_mac_config,
.phylink_mac_link_down = qca8k_phylink_mac_link_down,
.phylink_mac_link_up = qca8k_phylink_mac_link_up,
};
static int
qca8k_sw_probe(struct mdio_device *mdiodev)
{
struct qca8k_priv *priv;
u32 id;
/* allocate the private data struct so that we can probe the switches
* ID register
*/
priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->bus = mdiodev->bus;
priv->dev = &mdiodev->dev;
priv->reset_gpio = devm_gpiod_get_optional(priv->dev, "reset",
GPIOD_ASIS);
if (IS_ERR(priv->reset_gpio))
return PTR_ERR(priv->reset_gpio);
if (priv->reset_gpio) {
gpiod_set_value_cansleep(priv->reset_gpio, 1);
/* The active low duration must be greater than 10 ms
* and checkpatch.pl wants 20 ms.
*/
msleep(20);
gpiod_set_value_cansleep(priv->reset_gpio, 0);
}
/* read the switches ID register */
id = qca8k_read(priv, QCA8K_REG_MASK_CTRL);
id >>= QCA8K_MASK_CTRL_ID_S;
id &= QCA8K_MASK_CTRL_ID_M;
if (id != QCA8K_ID_QCA8337)
return -ENODEV;
priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
if (!priv->ds)
return -ENOMEM;
priv->ds->dev = &mdiodev->dev;
priv->ds->num_ports = QCA8K_NUM_PORTS;
priv->ds->priv = priv;
priv->ops = qca8k_switch_ops;
priv->ds->ops = &priv->ops;
mutex_init(&priv->reg_mutex);
dev_set_drvdata(&mdiodev->dev, priv);
return dsa_register_switch(priv->ds);
}
static void
qca8k_sw_remove(struct mdio_device *mdiodev)
{
struct qca8k_priv *priv = dev_get_drvdata(&mdiodev->dev);
int i;
for (i = 0; i < QCA8K_NUM_PORTS; i++)
qca8k_port_set_status(priv, i, 0);
dsa_unregister_switch(priv->ds);
}
#ifdef CONFIG_PM_SLEEP
static void
qca8k_set_pm(struct qca8k_priv *priv, int enable)
{
int i;
for (i = 0; i < QCA8K_NUM_PORTS; i++) {
if (!priv->port_sts[i].enabled)
continue;
qca8k_port_set_status(priv, i, enable);
}
}
static int qca8k_suspend(struct device *dev)
{
struct qca8k_priv *priv = dev_get_drvdata(dev);
qca8k_set_pm(priv, 0);
return dsa_switch_suspend(priv->ds);
}
static int qca8k_resume(struct device *dev)
{
struct qca8k_priv *priv = dev_get_drvdata(dev);
qca8k_set_pm(priv, 1);
return dsa_switch_resume(priv->ds);
}
#endif /* CONFIG_PM_SLEEP */
static SIMPLE_DEV_PM_OPS(qca8k_pm_ops,
qca8k_suspend, qca8k_resume);
static const struct of_device_id qca8k_of_match[] = {
{ .compatible = "qca,qca8334" },
{ .compatible = "qca,qca8337" },
{ /* sentinel */ },
};
static struct mdio_driver qca8kmdio_driver = {
.probe = qca8k_sw_probe,
.remove = qca8k_sw_remove,
.mdiodrv.driver = {
.name = "qca8k",
.of_match_table = qca8k_of_match,
.pm = &qca8k_pm_ops,
},
};
mdio_module_driver(qca8kmdio_driver);
MODULE_AUTHOR("Mathieu Olivari, John Crispin <john@phrozen.org>");
MODULE_DESCRIPTION("Driver for QCA8K ethernet switch family");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:qca8k");