Jens Axboe 79cfe9e59c io_uring/register: add IORING_REGISTER_RESIZE_RINGS
Once a ring has been created, the size of the CQ and SQ rings are fixed.
Usually this isn't a problem on the SQ ring side, as it merely controls
the available number of requests that can be submitted in a single
system call, and there's rarely a need to change that.

For the CQ ring, it's a different story. For most efficient use of
io_uring, it's important that the CQ ring never overflows. This means
that applications must size it for the worst case scenario, which can
be wasteful.

Add IORING_REGISTER_RESIZE_RINGS, which allows an application to resize
the existing rings. It takes a struct io_uring_params argument, the same
one which is used to setup the ring initially, and resizes rings
according to the sizes given.

Certain properties are always inherited from the original ring setup,
like SQE128/CQE32 and other setup options. The implementation only
allows flag associated with how the CQ ring is sized and clamped.

Existing unconsumed SQE and CQE entries are copied as part of the
process. If either the SQ or CQ resized destination ring cannot hold the
entries already present in the source rings, then the operation is failed
with -EOVERFLOW. Any register op holds ->uring_lock, which prevents new
submissions, and the internal mapping holds the completion lock as well
across moving CQ ring state.

To prevent races between mmap and ring resizing, add a mutex that's
solely used to serialize ring resize and mmap. mmap_sem can't be used
here, as as fork'ed process may be doing mmaps on the ring as well.
The ctx->resize_lock is held across mmap operations, and the resize
will grab it before swapping out the already mapped new data.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-29 13:43:27 -06:00

350 lines
8.1 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/io_uring.h>
#include <linux/io_uring_types.h>
#include <asm/shmparam.h>
#include "memmap.h"
#include "kbuf.h"
static void *io_mem_alloc_compound(struct page **pages, int nr_pages,
size_t size, gfp_t gfp)
{
struct page *page;
int i, order;
order = get_order(size);
if (order > MAX_PAGE_ORDER)
return ERR_PTR(-ENOMEM);
else if (order)
gfp |= __GFP_COMP;
page = alloc_pages(gfp, order);
if (!page)
return ERR_PTR(-ENOMEM);
for (i = 0; i < nr_pages; i++)
pages[i] = page + i;
return page_address(page);
}
static void *io_mem_alloc_single(struct page **pages, int nr_pages, size_t size,
gfp_t gfp)
{
void *ret;
int i;
for (i = 0; i < nr_pages; i++) {
pages[i] = alloc_page(gfp);
if (!pages[i])
goto err;
}
ret = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL);
if (ret)
return ret;
err:
while (i--)
put_page(pages[i]);
return ERR_PTR(-ENOMEM);
}
void *io_pages_map(struct page ***out_pages, unsigned short *npages,
size_t size)
{
gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN;
struct page **pages;
int nr_pages;
void *ret;
nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
pages = kvmalloc_array(nr_pages, sizeof(struct page *), gfp);
if (!pages)
return ERR_PTR(-ENOMEM);
ret = io_mem_alloc_compound(pages, nr_pages, size, gfp);
if (!IS_ERR(ret))
goto done;
ret = io_mem_alloc_single(pages, nr_pages, size, gfp);
if (!IS_ERR(ret)) {
done:
*out_pages = pages;
*npages = nr_pages;
return ret;
}
kvfree(pages);
*out_pages = NULL;
*npages = 0;
return ret;
}
void io_pages_unmap(void *ptr, struct page ***pages, unsigned short *npages,
bool put_pages)
{
bool do_vunmap = false;
if (!ptr)
return;
if (put_pages && *npages) {
struct page **to_free = *pages;
int i;
/*
* Only did vmap for the non-compound multiple page case.
* For the compound page, we just need to put the head.
*/
if (PageCompound(to_free[0]))
*npages = 1;
else if (*npages > 1)
do_vunmap = true;
for (i = 0; i < *npages; i++)
put_page(to_free[i]);
}
if (do_vunmap)
vunmap(ptr);
kvfree(*pages);
*pages = NULL;
*npages = 0;
}
void io_pages_free(struct page ***pages, int npages)
{
struct page **page_array = *pages;
if (!page_array)
return;
unpin_user_pages(page_array, npages);
kvfree(page_array);
*pages = NULL;
}
struct page **io_pin_pages(unsigned long uaddr, unsigned long len, int *npages)
{
unsigned long start, end, nr_pages;
struct page **pages;
int ret;
end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
start = uaddr >> PAGE_SHIFT;
nr_pages = end - start;
if (WARN_ON_ONCE(!nr_pages))
return ERR_PTR(-EINVAL);
pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages)
return ERR_PTR(-ENOMEM);
ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
pages);
/* success, mapped all pages */
if (ret == nr_pages) {
*npages = nr_pages;
return pages;
}
/* partial map, or didn't map anything */
if (ret >= 0) {
/* if we did partial map, release any pages we did get */
if (ret)
unpin_user_pages(pages, ret);
ret = -EFAULT;
}
kvfree(pages);
return ERR_PTR(ret);
}
void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
unsigned long uaddr, size_t size)
{
struct page **page_array;
unsigned int nr_pages;
void *page_addr;
*npages = 0;
if (uaddr & (PAGE_SIZE - 1) || !size)
return ERR_PTR(-EINVAL);
nr_pages = 0;
page_array = io_pin_pages(uaddr, size, &nr_pages);
if (IS_ERR(page_array))
return page_array;
page_addr = vmap(page_array, nr_pages, VM_MAP, PAGE_KERNEL);
if (page_addr) {
*pages = page_array;
*npages = nr_pages;
return page_addr;
}
io_pages_free(&page_array, nr_pages);
return ERR_PTR(-ENOMEM);
}
static void *io_uring_validate_mmap_request(struct file *file, loff_t pgoff,
size_t sz)
{
struct io_ring_ctx *ctx = file->private_data;
loff_t offset = pgoff << PAGE_SHIFT;
switch ((pgoff << PAGE_SHIFT) & IORING_OFF_MMAP_MASK) {
case IORING_OFF_SQ_RING:
case IORING_OFF_CQ_RING:
/* Don't allow mmap if the ring was setup without it */
if (ctx->flags & IORING_SETUP_NO_MMAP)
return ERR_PTR(-EINVAL);
if (!ctx->rings)
return ERR_PTR(-EFAULT);
return ctx->rings;
case IORING_OFF_SQES:
/* Don't allow mmap if the ring was setup without it */
if (ctx->flags & IORING_SETUP_NO_MMAP)
return ERR_PTR(-EINVAL);
if (!ctx->sq_sqes)
return ERR_PTR(-EFAULT);
return ctx->sq_sqes;
case IORING_OFF_PBUF_RING: {
struct io_buffer_list *bl;
unsigned int bgid;
void *ptr;
bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
bl = io_pbuf_get_bl(ctx, bgid);
if (IS_ERR(bl))
return bl;
ptr = bl->buf_ring;
io_put_bl(ctx, bl);
return ptr;
}
}
return ERR_PTR(-EINVAL);
}
int io_uring_mmap_pages(struct io_ring_ctx *ctx, struct vm_area_struct *vma,
struct page **pages, int npages)
{
unsigned long nr_pages = npages;
vm_flags_set(vma, VM_DONTEXPAND);
return vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
}
#ifdef CONFIG_MMU
__cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
{
struct io_ring_ctx *ctx = file->private_data;
size_t sz = vma->vm_end - vma->vm_start;
long offset = vma->vm_pgoff << PAGE_SHIFT;
unsigned int npages;
void *ptr;
guard(mutex)(&ctx->resize_lock);
ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
switch (offset & IORING_OFF_MMAP_MASK) {
case IORING_OFF_SQ_RING:
case IORING_OFF_CQ_RING:
npages = min(ctx->n_ring_pages, (sz + PAGE_SIZE - 1) >> PAGE_SHIFT);
return io_uring_mmap_pages(ctx, vma, ctx->ring_pages, npages);
case IORING_OFF_SQES:
return io_uring_mmap_pages(ctx, vma, ctx->sqe_pages,
ctx->n_sqe_pages);
case IORING_OFF_PBUF_RING:
return io_pbuf_mmap(file, vma);
}
return -EINVAL;
}
unsigned long io_uring_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
struct io_ring_ctx *ctx = filp->private_data;
void *ptr;
/*
* Do not allow to map to user-provided address to avoid breaking the
* aliasing rules. Userspace is not able to guess the offset address of
* kernel kmalloc()ed memory area.
*/
if (addr)
return -EINVAL;
guard(mutex)(&ctx->resize_lock);
ptr = io_uring_validate_mmap_request(filp, pgoff, len);
if (IS_ERR(ptr))
return -ENOMEM;
/*
* Some architectures have strong cache aliasing requirements.
* For such architectures we need a coherent mapping which aliases
* kernel memory *and* userspace memory. To achieve that:
* - use a NULL file pointer to reference physical memory, and
* - use the kernel virtual address of the shared io_uring context
* (instead of the userspace-provided address, which has to be 0UL
* anyway).
* - use the same pgoff which the get_unmapped_area() uses to
* calculate the page colouring.
* For architectures without such aliasing requirements, the
* architecture will return any suitable mapping because addr is 0.
*/
filp = NULL;
flags |= MAP_SHARED;
pgoff = 0; /* has been translated to ptr above */
#ifdef SHM_COLOUR
addr = (uintptr_t) ptr;
pgoff = addr >> PAGE_SHIFT;
#else
addr = 0UL;
#endif
return mm_get_unmapped_area(current->mm, filp, addr, len, pgoff, flags);
}
#else /* !CONFIG_MMU */
int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
{
return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
}
unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
{
return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
}
unsigned long io_uring_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
struct io_ring_ctx *ctx = file->private_data;
void *ptr;
guard(mutex)(&ctx->resize_lock);
ptr = io_uring_validate_mmap_request(file, pgoff, len);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
return (unsigned long) ptr;
}
#endif /* !CONFIG_MMU */