Uwe Kleine-König 384461abca pwm: Manage owner assignment implicitly for drivers
Instead of requiring each driver to care for assigning the owner member
of struct pwm_ops, handle that implicitly using a macro. Note that the
owner member has to be moved to struct pwm_chip, as the ops structure
usually lives in read-only memory and so cannot be modified.

The upside is that new low level drivers cannot forget the assignment and
save one line each. The pwm-crc driver didn't assign .owner, that's not
a problem in practice though as the driver cannot be compiled as a
module.

Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> # Intel LPSS
Reviewed-by: Florian Fainelli <florian.fainelli@broadcom.com> # pwm-{bcm,brcm}*.c
Acked-by: Jernej Skrabec <jernej.skrabec@gmail.com> # sun4i
Acked-by: Andi Shyti <andi.shyti@kernel.org>
Acked-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp> # pwm-visconti
Acked-by: Heiko Stuebner <heiko@sntech.de> # pwm-rockchip
Acked-by: Michael Walle <michael@walle.cc> # pwm-sl28cpld
Acked-by: Neil Armstrong <neil.armstrong@linaro.org> # pwm-meson
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/20230804142707.412137-2-u.kleine-koenig@pengutronix.de
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2023-10-13 10:07:17 +02:00

430 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Imagination Technologies Pulse Width Modulator driver
*
* Copyright (c) 2014-2015, Imagination Technologies
*
* Based on drivers/pwm/pwm-tegra.c, Copyright (c) 2010, NVIDIA Corporation
*/
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/pwm.h>
#include <linux/regmap.h>
#include <linux/slab.h>
/* PWM registers */
#define PWM_CTRL_CFG 0x0000
#define PWM_CTRL_CFG_NO_SUB_DIV 0
#define PWM_CTRL_CFG_SUB_DIV0 1
#define PWM_CTRL_CFG_SUB_DIV1 2
#define PWM_CTRL_CFG_SUB_DIV0_DIV1 3
#define PWM_CTRL_CFG_DIV_SHIFT(ch) ((ch) * 2 + 4)
#define PWM_CTRL_CFG_DIV_MASK 0x3
#define PWM_CH_CFG(ch) (0x4 + (ch) * 4)
#define PWM_CH_CFG_TMBASE_SHIFT 0
#define PWM_CH_CFG_DUTY_SHIFT 16
#define PERIP_PWM_PDM_CONTROL 0x0140
#define PERIP_PWM_PDM_CONTROL_CH_MASK 0x1
#define PERIP_PWM_PDM_CONTROL_CH_SHIFT(ch) ((ch) * 4)
#define IMG_PWM_PM_TIMEOUT 1000 /* ms */
/*
* PWM period is specified with a timebase register,
* in number of step periods. The PWM duty cycle is also
* specified in step periods, in the [0, $timebase] range.
* In other words, the timebase imposes the duty cycle
* resolution. Therefore, let's constraint the timebase to
* a minimum value to allow a sane range of duty cycle values.
* Imposing a minimum timebase, will impose a maximum PWM frequency.
*
* The value chosen is completely arbitrary.
*/
#define MIN_TMBASE_STEPS 16
#define IMG_PWM_NPWM 4
struct img_pwm_soc_data {
u32 max_timebase;
};
struct img_pwm_chip {
struct device *dev;
struct pwm_chip chip;
struct clk *pwm_clk;
struct clk *sys_clk;
void __iomem *base;
struct regmap *periph_regs;
int max_period_ns;
int min_period_ns;
const struct img_pwm_soc_data *data;
u32 suspend_ctrl_cfg;
u32 suspend_ch_cfg[IMG_PWM_NPWM];
};
static inline struct img_pwm_chip *to_img_pwm_chip(struct pwm_chip *chip)
{
return container_of(chip, struct img_pwm_chip, chip);
}
static inline void img_pwm_writel(struct img_pwm_chip *imgchip,
u32 reg, u32 val)
{
writel(val, imgchip->base + reg);
}
static inline u32 img_pwm_readl(struct img_pwm_chip *imgchip, u32 reg)
{
return readl(imgchip->base + reg);
}
static int img_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
u32 val, div, duty, timebase;
unsigned long mul, output_clk_hz, input_clk_hz;
struct img_pwm_chip *imgchip = to_img_pwm_chip(chip);
unsigned int max_timebase = imgchip->data->max_timebase;
int ret;
if (period_ns < imgchip->min_period_ns ||
period_ns > imgchip->max_period_ns) {
dev_err(chip->dev, "configured period not in range\n");
return -ERANGE;
}
input_clk_hz = clk_get_rate(imgchip->pwm_clk);
output_clk_hz = DIV_ROUND_UP(NSEC_PER_SEC, period_ns);
mul = DIV_ROUND_UP(input_clk_hz, output_clk_hz);
if (mul <= max_timebase) {
div = PWM_CTRL_CFG_NO_SUB_DIV;
timebase = DIV_ROUND_UP(mul, 1);
} else if (mul <= max_timebase * 8) {
div = PWM_CTRL_CFG_SUB_DIV0;
timebase = DIV_ROUND_UP(mul, 8);
} else if (mul <= max_timebase * 64) {
div = PWM_CTRL_CFG_SUB_DIV1;
timebase = DIV_ROUND_UP(mul, 64);
} else if (mul <= max_timebase * 512) {
div = PWM_CTRL_CFG_SUB_DIV0_DIV1;
timebase = DIV_ROUND_UP(mul, 512);
} else {
dev_err(chip->dev,
"failed to configure timebase steps/divider value\n");
return -EINVAL;
}
duty = DIV_ROUND_UP(timebase * duty_ns, period_ns);
ret = pm_runtime_resume_and_get(chip->dev);
if (ret < 0)
return ret;
val = img_pwm_readl(imgchip, PWM_CTRL_CFG);
val &= ~(PWM_CTRL_CFG_DIV_MASK << PWM_CTRL_CFG_DIV_SHIFT(pwm->hwpwm));
val |= (div & PWM_CTRL_CFG_DIV_MASK) <<
PWM_CTRL_CFG_DIV_SHIFT(pwm->hwpwm);
img_pwm_writel(imgchip, PWM_CTRL_CFG, val);
val = (duty << PWM_CH_CFG_DUTY_SHIFT) |
(timebase << PWM_CH_CFG_TMBASE_SHIFT);
img_pwm_writel(imgchip, PWM_CH_CFG(pwm->hwpwm), val);
pm_runtime_mark_last_busy(chip->dev);
pm_runtime_put_autosuspend(chip->dev);
return 0;
}
static int img_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
u32 val;
struct img_pwm_chip *imgchip = to_img_pwm_chip(chip);
int ret;
ret = pm_runtime_resume_and_get(chip->dev);
if (ret < 0)
return ret;
val = img_pwm_readl(imgchip, PWM_CTRL_CFG);
val |= BIT(pwm->hwpwm);
img_pwm_writel(imgchip, PWM_CTRL_CFG, val);
regmap_clear_bits(imgchip->periph_regs, PERIP_PWM_PDM_CONTROL,
PERIP_PWM_PDM_CONTROL_CH_MASK <<
PERIP_PWM_PDM_CONTROL_CH_SHIFT(pwm->hwpwm));
return 0;
}
static void img_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
u32 val;
struct img_pwm_chip *imgchip = to_img_pwm_chip(chip);
val = img_pwm_readl(imgchip, PWM_CTRL_CFG);
val &= ~BIT(pwm->hwpwm);
img_pwm_writel(imgchip, PWM_CTRL_CFG, val);
pm_runtime_mark_last_busy(chip->dev);
pm_runtime_put_autosuspend(chip->dev);
}
static int img_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
int err;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
if (!state->enabled) {
if (pwm->state.enabled)
img_pwm_disable(chip, pwm);
return 0;
}
err = img_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period);
if (err)
return err;
if (!pwm->state.enabled)
err = img_pwm_enable(chip, pwm);
return err;
}
static const struct pwm_ops img_pwm_ops = {
.apply = img_pwm_apply,
};
static const struct img_pwm_soc_data pistachio_pwm = {
.max_timebase = 255,
};
static const struct of_device_id img_pwm_of_match[] = {
{
.compatible = "img,pistachio-pwm",
.data = &pistachio_pwm,
},
{ }
};
MODULE_DEVICE_TABLE(of, img_pwm_of_match);
static int img_pwm_runtime_suspend(struct device *dev)
{
struct img_pwm_chip *imgchip = dev_get_drvdata(dev);
clk_disable_unprepare(imgchip->pwm_clk);
clk_disable_unprepare(imgchip->sys_clk);
return 0;
}
static int img_pwm_runtime_resume(struct device *dev)
{
struct img_pwm_chip *imgchip = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(imgchip->sys_clk);
if (ret < 0) {
dev_err(dev, "could not prepare or enable sys clock\n");
return ret;
}
ret = clk_prepare_enable(imgchip->pwm_clk);
if (ret < 0) {
dev_err(dev, "could not prepare or enable pwm clock\n");
clk_disable_unprepare(imgchip->sys_clk);
return ret;
}
return 0;
}
static int img_pwm_probe(struct platform_device *pdev)
{
int ret;
u64 val;
unsigned long clk_rate;
struct img_pwm_chip *imgchip;
const struct of_device_id *of_dev_id;
imgchip = devm_kzalloc(&pdev->dev, sizeof(*imgchip), GFP_KERNEL);
if (!imgchip)
return -ENOMEM;
imgchip->dev = &pdev->dev;
imgchip->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(imgchip->base))
return PTR_ERR(imgchip->base);
of_dev_id = of_match_device(img_pwm_of_match, &pdev->dev);
if (!of_dev_id)
return -ENODEV;
imgchip->data = of_dev_id->data;
imgchip->periph_regs = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"img,cr-periph");
if (IS_ERR(imgchip->periph_regs))
return PTR_ERR(imgchip->periph_regs);
imgchip->sys_clk = devm_clk_get(&pdev->dev, "sys");
if (IS_ERR(imgchip->sys_clk)) {
dev_err(&pdev->dev, "failed to get system clock\n");
return PTR_ERR(imgchip->sys_clk);
}
imgchip->pwm_clk = devm_clk_get(&pdev->dev, "imgchip");
if (IS_ERR(imgchip->pwm_clk)) {
dev_err(&pdev->dev, "failed to get imgchip clock\n");
return PTR_ERR(imgchip->pwm_clk);
}
platform_set_drvdata(pdev, imgchip);
pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_PWM_PM_TIMEOUT);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
ret = img_pwm_runtime_resume(&pdev->dev);
if (ret)
goto err_pm_disable;
}
clk_rate = clk_get_rate(imgchip->pwm_clk);
if (!clk_rate) {
dev_err(&pdev->dev, "imgchip clock has no frequency\n");
ret = -EINVAL;
goto err_suspend;
}
/* The maximum input clock divider is 512 */
val = (u64)NSEC_PER_SEC * 512 * imgchip->data->max_timebase;
do_div(val, clk_rate);
imgchip->max_period_ns = val;
val = (u64)NSEC_PER_SEC * MIN_TMBASE_STEPS;
do_div(val, clk_rate);
imgchip->min_period_ns = val;
imgchip->chip.dev = &pdev->dev;
imgchip->chip.ops = &img_pwm_ops;
imgchip->chip.npwm = IMG_PWM_NPWM;
ret = pwmchip_add(&imgchip->chip);
if (ret < 0) {
dev_err(&pdev->dev, "pwmchip_add failed: %d\n", ret);
goto err_suspend;
}
return 0;
err_suspend:
if (!pm_runtime_enabled(&pdev->dev))
img_pwm_runtime_suspend(&pdev->dev);
err_pm_disable:
pm_runtime_disable(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
return ret;
}
static void img_pwm_remove(struct platform_device *pdev)
{
struct img_pwm_chip *imgchip = platform_get_drvdata(pdev);
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
img_pwm_runtime_suspend(&pdev->dev);
pwmchip_remove(&imgchip->chip);
}
#ifdef CONFIG_PM_SLEEP
static int img_pwm_suspend(struct device *dev)
{
struct img_pwm_chip *imgchip = dev_get_drvdata(dev);
int i, ret;
if (pm_runtime_status_suspended(dev)) {
ret = img_pwm_runtime_resume(dev);
if (ret)
return ret;
}
for (i = 0; i < imgchip->chip.npwm; i++)
imgchip->suspend_ch_cfg[i] = img_pwm_readl(imgchip,
PWM_CH_CFG(i));
imgchip->suspend_ctrl_cfg = img_pwm_readl(imgchip, PWM_CTRL_CFG);
img_pwm_runtime_suspend(dev);
return 0;
}
static int img_pwm_resume(struct device *dev)
{
struct img_pwm_chip *imgchip = dev_get_drvdata(dev);
int ret;
int i;
ret = img_pwm_runtime_resume(dev);
if (ret)
return ret;
for (i = 0; i < imgchip->chip.npwm; i++)
img_pwm_writel(imgchip, PWM_CH_CFG(i),
imgchip->suspend_ch_cfg[i]);
img_pwm_writel(imgchip, PWM_CTRL_CFG, imgchip->suspend_ctrl_cfg);
for (i = 0; i < imgchip->chip.npwm; i++)
if (imgchip->suspend_ctrl_cfg & BIT(i))
regmap_clear_bits(imgchip->periph_regs,
PERIP_PWM_PDM_CONTROL,
PERIP_PWM_PDM_CONTROL_CH_MASK <<
PERIP_PWM_PDM_CONTROL_CH_SHIFT(i));
if (pm_runtime_status_suspended(dev))
img_pwm_runtime_suspend(dev);
return 0;
}
#endif /* CONFIG_PM */
static const struct dev_pm_ops img_pwm_pm_ops = {
SET_RUNTIME_PM_OPS(img_pwm_runtime_suspend,
img_pwm_runtime_resume,
NULL)
SET_SYSTEM_SLEEP_PM_OPS(img_pwm_suspend, img_pwm_resume)
};
static struct platform_driver img_pwm_driver = {
.driver = {
.name = "img-pwm",
.pm = &img_pwm_pm_ops,
.of_match_table = img_pwm_of_match,
},
.probe = img_pwm_probe,
.remove_new = img_pwm_remove,
};
module_platform_driver(img_pwm_driver);
MODULE_AUTHOR("Sai Masarapu <Sai.Masarapu@imgtec.com>");
MODULE_DESCRIPTION("Imagination Technologies PWM DAC driver");
MODULE_LICENSE("GPL v2");