Wang Qing befb1ddaec hwrng: cctrng - delete redundant printing of return value
platform_get_irq() has already checked and printed the return value,
the printing here is nothing special, it is not necessary at all.

Signed-off-by: Wang Qing <wangqing@vivo.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-03-19 21:59:47 +11:00

721 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2019-2020 ARM Limited or its affiliates. */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/hw_random.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/interrupt.h>
#include <linux/irqreturn.h>
#include <linux/workqueue.h>
#include <linux/circ_buf.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/bitfield.h>
#include <linux/fips.h>
#include "cctrng.h"
#define CC_REG_LOW(name) (name ## _BIT_SHIFT)
#define CC_REG_HIGH(name) (CC_REG_LOW(name) + name ## _BIT_SIZE - 1)
#define CC_GENMASK(name) GENMASK(CC_REG_HIGH(name), CC_REG_LOW(name))
#define CC_REG_FLD_GET(reg_name, fld_name, reg_val) \
(FIELD_GET(CC_GENMASK(CC_ ## reg_name ## _ ## fld_name), reg_val))
#define CC_HW_RESET_LOOP_COUNT 10
#define CC_TRNG_SUSPEND_TIMEOUT 3000
/* data circular buffer in words must be:
* - of a power-of-2 size (limitation of circ_buf.h macros)
* - at least 6, the size generated in the EHR according to HW implementation
*/
#define CCTRNG_DATA_BUF_WORDS 32
/* The timeout for the TRNG operation should be calculated with the formula:
* Timeout = EHR_NUM * VN_COEFF * EHR_LENGTH * SAMPLE_CNT * SCALE_VALUE
* while:
* - SAMPLE_CNT is input value from the characterisation process
* - all the rest are constants
*/
#define EHR_NUM 1
#define VN_COEFF 4
#define EHR_LENGTH CC_TRNG_EHR_IN_BITS
#define SCALE_VALUE 2
#define CCTRNG_TIMEOUT(smpl_cnt) \
(EHR_NUM * VN_COEFF * EHR_LENGTH * smpl_cnt * SCALE_VALUE)
struct cctrng_drvdata {
struct platform_device *pdev;
void __iomem *cc_base;
struct clk *clk;
struct hwrng rng;
u32 active_rosc;
/* Sampling interval for each ring oscillator:
* count of ring oscillator cycles between consecutive bits sampling.
* Value of 0 indicates non-valid rosc
*/
u32 smpl_ratio[CC_TRNG_NUM_OF_ROSCS];
u32 data_buf[CCTRNG_DATA_BUF_WORDS];
struct circ_buf circ;
struct work_struct compwork;
struct work_struct startwork;
/* pending_hw - 1 when HW is pending, 0 when it is idle */
atomic_t pending_hw;
/* protects against multiple concurrent consumers of data_buf */
spinlock_t read_lock;
};
/* functions for write/read CC registers */
static inline void cc_iowrite(struct cctrng_drvdata *drvdata, u32 reg, u32 val)
{
iowrite32(val, (drvdata->cc_base + reg));
}
static inline u32 cc_ioread(struct cctrng_drvdata *drvdata, u32 reg)
{
return ioread32(drvdata->cc_base + reg);
}
static int cc_trng_pm_get(struct device *dev)
{
int rc = 0;
rc = pm_runtime_get_sync(dev);
/* pm_runtime_get_sync() can return 1 as a valid return code */
return (rc == 1 ? 0 : rc);
}
static void cc_trng_pm_put_suspend(struct device *dev)
{
int rc = 0;
pm_runtime_mark_last_busy(dev);
rc = pm_runtime_put_autosuspend(dev);
if (rc)
dev_err(dev, "pm_runtime_put_autosuspend returned %x\n", rc);
}
static int cc_trng_pm_init(struct cctrng_drvdata *drvdata)
{
struct device *dev = &(drvdata->pdev->dev);
/* must be before the enabling to avoid redundant suspending */
pm_runtime_set_autosuspend_delay(dev, CC_TRNG_SUSPEND_TIMEOUT);
pm_runtime_use_autosuspend(dev);
/* set us as active - note we won't do PM ops until cc_trng_pm_go()! */
return pm_runtime_set_active(dev);
}
static void cc_trng_pm_go(struct cctrng_drvdata *drvdata)
{
struct device *dev = &(drvdata->pdev->dev);
/* enable the PM module*/
pm_runtime_enable(dev);
}
static void cc_trng_pm_fini(struct cctrng_drvdata *drvdata)
{
struct device *dev = &(drvdata->pdev->dev);
pm_runtime_disable(dev);
}
static inline int cc_trng_parse_sampling_ratio(struct cctrng_drvdata *drvdata)
{
struct device *dev = &(drvdata->pdev->dev);
struct device_node *np = drvdata->pdev->dev.of_node;
int rc;
int i;
/* ret will be set to 0 if at least one rosc has (sampling ratio > 0) */
int ret = -EINVAL;
rc = of_property_read_u32_array(np, "arm,rosc-ratio",
drvdata->smpl_ratio,
CC_TRNG_NUM_OF_ROSCS);
if (rc) {
/* arm,rosc-ratio was not found in device tree */
return rc;
}
/* verify that at least one rosc has (sampling ratio > 0) */
for (i = 0; i < CC_TRNG_NUM_OF_ROSCS; ++i) {
dev_dbg(dev, "rosc %d sampling ratio %u",
i, drvdata->smpl_ratio[i]);
if (drvdata->smpl_ratio[i] > 0)
ret = 0;
}
return ret;
}
static int cc_trng_change_rosc(struct cctrng_drvdata *drvdata)
{
struct device *dev = &(drvdata->pdev->dev);
dev_dbg(dev, "cctrng change rosc (was %d)\n", drvdata->active_rosc);
drvdata->active_rosc += 1;
while (drvdata->active_rosc < CC_TRNG_NUM_OF_ROSCS) {
if (drvdata->smpl_ratio[drvdata->active_rosc] > 0)
return 0;
drvdata->active_rosc += 1;
}
return -EINVAL;
}
static void cc_trng_enable_rnd_source(struct cctrng_drvdata *drvdata)
{
u32 max_cycles;
/* Set watchdog threshold to maximal allowed time (in CPU cycles) */
max_cycles = CCTRNG_TIMEOUT(drvdata->smpl_ratio[drvdata->active_rosc]);
cc_iowrite(drvdata, CC_RNG_WATCHDOG_VAL_REG_OFFSET, max_cycles);
/* enable the RND source */
cc_iowrite(drvdata, CC_RND_SOURCE_ENABLE_REG_OFFSET, 0x1);
/* unmask RNG interrupts */
cc_iowrite(drvdata, CC_RNG_IMR_REG_OFFSET, (u32)~CC_RNG_INT_MASK);
}
/* increase circular data buffer index (head/tail) */
static inline void circ_idx_inc(int *idx, int bytes)
{
*idx += (bytes + 3) >> 2;
*idx &= (CCTRNG_DATA_BUF_WORDS - 1);
}
static inline size_t circ_buf_space(struct cctrng_drvdata *drvdata)
{
return CIRC_SPACE(drvdata->circ.head,
drvdata->circ.tail, CCTRNG_DATA_BUF_WORDS);
}
static int cctrng_read(struct hwrng *rng, void *data, size_t max, bool wait)
{
/* current implementation ignores "wait" */
struct cctrng_drvdata *drvdata = (struct cctrng_drvdata *)rng->priv;
struct device *dev = &(drvdata->pdev->dev);
u32 *buf = (u32 *)drvdata->circ.buf;
size_t copied = 0;
size_t cnt_w;
size_t size;
size_t left;
if (!spin_trylock(&drvdata->read_lock)) {
/* concurrent consumers from data_buf cannot be served */
dev_dbg_ratelimited(dev, "unable to hold lock\n");
return 0;
}
/* copy till end of data buffer (without wrap back) */
cnt_w = CIRC_CNT_TO_END(drvdata->circ.head,
drvdata->circ.tail, CCTRNG_DATA_BUF_WORDS);
size = min((cnt_w<<2), max);
memcpy(data, &(buf[drvdata->circ.tail]), size);
copied = size;
circ_idx_inc(&drvdata->circ.tail, size);
/* copy rest of data in data buffer */
left = max - copied;
if (left > 0) {
cnt_w = CIRC_CNT(drvdata->circ.head,
drvdata->circ.tail, CCTRNG_DATA_BUF_WORDS);
size = min((cnt_w<<2), left);
memcpy(data, &(buf[drvdata->circ.tail]), size);
copied += size;
circ_idx_inc(&drvdata->circ.tail, size);
}
spin_unlock(&drvdata->read_lock);
if (circ_buf_space(drvdata) >= CC_TRNG_EHR_IN_WORDS) {
if (atomic_cmpxchg(&drvdata->pending_hw, 0, 1) == 0) {
/* re-check space in buffer to avoid potential race */
if (circ_buf_space(drvdata) >= CC_TRNG_EHR_IN_WORDS) {
/* increment device's usage counter */
int rc = cc_trng_pm_get(dev);
if (rc) {
dev_err(dev,
"cc_trng_pm_get returned %x\n",
rc);
return rc;
}
/* schedule execution of deferred work handler
* for filling of data buffer
*/
schedule_work(&drvdata->startwork);
} else {
atomic_set(&drvdata->pending_hw, 0);
}
}
}
return copied;
}
static void cc_trng_hw_trigger(struct cctrng_drvdata *drvdata)
{
u32 tmp_smpl_cnt = 0;
struct device *dev = &(drvdata->pdev->dev);
dev_dbg(dev, "cctrng hw trigger.\n");
/* enable the HW RND clock */
cc_iowrite(drvdata, CC_RNG_CLK_ENABLE_REG_OFFSET, 0x1);
/* do software reset */
cc_iowrite(drvdata, CC_RNG_SW_RESET_REG_OFFSET, 0x1);
/* in order to verify that the reset has completed,
* the sample count need to be verified
*/
do {
/* enable the HW RND clock */
cc_iowrite(drvdata, CC_RNG_CLK_ENABLE_REG_OFFSET, 0x1);
/* set sampling ratio (rng_clocks) between consecutive bits */
cc_iowrite(drvdata, CC_SAMPLE_CNT1_REG_OFFSET,
drvdata->smpl_ratio[drvdata->active_rosc]);
/* read the sampling ratio */
tmp_smpl_cnt = cc_ioread(drvdata, CC_SAMPLE_CNT1_REG_OFFSET);
} while (tmp_smpl_cnt != drvdata->smpl_ratio[drvdata->active_rosc]);
/* disable the RND source for setting new parameters in HW */
cc_iowrite(drvdata, CC_RND_SOURCE_ENABLE_REG_OFFSET, 0);
cc_iowrite(drvdata, CC_RNG_ICR_REG_OFFSET, 0xFFFFFFFF);
cc_iowrite(drvdata, CC_TRNG_CONFIG_REG_OFFSET, drvdata->active_rosc);
/* Debug Control register: set to 0 - no bypasses */
cc_iowrite(drvdata, CC_TRNG_DEBUG_CONTROL_REG_OFFSET, 0);
cc_trng_enable_rnd_source(drvdata);
}
static void cc_trng_compwork_handler(struct work_struct *w)
{
u32 isr = 0;
u32 ehr_valid = 0;
struct cctrng_drvdata *drvdata =
container_of(w, struct cctrng_drvdata, compwork);
struct device *dev = &(drvdata->pdev->dev);
int i;
/* stop DMA and the RNG source */
cc_iowrite(drvdata, CC_RNG_DMA_ENABLE_REG_OFFSET, 0);
cc_iowrite(drvdata, CC_RND_SOURCE_ENABLE_REG_OFFSET, 0);
/* read RNG_ISR and check for errors */
isr = cc_ioread(drvdata, CC_RNG_ISR_REG_OFFSET);
ehr_valid = CC_REG_FLD_GET(RNG_ISR, EHR_VALID, isr);
dev_dbg(dev, "Got RNG_ISR=0x%08X (EHR_VALID=%u)\n", isr, ehr_valid);
if (fips_enabled && CC_REG_FLD_GET(RNG_ISR, CRNGT_ERR, isr)) {
fips_fail_notify();
/* FIPS error is fatal */
panic("Got HW CRNGT error while fips is enabled!\n");
}
/* Clear all pending RNG interrupts */
cc_iowrite(drvdata, CC_RNG_ICR_REG_OFFSET, isr);
if (!ehr_valid) {
/* in case of AUTOCORR/TIMEOUT error, try the next ROSC */
if (CC_REG_FLD_GET(RNG_ISR, AUTOCORR_ERR, isr) ||
CC_REG_FLD_GET(RNG_ISR, WATCHDOG, isr)) {
dev_dbg(dev, "cctrng autocorr/timeout error.\n");
goto next_rosc;
}
/* in case of VN error, ignore it */
}
/* read EHR data from registers */
for (i = 0; i < CC_TRNG_EHR_IN_WORDS; i++) {
/* calc word ptr in data_buf */
u32 *buf = (u32 *)drvdata->circ.buf;
buf[drvdata->circ.head] = cc_ioread(drvdata,
CC_EHR_DATA_0_REG_OFFSET + (i*sizeof(u32)));
/* EHR_DATA registers are cleared on read. In case 0 value was
* returned, restart the entropy collection.
*/
if (buf[drvdata->circ.head] == 0) {
dev_dbg(dev, "Got 0 value in EHR. active_rosc %u\n",
drvdata->active_rosc);
goto next_rosc;
}
circ_idx_inc(&drvdata->circ.head, 1<<2);
}
atomic_set(&drvdata->pending_hw, 0);
/* continue to fill data buffer if needed */
if (circ_buf_space(drvdata) >= CC_TRNG_EHR_IN_WORDS) {
if (atomic_cmpxchg(&drvdata->pending_hw, 0, 1) == 0) {
/* Re-enable rnd source */
cc_trng_enable_rnd_source(drvdata);
return;
}
}
cc_trng_pm_put_suspend(dev);
dev_dbg(dev, "compwork handler done\n");
return;
next_rosc:
if ((circ_buf_space(drvdata) >= CC_TRNG_EHR_IN_WORDS) &&
(cc_trng_change_rosc(drvdata) == 0)) {
/* trigger trng hw with next rosc */
cc_trng_hw_trigger(drvdata);
} else {
atomic_set(&drvdata->pending_hw, 0);
cc_trng_pm_put_suspend(dev);
}
}
static irqreturn_t cc_isr(int irq, void *dev_id)
{
struct cctrng_drvdata *drvdata = (struct cctrng_drvdata *)dev_id;
struct device *dev = &(drvdata->pdev->dev);
u32 irr;
/* if driver suspended return, probably shared interrupt */
if (pm_runtime_suspended(dev))
return IRQ_NONE;
/* read the interrupt status */
irr = cc_ioread(drvdata, CC_HOST_RGF_IRR_REG_OFFSET);
dev_dbg(dev, "Got IRR=0x%08X\n", irr);
if (irr == 0) /* Probably shared interrupt line */
return IRQ_NONE;
/* clear interrupt - must be before processing events */
cc_iowrite(drvdata, CC_HOST_RGF_ICR_REG_OFFSET, irr);
/* RNG interrupt - most probable */
if (irr & CC_HOST_RNG_IRQ_MASK) {
/* Mask RNG interrupts - will be unmasked in deferred work */
cc_iowrite(drvdata, CC_RNG_IMR_REG_OFFSET, 0xFFFFFFFF);
/* We clear RNG interrupt here,
* to avoid it from firing as we'll unmask RNG interrupts.
*/
cc_iowrite(drvdata, CC_HOST_RGF_ICR_REG_OFFSET,
CC_HOST_RNG_IRQ_MASK);
irr &= ~CC_HOST_RNG_IRQ_MASK;
/* schedule execution of deferred work handler */
schedule_work(&drvdata->compwork);
}
if (irr) {
dev_dbg_ratelimited(dev,
"IRR includes unknown cause bits (0x%08X)\n",
irr);
/* Just warning */
}
return IRQ_HANDLED;
}
static void cc_trng_startwork_handler(struct work_struct *w)
{
struct cctrng_drvdata *drvdata =
container_of(w, struct cctrng_drvdata, startwork);
drvdata->active_rosc = 0;
cc_trng_hw_trigger(drvdata);
}
static int cc_trng_clk_init(struct cctrng_drvdata *drvdata)
{
struct clk *clk;
struct device *dev = &(drvdata->pdev->dev);
int rc = 0;
clk = devm_clk_get_optional(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk),
"Error getting clock\n");
drvdata->clk = clk;
rc = clk_prepare_enable(drvdata->clk);
if (rc) {
dev_err(dev, "Failed to enable clock\n");
return rc;
}
return 0;
}
static void cc_trng_clk_fini(struct cctrng_drvdata *drvdata)
{
clk_disable_unprepare(drvdata->clk);
}
static int cctrng_probe(struct platform_device *pdev)
{
struct cctrng_drvdata *drvdata;
struct device *dev = &pdev->dev;
int rc = 0;
u32 val;
int irq;
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
drvdata->rng.name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
if (!drvdata->rng.name)
return -ENOMEM;
drvdata->rng.read = cctrng_read;
drvdata->rng.priv = (unsigned long)drvdata;
drvdata->rng.quality = CC_TRNG_QUALITY;
platform_set_drvdata(pdev, drvdata);
drvdata->pdev = pdev;
drvdata->circ.buf = (char *)drvdata->data_buf;
drvdata->cc_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(drvdata->cc_base)) {
dev_err(dev, "Failed to ioremap registers");
return PTR_ERR(drvdata->cc_base);
}
/* Then IRQ */
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
/* parse sampling rate from device tree */
rc = cc_trng_parse_sampling_ratio(drvdata);
if (rc) {
dev_err(dev, "Failed to get legal sampling ratio for rosc\n");
return rc;
}
rc = cc_trng_clk_init(drvdata);
if (rc) {
dev_err(dev, "cc_trng_clk_init failed\n");
return rc;
}
INIT_WORK(&drvdata->compwork, cc_trng_compwork_handler);
INIT_WORK(&drvdata->startwork, cc_trng_startwork_handler);
spin_lock_init(&drvdata->read_lock);
/* register the driver isr function */
rc = devm_request_irq(dev, irq, cc_isr, IRQF_SHARED, "cctrng", drvdata);
if (rc) {
dev_err(dev, "Could not register to interrupt %d\n", irq);
goto post_clk_err;
}
dev_dbg(dev, "Registered to IRQ: %d\n", irq);
/* Clear all pending interrupts */
val = cc_ioread(drvdata, CC_HOST_RGF_IRR_REG_OFFSET);
dev_dbg(dev, "IRR=0x%08X\n", val);
cc_iowrite(drvdata, CC_HOST_RGF_ICR_REG_OFFSET, val);
/* unmask HOST RNG interrupt */
cc_iowrite(drvdata, CC_HOST_RGF_IMR_REG_OFFSET,
cc_ioread(drvdata, CC_HOST_RGF_IMR_REG_OFFSET) &
~CC_HOST_RNG_IRQ_MASK);
/* init PM */
rc = cc_trng_pm_init(drvdata);
if (rc) {
dev_err(dev, "cc_trng_pm_init failed\n");
goto post_clk_err;
}
/* increment device's usage counter */
rc = cc_trng_pm_get(dev);
if (rc) {
dev_err(dev, "cc_trng_pm_get returned %x\n", rc);
goto post_pm_err;
}
/* set pending_hw to verify that HW won't be triggered from read */
atomic_set(&drvdata->pending_hw, 1);
/* registration of the hwrng device */
rc = devm_hwrng_register(dev, &drvdata->rng);
if (rc) {
dev_err(dev, "Could not register hwrng device.\n");
goto post_pm_err;
}
/* trigger HW to start generate data */
drvdata->active_rosc = 0;
cc_trng_hw_trigger(drvdata);
/* All set, we can allow auto-suspend */
cc_trng_pm_go(drvdata);
dev_info(dev, "ARM cctrng device initialized\n");
return 0;
post_pm_err:
cc_trng_pm_fini(drvdata);
post_clk_err:
cc_trng_clk_fini(drvdata);
return rc;
}
static int cctrng_remove(struct platform_device *pdev)
{
struct cctrng_drvdata *drvdata = platform_get_drvdata(pdev);
struct device *dev = &pdev->dev;
dev_dbg(dev, "Releasing cctrng resources...\n");
cc_trng_pm_fini(drvdata);
cc_trng_clk_fini(drvdata);
dev_info(dev, "ARM cctrng device terminated\n");
return 0;
}
static int __maybe_unused cctrng_suspend(struct device *dev)
{
struct cctrng_drvdata *drvdata = dev_get_drvdata(dev);
dev_dbg(dev, "set HOST_POWER_DOWN_EN\n");
cc_iowrite(drvdata, CC_HOST_POWER_DOWN_EN_REG_OFFSET,
POWER_DOWN_ENABLE);
clk_disable_unprepare(drvdata->clk);
return 0;
}
static bool cctrng_wait_for_reset_completion(struct cctrng_drvdata *drvdata)
{
unsigned int val;
unsigned int i;
for (i = 0; i < CC_HW_RESET_LOOP_COUNT; i++) {
/* in cc7x3 NVM_IS_IDLE indicates that CC reset is
* completed and device is fully functional
*/
val = cc_ioread(drvdata, CC_NVM_IS_IDLE_REG_OFFSET);
if (val & BIT(CC_NVM_IS_IDLE_VALUE_BIT_SHIFT)) {
/* hw indicate reset completed */
return true;
}
/* allow scheduling other process on the processor */
schedule();
}
/* reset not completed */
return false;
}
static int __maybe_unused cctrng_resume(struct device *dev)
{
struct cctrng_drvdata *drvdata = dev_get_drvdata(dev);
int rc;
dev_dbg(dev, "unset HOST_POWER_DOWN_EN\n");
/* Enables the device source clk */
rc = clk_prepare_enable(drvdata->clk);
if (rc) {
dev_err(dev, "failed getting clock back on. We're toast.\n");
return rc;
}
/* wait for Cryptocell reset completion */
if (!cctrng_wait_for_reset_completion(drvdata)) {
dev_err(dev, "Cryptocell reset not completed");
return -EBUSY;
}
/* unmask HOST RNG interrupt */
cc_iowrite(drvdata, CC_HOST_RGF_IMR_REG_OFFSET,
cc_ioread(drvdata, CC_HOST_RGF_IMR_REG_OFFSET) &
~CC_HOST_RNG_IRQ_MASK);
cc_iowrite(drvdata, CC_HOST_POWER_DOWN_EN_REG_OFFSET,
POWER_DOWN_DISABLE);
return 0;
}
static UNIVERSAL_DEV_PM_OPS(cctrng_pm, cctrng_suspend, cctrng_resume, NULL);
static const struct of_device_id arm_cctrng_dt_match[] = {
{ .compatible = "arm,cryptocell-713-trng", },
{ .compatible = "arm,cryptocell-703-trng", },
{},
};
MODULE_DEVICE_TABLE(of, arm_cctrng_dt_match);
static struct platform_driver cctrng_driver = {
.driver = {
.name = "cctrng",
.of_match_table = arm_cctrng_dt_match,
.pm = &cctrng_pm,
},
.probe = cctrng_probe,
.remove = cctrng_remove,
};
static int __init cctrng_mod_init(void)
{
/* Compile time assertion checks */
BUILD_BUG_ON(CCTRNG_DATA_BUF_WORDS < 6);
BUILD_BUG_ON((CCTRNG_DATA_BUF_WORDS & (CCTRNG_DATA_BUF_WORDS-1)) != 0);
return platform_driver_register(&cctrng_driver);
}
module_init(cctrng_mod_init);
static void __exit cctrng_mod_exit(void)
{
platform_driver_unregister(&cctrng_driver);
}
module_exit(cctrng_mod_exit);
/* Module description */
MODULE_DESCRIPTION("ARM CryptoCell TRNG Driver");
MODULE_AUTHOR("ARM");
MODULE_LICENSE("GPL v2");