xu xin 6080d19f07 ksm: add ksm zero pages for each process
As the number of ksm zero pages is not included in ksm_merging_pages per
process when enabling use_zero_pages, it's unclear of how many actual
pages are merged by KSM. To let users accurately estimate their memory
demands when unsharing KSM zero-pages, it's necessary to show KSM zero-
pages per process. In addition, it help users to know the actual KSM
profit because KSM-placed zero pages are also benefit from KSM.

since unsharing zero pages placed by KSM accurately is achieved, then
tracking empty pages merging and unmerging is not a difficult thing any
longer.

Since we already have /proc/<pid>/ksm_stat, just add the information of
'ksm_zero_pages' in it.

Link: https://lkml.kernel.org/r/20230613030938.185993-1-yang.yang29@zte.com.cn
Signed-off-by: xu xin <xu.xin16@zte.com.cn>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Xiaokai Ran <ran.xiaokai@zte.com.cn>
Reviewed-by: Yang Yang <yang.yang29@zte.com.cn>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Xuexin Jiang <jiang.xuexin@zte.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:10 -07:00

150 lines
3.8 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_KSM_H
#define __LINUX_KSM_H
/*
* Memory merging support.
*
* This code enables dynamic sharing of identical pages found in different
* memory areas, even if they are not shared by fork().
*/
#include <linux/bitops.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/sched.h>
#include <linux/sched/coredump.h>
#ifdef CONFIG_KSM
int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
unsigned long end, int advice, unsigned long *vm_flags);
void ksm_add_vma(struct vm_area_struct *vma);
int ksm_enable_merge_any(struct mm_struct *mm);
int ksm_disable_merge_any(struct mm_struct *mm);
int ksm_disable(struct mm_struct *mm);
int __ksm_enter(struct mm_struct *mm);
void __ksm_exit(struct mm_struct *mm);
/*
* To identify zeropages that were mapped by KSM, we reuse the dirty bit
* in the PTE. If the PTE is dirty, the zeropage was mapped by KSM when
* deduplicating memory.
*/
#define is_ksm_zero_pte(pte) (is_zero_pfn(pte_pfn(pte)) && pte_dirty(pte))
extern unsigned long ksm_zero_pages;
static inline void ksm_might_unmap_zero_page(struct mm_struct *mm, pte_t pte)
{
if (is_ksm_zero_pte(pte)) {
ksm_zero_pages--;
mm->ksm_zero_pages--;
}
}
static inline int ksm_fork(struct mm_struct *mm, struct mm_struct *oldmm)
{
int ret;
if (test_bit(MMF_VM_MERGEABLE, &oldmm->flags)) {
ret = __ksm_enter(mm);
if (ret)
return ret;
}
if (test_bit(MMF_VM_MERGE_ANY, &oldmm->flags))
set_bit(MMF_VM_MERGE_ANY, &mm->flags);
return 0;
}
static inline void ksm_exit(struct mm_struct *mm)
{
if (test_bit(MMF_VM_MERGEABLE, &mm->flags))
__ksm_exit(mm);
}
/*
* When do_swap_page() first faults in from swap what used to be a KSM page,
* no problem, it will be assigned to this vma's anon_vma; but thereafter,
* it might be faulted into a different anon_vma (or perhaps to a different
* offset in the same anon_vma). do_swap_page() cannot do all the locking
* needed to reconstitute a cross-anon_vma KSM page: for now it has to make
* a copy, and leave remerging the pages to a later pass of ksmd.
*
* We'd like to make this conditional on vma->vm_flags & VM_MERGEABLE,
* but what if the vma was unmerged while the page was swapped out?
*/
struct page *ksm_might_need_to_copy(struct page *page,
struct vm_area_struct *vma, unsigned long address);
void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc);
void folio_migrate_ksm(struct folio *newfolio, struct folio *folio);
#ifdef CONFIG_MEMORY_FAILURE
void collect_procs_ksm(struct page *page, struct list_head *to_kill,
int force_early);
#endif
#ifdef CONFIG_PROC_FS
long ksm_process_profit(struct mm_struct *);
#endif /* CONFIG_PROC_FS */
#else /* !CONFIG_KSM */
static inline void ksm_add_vma(struct vm_area_struct *vma)
{
}
static inline int ksm_disable(struct mm_struct *mm)
{
return 0;
}
static inline int ksm_fork(struct mm_struct *mm, struct mm_struct *oldmm)
{
return 0;
}
static inline void ksm_exit(struct mm_struct *mm)
{
}
static inline void ksm_might_unmap_zero_page(struct mm_struct *mm, pte_t pte)
{
}
#ifdef CONFIG_MEMORY_FAILURE
static inline void collect_procs_ksm(struct page *page,
struct list_head *to_kill, int force_early)
{
}
#endif
#ifdef CONFIG_MMU
static inline int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
unsigned long end, int advice, unsigned long *vm_flags)
{
return 0;
}
static inline struct page *ksm_might_need_to_copy(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
return page;
}
static inline void rmap_walk_ksm(struct folio *folio,
struct rmap_walk_control *rwc)
{
}
static inline void folio_migrate_ksm(struct folio *newfolio, struct folio *old)
{
}
#endif /* CONFIG_MMU */
#endif /* !CONFIG_KSM */
#endif /* __LINUX_KSM_H */