Thomas Gleixner 76031d9536 clocksource: Make negative motion detection more robust
Guenter reported boot stalls on a emulated ARM 32-bit platform, which has a
24-bit wide clocksource.

It turns out that the calculated maximal idle time, which limits idle
sleeps to prevent clocksource wrap arounds, is close to the point where the
negative motion detection triggers.

  max_idle_ns:                    597268854 ns
  negative motion tripping point: 671088640 ns

If the idle wakeup is delayed beyond that point, the clocksource
advances far enough to trigger the negative motion detection. This
prevents the clock to advance and in the worst case the system stalls
completely if the consecutive sleeps based on the stale clock are
delayed as well.

Cure this by calculating a more robust cut-off value for negative motion,
which covers 87.5% of the actual clocksource counter width. Compare the
delta against this value to catch negative motion. This is specifically for
clock sources with a small counter width as their wrap around time is close
to the half counter width. For clock sources with wide counters this is not
a problem because the maximum idle time is far from the half counter width
due to the math overflow protection constraints.

For the case at hand this results in a tripping point of 1174405120ns.

Note, that this cannot prevent issues when the delay exceeds the 87.5%
margin, but that's not different from the previous unchecked version which
allowed arbitrary time jumps.

Systems with small counter width are prone to invalid results, but this
problem is unlikely to be seen on real hardware. If such a system
completely stalls for more than half a second, then there are other more
urgent problems than the counter wrapping around.

Fixes: c163e40af9b2 ("timekeeping: Always check for negative motion")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/all/8734j5ul4x.ffs@tglx
Closes: https://lore.kernel.org/all/387b120b-d68a-45e8-b6ab-768cd95d11c2@roeck-us.net
2024-12-05 16:03:24 +01:00
2024-11-30 15:47:29 -08:00
2024-11-30 15:43:02 -08:00
2024-12-01 13:10:51 -08:00
2024-09-01 20:43:24 -07:00
2024-11-30 13:41:50 -08:00
2024-11-30 15:47:29 -08:00
2024-11-30 13:41:50 -08:00
2024-11-30 18:14:56 -08:00
2024-11-29 13:01:05 -08:00
2024-11-27 12:57:03 -08:00
2024-11-30 13:41:50 -08:00
2024-11-20 14:01:15 -08:00
2022-09-28 09:02:20 +02:00
2024-11-20 09:54:49 -08:00
2022-10-10 12:00:45 -07:00
2024-12-01 13:38:24 -08:00
2024-12-01 14:28:56 -08:00
2024-03-18 03:36:32 -06:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the reStructuredText markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
Linux kernel stable tree
Readme 6.1 GiB
Languages
C 97.5%
Assembly 1%
Shell 0.6%
Python 0.3%
Makefile 0.3%