Kees Cook 876e480da2 RDMA/cma: Distinguish between sockaddr_in and sockaddr_in6 by size
Clang can do some aggressive inlining, which provides it with greater
visibility into the sizes of various objects that are passed into
helpers. Specifically, compare_netdev_and_ip() can see through the type
given to the "sa" argument, which means it can generate code for "struct
sockaddr_in" that would have been passed to ipv6_addr_cmp() (that expects
to operate on the larger "struct sockaddr_in6"), which would result in a
compile-time buffer overflow condition detected by memcmp(). Logically,
this state isn't reachable due to the sa_family assignment two callers
above and the check in compare_netdev_and_ip(). Instead, provide a
compile-time check on sizes so the size-mismatched code will be elided
when inlining. Avoids the following warning from Clang:

../include/linux/fortify-string.h:652:4: error: call to '__read_overflow' declared with 'error' attribute: detected read beyond size of object (1st parameter)
                        __read_overflow();
                        ^
note: In function 'cma_netevent_callback'
note:   which inlined function 'node_from_ndev_ip'
1 error generated.

When the underlying object size is not known (e.g. with GCC and older
Clang), the result of __builtin_object_size() is SIZE_MAX, which will also
compile away, leaving the code as it was originally.

Link: https://lore.kernel.org/r/20230208232549.never.139-kees@kernel.org
Link: https://github.com/ClangBuiltLinux/linux/issues/1687
Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org> # build
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2023-02-16 11:20:20 -04:00

5459 lines
143 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005-2006 Intel Corporation. All rights reserved.
*/
#include <linux/completion.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/mutex.h>
#include <linux/random.h>
#include <linux/rbtree.h>
#include <linux/igmp.h>
#include <linux/xarray.h>
#include <linux/inetdevice.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <net/route.h>
#include <net/net_namespace.h>
#include <net/netns/generic.h>
#include <net/netevent.h>
#include <net/tcp.h>
#include <net/ipv6.h>
#include <net/ip_fib.h>
#include <net/ip6_route.h>
#include <rdma/rdma_cm.h>
#include <rdma/rdma_cm_ib.h>
#include <rdma/rdma_netlink.h>
#include <rdma/ib.h>
#include <rdma/ib_cache.h>
#include <rdma/ib_cm.h>
#include <rdma/ib_sa.h>
#include <rdma/iw_cm.h>
#include "core_priv.h"
#include "cma_priv.h"
#include "cma_trace.h"
MODULE_AUTHOR("Sean Hefty");
MODULE_DESCRIPTION("Generic RDMA CM Agent");
MODULE_LICENSE("Dual BSD/GPL");
#define CMA_CM_RESPONSE_TIMEOUT 20
#define CMA_MAX_CM_RETRIES 15
#define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
#define CMA_IBOE_PACKET_LIFETIME 16
#define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
static const char * const cma_events[] = {
[RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved",
[RDMA_CM_EVENT_ADDR_ERROR] = "address error",
[RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ",
[RDMA_CM_EVENT_ROUTE_ERROR] = "route error",
[RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request",
[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
[RDMA_CM_EVENT_CONNECT_ERROR] = "connect error",
[RDMA_CM_EVENT_UNREACHABLE] = "unreachable",
[RDMA_CM_EVENT_REJECTED] = "rejected",
[RDMA_CM_EVENT_ESTABLISHED] = "established",
[RDMA_CM_EVENT_DISCONNECTED] = "disconnected",
[RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal",
[RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join",
[RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error",
[RDMA_CM_EVENT_ADDR_CHANGE] = "address change",
[RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit",
};
static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
enum ib_gid_type gid_type);
const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
{
size_t index = event;
return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
cma_events[index] : "unrecognized event";
}
EXPORT_SYMBOL(rdma_event_msg);
const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
int reason)
{
if (rdma_ib_or_roce(id->device, id->port_num))
return ibcm_reject_msg(reason);
if (rdma_protocol_iwarp(id->device, id->port_num))
return iwcm_reject_msg(reason);
WARN_ON_ONCE(1);
return "unrecognized transport";
}
EXPORT_SYMBOL(rdma_reject_msg);
/**
* rdma_is_consumer_reject - return true if the consumer rejected the connect
* request.
* @id: Communication identifier that received the REJECT event.
* @reason: Value returned in the REJECT event status field.
*/
static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
{
if (rdma_ib_or_roce(id->device, id->port_num))
return reason == IB_CM_REJ_CONSUMER_DEFINED;
if (rdma_protocol_iwarp(id->device, id->port_num))
return reason == -ECONNREFUSED;
WARN_ON_ONCE(1);
return false;
}
const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
struct rdma_cm_event *ev, u8 *data_len)
{
const void *p;
if (rdma_is_consumer_reject(id, ev->status)) {
*data_len = ev->param.conn.private_data_len;
p = ev->param.conn.private_data;
} else {
*data_len = 0;
p = NULL;
}
return p;
}
EXPORT_SYMBOL(rdma_consumer_reject_data);
/**
* rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
* @id: Communication Identifier
*/
struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
if (id->device->node_type == RDMA_NODE_RNIC)
return id_priv->cm_id.iw;
return NULL;
}
EXPORT_SYMBOL(rdma_iw_cm_id);
/**
* rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
* @res: rdma resource tracking entry pointer
*/
struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
{
struct rdma_id_private *id_priv =
container_of(res, struct rdma_id_private, res);
return &id_priv->id;
}
EXPORT_SYMBOL(rdma_res_to_id);
static int cma_add_one(struct ib_device *device);
static void cma_remove_one(struct ib_device *device, void *client_data);
static struct ib_client cma_client = {
.name = "cma",
.add = cma_add_one,
.remove = cma_remove_one
};
static struct ib_sa_client sa_client;
static LIST_HEAD(dev_list);
static LIST_HEAD(listen_any_list);
static DEFINE_MUTEX(lock);
static struct rb_root id_table = RB_ROOT;
/* Serialize operations of id_table tree */
static DEFINE_SPINLOCK(id_table_lock);
static struct workqueue_struct *cma_wq;
static unsigned int cma_pernet_id;
struct cma_pernet {
struct xarray tcp_ps;
struct xarray udp_ps;
struct xarray ipoib_ps;
struct xarray ib_ps;
};
static struct cma_pernet *cma_pernet(struct net *net)
{
return net_generic(net, cma_pernet_id);
}
static
struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
{
struct cma_pernet *pernet = cma_pernet(net);
switch (ps) {
case RDMA_PS_TCP:
return &pernet->tcp_ps;
case RDMA_PS_UDP:
return &pernet->udp_ps;
case RDMA_PS_IPOIB:
return &pernet->ipoib_ps;
case RDMA_PS_IB:
return &pernet->ib_ps;
default:
return NULL;
}
}
struct id_table_entry {
struct list_head id_list;
struct rb_node rb_node;
};
struct cma_device {
struct list_head list;
struct ib_device *device;
struct completion comp;
refcount_t refcount;
struct list_head id_list;
enum ib_gid_type *default_gid_type;
u8 *default_roce_tos;
};
struct rdma_bind_list {
enum rdma_ucm_port_space ps;
struct hlist_head owners;
unsigned short port;
};
static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
struct rdma_bind_list *bind_list, int snum)
{
struct xarray *xa = cma_pernet_xa(net, ps);
return xa_insert(xa, snum, bind_list, GFP_KERNEL);
}
static struct rdma_bind_list *cma_ps_find(struct net *net,
enum rdma_ucm_port_space ps, int snum)
{
struct xarray *xa = cma_pernet_xa(net, ps);
return xa_load(xa, snum);
}
static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
int snum)
{
struct xarray *xa = cma_pernet_xa(net, ps);
xa_erase(xa, snum);
}
enum {
CMA_OPTION_AFONLY,
};
void cma_dev_get(struct cma_device *cma_dev)
{
refcount_inc(&cma_dev->refcount);
}
void cma_dev_put(struct cma_device *cma_dev)
{
if (refcount_dec_and_test(&cma_dev->refcount))
complete(&cma_dev->comp);
}
struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter,
void *cookie)
{
struct cma_device *cma_dev;
struct cma_device *found_cma_dev = NULL;
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list)
if (filter(cma_dev->device, cookie)) {
found_cma_dev = cma_dev;
break;
}
if (found_cma_dev)
cma_dev_get(found_cma_dev);
mutex_unlock(&lock);
return found_cma_dev;
}
int cma_get_default_gid_type(struct cma_device *cma_dev,
u32 port)
{
if (!rdma_is_port_valid(cma_dev->device, port))
return -EINVAL;
return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
}
int cma_set_default_gid_type(struct cma_device *cma_dev,
u32 port,
enum ib_gid_type default_gid_type)
{
unsigned long supported_gids;
if (!rdma_is_port_valid(cma_dev->device, port))
return -EINVAL;
if (default_gid_type == IB_GID_TYPE_IB &&
rdma_protocol_roce_eth_encap(cma_dev->device, port))
default_gid_type = IB_GID_TYPE_ROCE;
supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
if (!(supported_gids & 1 << default_gid_type))
return -EINVAL;
cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
default_gid_type;
return 0;
}
int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
{
if (!rdma_is_port_valid(cma_dev->device, port))
return -EINVAL;
return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
}
int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
u8 default_roce_tos)
{
if (!rdma_is_port_valid(cma_dev->device, port))
return -EINVAL;
cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
default_roce_tos;
return 0;
}
struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
{
return cma_dev->device;
}
/*
* Device removal can occur at anytime, so we need extra handling to
* serialize notifying the user of device removal with other callbacks.
* We do this by disabling removal notification while a callback is in process,
* and reporting it after the callback completes.
*/
struct cma_multicast {
struct rdma_id_private *id_priv;
union {
struct ib_sa_multicast *sa_mc;
struct {
struct work_struct work;
struct rdma_cm_event event;
} iboe_join;
};
struct list_head list;
void *context;
struct sockaddr_storage addr;
u8 join_state;
};
struct cma_work {
struct work_struct work;
struct rdma_id_private *id;
enum rdma_cm_state old_state;
enum rdma_cm_state new_state;
struct rdma_cm_event event;
};
union cma_ip_addr {
struct in6_addr ip6;
struct {
__be32 pad[3];
__be32 addr;
} ip4;
};
struct cma_hdr {
u8 cma_version;
u8 ip_version; /* IP version: 7:4 */
__be16 port;
union cma_ip_addr src_addr;
union cma_ip_addr dst_addr;
};
#define CMA_VERSION 0x00
struct cma_req_info {
struct sockaddr_storage listen_addr_storage;
struct sockaddr_storage src_addr_storage;
struct ib_device *device;
union ib_gid local_gid;
__be64 service_id;
int port;
bool has_gid;
u16 pkey;
};
static int cma_comp_exch(struct rdma_id_private *id_priv,
enum rdma_cm_state comp, enum rdma_cm_state exch)
{
unsigned long flags;
int ret;
/*
* The FSM uses a funny double locking where state is protected by both
* the handler_mutex and the spinlock. State is not allowed to change
* to/from a handler_mutex protected value without also holding
* handler_mutex.
*/
if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
lockdep_assert_held(&id_priv->handler_mutex);
spin_lock_irqsave(&id_priv->lock, flags);
if ((ret = (id_priv->state == comp)))
id_priv->state = exch;
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
{
return hdr->ip_version >> 4;
}
static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
{
hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
}
static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
{
return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
}
static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
{
return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
}
static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
{
struct in_device *in_dev = NULL;
if (ndev) {
rtnl_lock();
in_dev = __in_dev_get_rtnl(ndev);
if (in_dev) {
if (join)
ip_mc_inc_group(in_dev,
*(__be32 *)(mgid->raw + 12));
else
ip_mc_dec_group(in_dev,
*(__be32 *)(mgid->raw + 12));
}
rtnl_unlock();
}
return (in_dev) ? 0 : -ENODEV;
}
static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
struct id_table_entry *entry_b)
{
struct rdma_id_private *id_priv = list_first_entry(
&entry_b->id_list, struct rdma_id_private, id_list_entry);
int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
struct sockaddr *sb = cma_dst_addr(id_priv);
if (ifindex_a != ifindex_b)
return (ifindex_a > ifindex_b) ? 1 : -1;
if (sa->sa_family != sb->sa_family)
return sa->sa_family - sb->sa_family;
if (sa->sa_family == AF_INET &&
__builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) {
return memcmp(&((struct sockaddr_in *)sa)->sin_addr,
&((struct sockaddr_in *)sb)->sin_addr,
sizeof(((struct sockaddr_in *)sa)->sin_addr));
}
if (sa->sa_family == AF_INET6 &&
__builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) {
return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
&((struct sockaddr_in6 *)sb)->sin6_addr);
}
return -1;
}
static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
{
struct rb_node **new, *parent = NULL;
struct id_table_entry *this, *node;
unsigned long flags;
int result;
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node)
return -ENOMEM;
spin_lock_irqsave(&id_table_lock, flags);
new = &id_table.rb_node;
while (*new) {
this = container_of(*new, struct id_table_entry, rb_node);
result = compare_netdev_and_ip(
node_id_priv->id.route.addr.dev_addr.bound_dev_if,
cma_dst_addr(node_id_priv), this);
parent = *new;
if (result < 0)
new = &((*new)->rb_left);
else if (result > 0)
new = &((*new)->rb_right);
else {
list_add_tail(&node_id_priv->id_list_entry,
&this->id_list);
kfree(node);
goto unlock;
}
}
INIT_LIST_HEAD(&node->id_list);
list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
rb_link_node(&node->rb_node, parent, new);
rb_insert_color(&node->rb_node, &id_table);
unlock:
spin_unlock_irqrestore(&id_table_lock, flags);
return 0;
}
static struct id_table_entry *
node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
{
struct rb_node *node = root->rb_node;
struct id_table_entry *data;
int result;
while (node) {
data = container_of(node, struct id_table_entry, rb_node);
result = compare_netdev_and_ip(ifindex, sa, data);
if (result < 0)
node = node->rb_left;
else if (result > 0)
node = node->rb_right;
else
return data;
}
return NULL;
}
static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
{
struct id_table_entry *data;
unsigned long flags;
spin_lock_irqsave(&id_table_lock, flags);
if (list_empty(&id_priv->id_list_entry))
goto out;
data = node_from_ndev_ip(&id_table,
id_priv->id.route.addr.dev_addr.bound_dev_if,
cma_dst_addr(id_priv));
if (!data)
goto out;
list_del_init(&id_priv->id_list_entry);
if (list_empty(&data->id_list)) {
rb_erase(&data->rb_node, &id_table);
kfree(data);
}
out:
spin_unlock_irqrestore(&id_table_lock, flags);
}
static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev)
{
cma_dev_get(cma_dev);
id_priv->cma_dev = cma_dev;
id_priv->id.device = cma_dev->device;
id_priv->id.route.addr.dev_addr.transport =
rdma_node_get_transport(cma_dev->device->node_type);
list_add_tail(&id_priv->device_item, &cma_dev->id_list);
trace_cm_id_attach(id_priv, cma_dev->device);
}
static void cma_attach_to_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev)
{
_cma_attach_to_dev(id_priv, cma_dev);
id_priv->gid_type =
cma_dev->default_gid_type[id_priv->id.port_num -
rdma_start_port(cma_dev->device)];
}
static void cma_release_dev(struct rdma_id_private *id_priv)
{
mutex_lock(&lock);
list_del_init(&id_priv->device_item);
cma_dev_put(id_priv->cma_dev);
id_priv->cma_dev = NULL;
id_priv->id.device = NULL;
if (id_priv->id.route.addr.dev_addr.sgid_attr) {
rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
}
mutex_unlock(&lock);
}
static inline unsigned short cma_family(struct rdma_id_private *id_priv)
{
return id_priv->id.route.addr.src_addr.ss_family;
}
static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
{
struct ib_sa_mcmember_rec rec;
int ret = 0;
if (id_priv->qkey) {
if (qkey && id_priv->qkey != qkey)
return -EINVAL;
return 0;
}
if (qkey) {
id_priv->qkey = qkey;
return 0;
}
switch (id_priv->id.ps) {
case RDMA_PS_UDP:
case RDMA_PS_IB:
id_priv->qkey = RDMA_UDP_QKEY;
break;
case RDMA_PS_IPOIB:
ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
ret = ib_sa_get_mcmember_rec(id_priv->id.device,
id_priv->id.port_num, &rec.mgid,
&rec);
if (!ret)
id_priv->qkey = be32_to_cpu(rec.qkey);
break;
default:
break;
}
return ret;
}
static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
{
dev_addr->dev_type = ARPHRD_INFINIBAND;
rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
}
static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
{
int ret;
if (addr->sa_family != AF_IB) {
ret = rdma_translate_ip(addr, dev_addr);
} else {
cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
ret = 0;
}
return ret;
}
static const struct ib_gid_attr *
cma_validate_port(struct ib_device *device, u32 port,
enum ib_gid_type gid_type,
union ib_gid *gid,
struct rdma_id_private *id_priv)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int bound_if_index = dev_addr->bound_dev_if;
const struct ib_gid_attr *sgid_attr;
int dev_type = dev_addr->dev_type;
struct net_device *ndev = NULL;
if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
return ERR_PTR(-ENODEV);
if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
return ERR_PTR(-ENODEV);
if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
return ERR_PTR(-ENODEV);
if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
ndev = dev_get_by_index(dev_addr->net, bound_if_index);
if (!ndev)
return ERR_PTR(-ENODEV);
} else {
gid_type = IB_GID_TYPE_IB;
}
sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
if (ndev)
dev_put(ndev);
return sgid_attr;
}
static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
const struct ib_gid_attr *sgid_attr)
{
WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
}
/**
* cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
* based on source ip address.
* @id_priv: cm_id which should be bound to cma device
*
* cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
* based on source IP address. It returns 0 on success or error code otherwise.
* It is applicable to active and passive side cm_id.
*/
static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
const struct ib_gid_attr *sgid_attr;
union ib_gid gid, iboe_gid, *gidp;
struct cma_device *cma_dev;
enum ib_gid_type gid_type;
int ret = -ENODEV;
u32 port;
if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
id_priv->id.ps == RDMA_PS_IPOIB)
return -EINVAL;
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&iboe_gid);
memcpy(&gid, dev_addr->src_dev_addr +
rdma_addr_gid_offset(dev_addr), sizeof(gid));
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list) {
rdma_for_each_port (cma_dev->device, port) {
gidp = rdma_protocol_roce(cma_dev->device, port) ?
&iboe_gid : &gid;
gid_type = cma_dev->default_gid_type[port - 1];
sgid_attr = cma_validate_port(cma_dev->device, port,
gid_type, gidp, id_priv);
if (!IS_ERR(sgid_attr)) {
id_priv->id.port_num = port;
cma_bind_sgid_attr(id_priv, sgid_attr);
cma_attach_to_dev(id_priv, cma_dev);
ret = 0;
goto out;
}
}
}
out:
mutex_unlock(&lock);
return ret;
}
/**
* cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
* @id_priv: cm id to bind to cma device
* @listen_id_priv: listener cm id to match against
* @req: Pointer to req structure containaining incoming
* request information
* cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
* rdma device matches for listen_id and incoming request. It also verifies
* that a GID table entry is present for the source address.
* Returns 0 on success, or returns error code otherwise.
*/
static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
const struct rdma_id_private *listen_id_priv,
struct cma_req_info *req)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
const struct ib_gid_attr *sgid_attr;
enum ib_gid_type gid_type;
union ib_gid gid;
if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
id_priv->id.ps == RDMA_PS_IPOIB)
return -EINVAL;
if (rdma_protocol_roce(req->device, req->port))
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&gid);
else
memcpy(&gid, dev_addr->src_dev_addr +
rdma_addr_gid_offset(dev_addr), sizeof(gid));
gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
sgid_attr = cma_validate_port(req->device, req->port,
gid_type, &gid, id_priv);
if (IS_ERR(sgid_attr))
return PTR_ERR(sgid_attr);
id_priv->id.port_num = req->port;
cma_bind_sgid_attr(id_priv, sgid_attr);
/* Need to acquire lock to protect against reader
* of cma_dev->id_list such as cma_netdev_callback() and
* cma_process_remove().
*/
mutex_lock(&lock);
cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
mutex_unlock(&lock);
rdma_restrack_add(&id_priv->res);
return 0;
}
static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
const struct rdma_id_private *listen_id_priv)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
const struct ib_gid_attr *sgid_attr;
struct cma_device *cma_dev;
enum ib_gid_type gid_type;
int ret = -ENODEV;
union ib_gid gid;
u32 port;
if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
id_priv->id.ps == RDMA_PS_IPOIB)
return -EINVAL;
memcpy(&gid, dev_addr->src_dev_addr +
rdma_addr_gid_offset(dev_addr), sizeof(gid));
mutex_lock(&lock);
cma_dev = listen_id_priv->cma_dev;
port = listen_id_priv->id.port_num;
gid_type = listen_id_priv->gid_type;
sgid_attr = cma_validate_port(cma_dev->device, port,
gid_type, &gid, id_priv);
if (!IS_ERR(sgid_attr)) {
id_priv->id.port_num = port;
cma_bind_sgid_attr(id_priv, sgid_attr);
ret = 0;
goto out;
}
list_for_each_entry(cma_dev, &dev_list, list) {
rdma_for_each_port (cma_dev->device, port) {
if (listen_id_priv->cma_dev == cma_dev &&
listen_id_priv->id.port_num == port)
continue;
gid_type = cma_dev->default_gid_type[port - 1];
sgid_attr = cma_validate_port(cma_dev->device, port,
gid_type, &gid, id_priv);
if (!IS_ERR(sgid_attr)) {
id_priv->id.port_num = port;
cma_bind_sgid_attr(id_priv, sgid_attr);
ret = 0;
goto out;
}
}
}
out:
if (!ret) {
cma_attach_to_dev(id_priv, cma_dev);
rdma_restrack_add(&id_priv->res);
}
mutex_unlock(&lock);
return ret;
}
/*
* Select the source IB device and address to reach the destination IB address.
*/
static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev, *cur_dev;
struct sockaddr_ib *addr;
union ib_gid gid, sgid, *dgid;
unsigned int p;
u16 pkey, index;
enum ib_port_state port_state;
int ret;
int i;
cma_dev = NULL;
addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
dgid = (union ib_gid *) &addr->sib_addr;
pkey = ntohs(addr->sib_pkey);
mutex_lock(&lock);
list_for_each_entry(cur_dev, &dev_list, list) {
rdma_for_each_port (cur_dev->device, p) {
if (!rdma_cap_af_ib(cur_dev->device, p))
continue;
if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
continue;
if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
continue;
for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
++i) {
ret = rdma_query_gid(cur_dev->device, p, i,
&gid);
if (ret)
continue;
if (!memcmp(&gid, dgid, sizeof(gid))) {
cma_dev = cur_dev;
sgid = gid;
id_priv->id.port_num = p;
goto found;
}
if (!cma_dev && (gid.global.subnet_prefix ==
dgid->global.subnet_prefix) &&
port_state == IB_PORT_ACTIVE) {
cma_dev = cur_dev;
sgid = gid;
id_priv->id.port_num = p;
goto found;
}
}
}
}
mutex_unlock(&lock);
return -ENODEV;
found:
cma_attach_to_dev(id_priv, cma_dev);
rdma_restrack_add(&id_priv->res);
mutex_unlock(&lock);
addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
return 0;
}
static void cma_id_get(struct rdma_id_private *id_priv)
{
refcount_inc(&id_priv->refcount);
}
static void cma_id_put(struct rdma_id_private *id_priv)
{
if (refcount_dec_and_test(&id_priv->refcount))
complete(&id_priv->comp);
}
static struct rdma_id_private *
__rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
void *context, enum rdma_ucm_port_space ps,
enum ib_qp_type qp_type, const struct rdma_id_private *parent)
{
struct rdma_id_private *id_priv;
id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
if (!id_priv)
return ERR_PTR(-ENOMEM);
id_priv->state = RDMA_CM_IDLE;
id_priv->id.context = context;
id_priv->id.event_handler = event_handler;
id_priv->id.ps = ps;
id_priv->id.qp_type = qp_type;
id_priv->tos_set = false;
id_priv->timeout_set = false;
id_priv->min_rnr_timer_set = false;
id_priv->gid_type = IB_GID_TYPE_IB;
spin_lock_init(&id_priv->lock);
mutex_init(&id_priv->qp_mutex);
init_completion(&id_priv->comp);
refcount_set(&id_priv->refcount, 1);
mutex_init(&id_priv->handler_mutex);
INIT_LIST_HEAD(&id_priv->device_item);
INIT_LIST_HEAD(&id_priv->id_list_entry);
INIT_LIST_HEAD(&id_priv->listen_list);
INIT_LIST_HEAD(&id_priv->mc_list);
get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
id_priv->id.route.addr.dev_addr.net = get_net(net);
id_priv->seq_num &= 0x00ffffff;
rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
if (parent)
rdma_restrack_parent_name(&id_priv->res, &parent->res);
return id_priv;
}
struct rdma_cm_id *
__rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
void *context, enum rdma_ucm_port_space ps,
enum ib_qp_type qp_type, const char *caller)
{
struct rdma_id_private *ret;
ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
if (IS_ERR(ret))
return ERR_CAST(ret);
rdma_restrack_set_name(&ret->res, caller);
return &ret->id;
}
EXPORT_SYMBOL(__rdma_create_kernel_id);
struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
void *context,
enum rdma_ucm_port_space ps,
enum ib_qp_type qp_type)
{
struct rdma_id_private *ret;
ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
ps, qp_type, NULL);
if (IS_ERR(ret))
return ERR_CAST(ret);
rdma_restrack_set_name(&ret->res, NULL);
return &ret->id;
}
EXPORT_SYMBOL(rdma_create_user_id);
static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
return ret;
ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
if (ret)
return ret;
qp_attr.qp_state = IB_QPS_RTR;
ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
if (ret)
return ret;
qp_attr.qp_state = IB_QPS_RTS;
qp_attr.sq_psn = 0;
ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
return ret;
}
static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
return ret;
return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
}
int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr)
{
struct rdma_id_private *id_priv;
struct ib_qp *qp;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (id->device != pd->device) {
ret = -EINVAL;
goto out_err;
}
qp_init_attr->port_num = id->port_num;
qp = ib_create_qp(pd, qp_init_attr);
if (IS_ERR(qp)) {
ret = PTR_ERR(qp);
goto out_err;
}
if (id->qp_type == IB_QPT_UD)
ret = cma_init_ud_qp(id_priv, qp);
else
ret = cma_init_conn_qp(id_priv, qp);
if (ret)
goto out_destroy;
id->qp = qp;
id_priv->qp_num = qp->qp_num;
id_priv->srq = (qp->srq != NULL);
trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
return 0;
out_destroy:
ib_destroy_qp(qp);
out_err:
trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
return ret;
}
EXPORT_SYMBOL(rdma_create_qp);
void rdma_destroy_qp(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
trace_cm_qp_destroy(id_priv);
mutex_lock(&id_priv->qp_mutex);
ib_destroy_qp(id_priv->id.qp);
id_priv->id.qp = NULL;
mutex_unlock(&id_priv->qp_mutex);
}
EXPORT_SYMBOL(rdma_destroy_qp);
static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
/* Need to update QP attributes from default values. */
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
if (ret)
goto out;
qp_attr.qp_state = IB_QPS_RTR;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
if (conn_param)
qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
qp_attr.qp_state = IB_QPS_RTS;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
if (conn_param)
qp_attr.max_rd_atomic = conn_param->initiator_depth;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_modify_qp_err(struct rdma_id_private *id_priv)
{
struct ib_qp_attr qp_attr;
int ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
qp_attr.qp_state = IB_QPS_ERR;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
struct ib_qp_attr *qp_attr, int *qp_attr_mask)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int ret;
u16 pkey;
if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
pkey = 0xffff;
else
pkey = ib_addr_get_pkey(dev_addr);
ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
pkey, &qp_attr->pkey_index);
if (ret)
return ret;
qp_attr->port_num = id_priv->id.port_num;
*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
if (id_priv->id.qp_type == IB_QPT_UD) {
ret = cma_set_qkey(id_priv, 0);
if (ret)
return ret;
qp_attr->qkey = id_priv->qkey;
*qp_attr_mask |= IB_QP_QKEY;
} else {
qp_attr->qp_access_flags = 0;
*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
}
return 0;
}
int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
int *qp_attr_mask)
{
struct rdma_id_private *id_priv;
int ret = 0;
id_priv = container_of(id, struct rdma_id_private, id);
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
else
ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
qp_attr_mask);
if (qp_attr->qp_state == IB_QPS_RTR)
qp_attr->rq_psn = id_priv->seq_num;
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
if (!id_priv->cm_id.iw) {
qp_attr->qp_access_flags = 0;
*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
} else
ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
qp_attr_mask);
qp_attr->port_num = id_priv->id.port_num;
*qp_attr_mask |= IB_QP_PORT;
} else {
ret = -ENOSYS;
}
if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
qp_attr->timeout = id_priv->timeout;
if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
return ret;
}
EXPORT_SYMBOL(rdma_init_qp_attr);
static inline bool cma_zero_addr(const struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
case AF_INET6:
return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
case AF_IB:
return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
default:
return false;
}
}
static inline bool cma_loopback_addr(const struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return ipv4_is_loopback(
((struct sockaddr_in *)addr)->sin_addr.s_addr);
case AF_INET6:
return ipv6_addr_loopback(
&((struct sockaddr_in6 *)addr)->sin6_addr);
case AF_IB:
return ib_addr_loopback(
&((struct sockaddr_ib *)addr)->sib_addr);
default:
return false;
}
}
static inline bool cma_any_addr(const struct sockaddr *addr)
{
return cma_zero_addr(addr) || cma_loopback_addr(addr);
}
static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
{
if (src->sa_family != dst->sa_family)
return -1;
switch (src->sa_family) {
case AF_INET:
return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
((struct sockaddr_in *)dst)->sin_addr.s_addr;
case AF_INET6: {
struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
bool link_local;
if (ipv6_addr_cmp(&src_addr6->sin6_addr,
&dst_addr6->sin6_addr))
return 1;
link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
IPV6_ADDR_LINKLOCAL;
/* Link local must match their scope_ids */
return link_local ? (src_addr6->sin6_scope_id !=
dst_addr6->sin6_scope_id) :
0;
}
default:
return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
&((struct sockaddr_ib *) dst)->sib_addr);
}
}
static __be16 cma_port(const struct sockaddr *addr)
{
struct sockaddr_ib *sib;
switch (addr->sa_family) {
case AF_INET:
return ((struct sockaddr_in *) addr)->sin_port;
case AF_INET6:
return ((struct sockaddr_in6 *) addr)->sin6_port;
case AF_IB:
sib = (struct sockaddr_ib *) addr;
return htons((u16) (be64_to_cpu(sib->sib_sid) &
be64_to_cpu(sib->sib_sid_mask)));
default:
return 0;
}
}
static inline int cma_any_port(const struct sockaddr *addr)
{
return !cma_port(addr);
}
static void cma_save_ib_info(struct sockaddr *src_addr,
struct sockaddr *dst_addr,
const struct rdma_cm_id *listen_id,
const struct sa_path_rec *path)
{
struct sockaddr_ib *listen_ib, *ib;
listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
if (src_addr) {
ib = (struct sockaddr_ib *)src_addr;
ib->sib_family = AF_IB;
if (path) {
ib->sib_pkey = path->pkey;
ib->sib_flowinfo = path->flow_label;
memcpy(&ib->sib_addr, &path->sgid, 16);
ib->sib_sid = path->service_id;
ib->sib_scope_id = 0;
} else {
ib->sib_pkey = listen_ib->sib_pkey;
ib->sib_flowinfo = listen_ib->sib_flowinfo;
ib->sib_addr = listen_ib->sib_addr;
ib->sib_sid = listen_ib->sib_sid;
ib->sib_scope_id = listen_ib->sib_scope_id;
}
ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
}
if (dst_addr) {
ib = (struct sockaddr_ib *)dst_addr;
ib->sib_family = AF_IB;
if (path) {
ib->sib_pkey = path->pkey;
ib->sib_flowinfo = path->flow_label;
memcpy(&ib->sib_addr, &path->dgid, 16);
}
}
}
static void cma_save_ip4_info(struct sockaddr_in *src_addr,
struct sockaddr_in *dst_addr,
struct cma_hdr *hdr,
__be16 local_port)
{
if (src_addr) {
*src_addr = (struct sockaddr_in) {
.sin_family = AF_INET,
.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
.sin_port = local_port,
};
}
if (dst_addr) {
*dst_addr = (struct sockaddr_in) {
.sin_family = AF_INET,
.sin_addr.s_addr = hdr->src_addr.ip4.addr,
.sin_port = hdr->port,
};
}
}
static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
struct sockaddr_in6 *dst_addr,
struct cma_hdr *hdr,
__be16 local_port)
{
if (src_addr) {
*src_addr = (struct sockaddr_in6) {
.sin6_family = AF_INET6,
.sin6_addr = hdr->dst_addr.ip6,
.sin6_port = local_port,
};
}
if (dst_addr) {
*dst_addr = (struct sockaddr_in6) {
.sin6_family = AF_INET6,
.sin6_addr = hdr->src_addr.ip6,
.sin6_port = hdr->port,
};
}
}
static u16 cma_port_from_service_id(__be64 service_id)
{
return (u16)be64_to_cpu(service_id);
}
static int cma_save_ip_info(struct sockaddr *src_addr,
struct sockaddr *dst_addr,
const struct ib_cm_event *ib_event,
__be64 service_id)
{
struct cma_hdr *hdr;
__be16 port;
hdr = ib_event->private_data;
if (hdr->cma_version != CMA_VERSION)
return -EINVAL;
port = htons(cma_port_from_service_id(service_id));
switch (cma_get_ip_ver(hdr)) {
case 4:
cma_save_ip4_info((struct sockaddr_in *)src_addr,
(struct sockaddr_in *)dst_addr, hdr, port);
break;
case 6:
cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
(struct sockaddr_in6 *)dst_addr, hdr, port);
break;
default:
return -EAFNOSUPPORT;
}
return 0;
}
static int cma_save_net_info(struct sockaddr *src_addr,
struct sockaddr *dst_addr,
const struct rdma_cm_id *listen_id,
const struct ib_cm_event *ib_event,
sa_family_t sa_family, __be64 service_id)
{
if (sa_family == AF_IB) {
if (ib_event->event == IB_CM_REQ_RECEIVED)
cma_save_ib_info(src_addr, dst_addr, listen_id,
ib_event->param.req_rcvd.primary_path);
else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
return 0;
}
return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
}
static int cma_save_req_info(const struct ib_cm_event *ib_event,
struct cma_req_info *req)
{
const struct ib_cm_req_event_param *req_param =
&ib_event->param.req_rcvd;
const struct ib_cm_sidr_req_event_param *sidr_param =
&ib_event->param.sidr_req_rcvd;
switch (ib_event->event) {
case IB_CM_REQ_RECEIVED:
req->device = req_param->listen_id->device;
req->port = req_param->port;
memcpy(&req->local_gid, &req_param->primary_path->sgid,
sizeof(req->local_gid));
req->has_gid = true;
req->service_id = req_param->primary_path->service_id;
req->pkey = be16_to_cpu(req_param->primary_path->pkey);
if (req->pkey != req_param->bth_pkey)
pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
"RDMA CMA: in the future this may cause the request to be dropped\n",
req_param->bth_pkey, req->pkey);
break;
case IB_CM_SIDR_REQ_RECEIVED:
req->device = sidr_param->listen_id->device;
req->port = sidr_param->port;
req->has_gid = false;
req->service_id = sidr_param->service_id;
req->pkey = sidr_param->pkey;
if (req->pkey != sidr_param->bth_pkey)
pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
"RDMA CMA: in the future this may cause the request to be dropped\n",
sidr_param->bth_pkey, req->pkey);
break;
default:
return -EINVAL;
}
return 0;
}
static bool validate_ipv4_net_dev(struct net_device *net_dev,
const struct sockaddr_in *dst_addr,
const struct sockaddr_in *src_addr)
{
__be32 daddr = dst_addr->sin_addr.s_addr,
saddr = src_addr->sin_addr.s_addr;
struct fib_result res;
struct flowi4 fl4;
int err;
bool ret;
if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
ipv4_is_loopback(saddr))
return false;
memset(&fl4, 0, sizeof(fl4));
fl4.flowi4_oif = net_dev->ifindex;
fl4.daddr = daddr;
fl4.saddr = saddr;
rcu_read_lock();
err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
ret = err == 0 && FIB_RES_DEV(res) == net_dev;
rcu_read_unlock();
return ret;
}
static bool validate_ipv6_net_dev(struct net_device *net_dev,
const struct sockaddr_in6 *dst_addr,
const struct sockaddr_in6 *src_addr)
{
#if IS_ENABLED(CONFIG_IPV6)
const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
IPV6_ADDR_LINKLOCAL;
struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
&src_addr->sin6_addr, net_dev->ifindex,
NULL, strict);
bool ret;
if (!rt)
return false;
ret = rt->rt6i_idev->dev == net_dev;
ip6_rt_put(rt);
return ret;
#else
return false;
#endif
}
static bool validate_net_dev(struct net_device *net_dev,
const struct sockaddr *daddr,
const struct sockaddr *saddr)
{
const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
switch (daddr->sa_family) {
case AF_INET:
return saddr->sa_family == AF_INET &&
validate_ipv4_net_dev(net_dev, daddr4, saddr4);
case AF_INET6:
return saddr->sa_family == AF_INET6 &&
validate_ipv6_net_dev(net_dev, daddr6, saddr6);
default:
return false;
}
}
static struct net_device *
roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
{
const struct ib_gid_attr *sgid_attr = NULL;
struct net_device *ndev;
if (ib_event->event == IB_CM_REQ_RECEIVED)
sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
if (!sgid_attr)
return NULL;
rcu_read_lock();
ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
if (IS_ERR(ndev))
ndev = NULL;
else
dev_hold(ndev);
rcu_read_unlock();
return ndev;
}
static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
struct cma_req_info *req)
{
struct sockaddr *listen_addr =
(struct sockaddr *)&req->listen_addr_storage;
struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
struct net_device *net_dev;
const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
int err;
err = cma_save_ip_info(listen_addr, src_addr, ib_event,
req->service_id);
if (err)
return ERR_PTR(err);
if (rdma_protocol_roce(req->device, req->port))
net_dev = roce_get_net_dev_by_cm_event(ib_event);
else
net_dev = ib_get_net_dev_by_params(req->device, req->port,
req->pkey,
gid, listen_addr);
if (!net_dev)
return ERR_PTR(-ENODEV);
return net_dev;
}
static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
{
return (be64_to_cpu(service_id) >> 16) & 0xffff;
}
static bool cma_match_private_data(struct rdma_id_private *id_priv,
const struct cma_hdr *hdr)
{
struct sockaddr *addr = cma_src_addr(id_priv);
__be32 ip4_addr;
struct in6_addr ip6_addr;
if (cma_any_addr(addr) && !id_priv->afonly)
return true;
switch (addr->sa_family) {
case AF_INET:
ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
if (cma_get_ip_ver(hdr) != 4)
return false;
if (!cma_any_addr(addr) &&
hdr->dst_addr.ip4.addr != ip4_addr)
return false;
break;
case AF_INET6:
ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
if (cma_get_ip_ver(hdr) != 6)
return false;
if (!cma_any_addr(addr) &&
memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
return false;
break;
case AF_IB:
return true;
default:
return false;
}
return true;
}
static bool cma_protocol_roce(const struct rdma_cm_id *id)
{
struct ib_device *device = id->device;
const u32 port_num = id->port_num ?: rdma_start_port(device);
return rdma_protocol_roce(device, port_num);
}
static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
{
const struct sockaddr *daddr =
(const struct sockaddr *)&req->listen_addr_storage;
const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
/* Returns true if the req is for IPv6 link local */
return (daddr->sa_family == AF_INET6 &&
(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
}
static bool cma_match_net_dev(const struct rdma_cm_id *id,
const struct net_device *net_dev,
const struct cma_req_info *req)
{
const struct rdma_addr *addr = &id->route.addr;
if (!net_dev)
/* This request is an AF_IB request */
return (!id->port_num || id->port_num == req->port) &&
(addr->src_addr.ss_family == AF_IB);
/*
* If the request is not for IPv6 link local, allow matching
* request to any netdevice of the one or multiport rdma device.
*/
if (!cma_is_req_ipv6_ll(req))
return true;
/*
* Net namespaces must match, and if the listner is listening
* on a specific netdevice than netdevice must match as well.
*/
if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
(!!addr->dev_addr.bound_dev_if ==
(addr->dev_addr.bound_dev_if == net_dev->ifindex)))
return true;
else
return false;
}
static struct rdma_id_private *cma_find_listener(
const struct rdma_bind_list *bind_list,
const struct ib_cm_id *cm_id,
const struct ib_cm_event *ib_event,
const struct cma_req_info *req,
const struct net_device *net_dev)
{
struct rdma_id_private *id_priv, *id_priv_dev;
lockdep_assert_held(&lock);
if (!bind_list)
return ERR_PTR(-EINVAL);
hlist_for_each_entry(id_priv, &bind_list->owners, node) {
if (cma_match_private_data(id_priv, ib_event->private_data)) {
if (id_priv->id.device == cm_id->device &&
cma_match_net_dev(&id_priv->id, net_dev, req))
return id_priv;
list_for_each_entry(id_priv_dev,
&id_priv->listen_list,
listen_item) {
if (id_priv_dev->id.device == cm_id->device &&
cma_match_net_dev(&id_priv_dev->id,
net_dev, req))
return id_priv_dev;
}
}
}
return ERR_PTR(-EINVAL);
}
static struct rdma_id_private *
cma_ib_id_from_event(struct ib_cm_id *cm_id,
const struct ib_cm_event *ib_event,
struct cma_req_info *req,
struct net_device **net_dev)
{
struct rdma_bind_list *bind_list;
struct rdma_id_private *id_priv;
int err;
err = cma_save_req_info(ib_event, req);
if (err)
return ERR_PTR(err);
*net_dev = cma_get_net_dev(ib_event, req);
if (IS_ERR(*net_dev)) {
if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
/* Assuming the protocol is AF_IB */
*net_dev = NULL;
} else {
return ERR_CAST(*net_dev);
}
}
mutex_lock(&lock);
/*
* Net namespace might be getting deleted while route lookup,
* cm_id lookup is in progress. Therefore, perform netdevice
* validation, cm_id lookup under rcu lock.
* RCU lock along with netdevice state check, synchronizes with
* netdevice migrating to different net namespace and also avoids
* case where net namespace doesn't get deleted while lookup is in
* progress.
* If the device state is not IFF_UP, its properties such as ifindex
* and nd_net cannot be trusted to remain valid without rcu lock.
* net/core/dev.c change_net_namespace() ensures to synchronize with
* ongoing operations on net device after device is closed using
* synchronize_net().
*/
rcu_read_lock();
if (*net_dev) {
/*
* If netdevice is down, it is likely that it is administratively
* down or it might be migrating to different namespace.
* In that case avoid further processing, as the net namespace
* or ifindex may change.
*/
if (((*net_dev)->flags & IFF_UP) == 0) {
id_priv = ERR_PTR(-EHOSTUNREACH);
goto err;
}
if (!validate_net_dev(*net_dev,
(struct sockaddr *)&req->src_addr_storage,
(struct sockaddr *)&req->listen_addr_storage)) {
id_priv = ERR_PTR(-EHOSTUNREACH);
goto err;
}
}
bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
rdma_ps_from_service_id(req->service_id),
cma_port_from_service_id(req->service_id));
id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
err:
rcu_read_unlock();
mutex_unlock(&lock);
if (IS_ERR(id_priv) && *net_dev) {
dev_put(*net_dev);
*net_dev = NULL;
}
return id_priv;
}
static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
{
return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
}
static void cma_cancel_route(struct rdma_id_private *id_priv)
{
if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
if (id_priv->query)
ib_sa_cancel_query(id_priv->query_id, id_priv->query);
}
}
static void _cma_cancel_listens(struct rdma_id_private *id_priv)
{
struct rdma_id_private *dev_id_priv;
lockdep_assert_held(&lock);
/*
* Remove from listen_any_list to prevent added devices from spawning
* additional listen requests.
*/
list_del_init(&id_priv->listen_any_item);
while (!list_empty(&id_priv->listen_list)) {
dev_id_priv =
list_first_entry(&id_priv->listen_list,
struct rdma_id_private, listen_item);
/* sync with device removal to avoid duplicate destruction */
list_del_init(&dev_id_priv->device_item);
list_del_init(&dev_id_priv->listen_item);
mutex_unlock(&lock);
rdma_destroy_id(&dev_id_priv->id);
mutex_lock(&lock);
}
}
static void cma_cancel_listens(struct rdma_id_private *id_priv)
{
mutex_lock(&lock);
_cma_cancel_listens(id_priv);
mutex_unlock(&lock);
}
static void cma_cancel_operation(struct rdma_id_private *id_priv,
enum rdma_cm_state state)
{
switch (state) {
case RDMA_CM_ADDR_QUERY:
/*
* We can avoid doing the rdma_addr_cancel() based on state,
* only RDMA_CM_ADDR_QUERY has a work that could still execute.
* Notice that the addr_handler work could still be exiting
* outside this state, however due to the interaction with the
* handler_mutex the work is guaranteed not to touch id_priv
* during exit.
*/
rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
break;
case RDMA_CM_ROUTE_QUERY:
cma_cancel_route(id_priv);
break;
case RDMA_CM_LISTEN:
if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
cma_cancel_listens(id_priv);
break;
default:
break;
}
}
static void cma_release_port(struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list = id_priv->bind_list;
struct net *net = id_priv->id.route.addr.dev_addr.net;
if (!bind_list)
return;
mutex_lock(&lock);
hlist_del(&id_priv->node);
if (hlist_empty(&bind_list->owners)) {
cma_ps_remove(net, bind_list->ps, bind_list->port);
kfree(bind_list);
}
mutex_unlock(&lock);
}
static void destroy_mc(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
ib_sa_free_multicast(mc->sa_mc);
if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
struct rdma_dev_addr *dev_addr =
&id_priv->id.route.addr.dev_addr;
struct net_device *ndev = NULL;
if (dev_addr->bound_dev_if)
ndev = dev_get_by_index(dev_addr->net,
dev_addr->bound_dev_if);
if (ndev && !send_only) {
enum ib_gid_type gid_type;
union ib_gid mgid;
gid_type = id_priv->cma_dev->default_gid_type
[id_priv->id.port_num -
rdma_start_port(
id_priv->cma_dev->device)];
cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
gid_type);
cma_igmp_send(ndev, &mgid, false);
}
dev_put(ndev);
cancel_work_sync(&mc->iboe_join.work);
}
kfree(mc);
}
static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
{
struct cma_multicast *mc;
while (!list_empty(&id_priv->mc_list)) {
mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
list);
list_del(&mc->list);
destroy_mc(id_priv, mc);
}
}
static void _destroy_id(struct rdma_id_private *id_priv,
enum rdma_cm_state state)
{
cma_cancel_operation(id_priv, state);
rdma_restrack_del(&id_priv->res);
cma_remove_id_from_tree(id_priv);
if (id_priv->cma_dev) {
if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
if (id_priv->cm_id.ib)
ib_destroy_cm_id(id_priv->cm_id.ib);
} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
if (id_priv->cm_id.iw)
iw_destroy_cm_id(id_priv->cm_id.iw);
}
cma_leave_mc_groups(id_priv);
cma_release_dev(id_priv);
}
cma_release_port(id_priv);
cma_id_put(id_priv);
wait_for_completion(&id_priv->comp);
if (id_priv->internal_id)
cma_id_put(id_priv->id.context);
kfree(id_priv->id.route.path_rec);
kfree(id_priv->id.route.path_rec_inbound);
kfree(id_priv->id.route.path_rec_outbound);
put_net(id_priv->id.route.addr.dev_addr.net);
kfree(id_priv);
}
/*
* destroy an ID from within the handler_mutex. This ensures that no other
* handlers can start running concurrently.
*/
static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
__releases(&idprv->handler_mutex)
{
enum rdma_cm_state state;
unsigned long flags;
trace_cm_id_destroy(id_priv);
/*
* Setting the state to destroyed under the handler mutex provides a
* fence against calling handler callbacks. If this is invoked due to
* the failure of a handler callback then it guarentees that no future
* handlers will be called.
*/
lockdep_assert_held(&id_priv->handler_mutex);
spin_lock_irqsave(&id_priv->lock, flags);
state = id_priv->state;
id_priv->state = RDMA_CM_DESTROYING;
spin_unlock_irqrestore(&id_priv->lock, flags);
mutex_unlock(&id_priv->handler_mutex);
_destroy_id(id_priv, state);
}
void rdma_destroy_id(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->handler_mutex);
destroy_id_handler_unlock(id_priv);
}
EXPORT_SYMBOL(rdma_destroy_id);
static int cma_rep_recv(struct rdma_id_private *id_priv)
{
int ret;
ret = cma_modify_qp_rtr(id_priv, NULL);
if (ret)
goto reject;
ret = cma_modify_qp_rts(id_priv, NULL);
if (ret)
goto reject;
trace_cm_send_rtu(id_priv);
ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
if (ret)
goto reject;
return 0;
reject:
pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
cma_modify_qp_err(id_priv);
trace_cm_send_rej(id_priv);
ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
NULL, 0, NULL, 0);
return ret;
}
static void cma_set_rep_event_data(struct rdma_cm_event *event,
const struct ib_cm_rep_event_param *rep_data,
void *private_data)
{
event->param.conn.private_data = private_data;
event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
event->param.conn.responder_resources = rep_data->responder_resources;
event->param.conn.initiator_depth = rep_data->initiator_depth;
event->param.conn.flow_control = rep_data->flow_control;
event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
event->param.conn.srq = rep_data->srq;
event->param.conn.qp_num = rep_data->remote_qpn;
event->ece.vendor_id = rep_data->ece.vendor_id;
event->ece.attr_mod = rep_data->ece.attr_mod;
}
static int cma_cm_event_handler(struct rdma_id_private *id_priv,
struct rdma_cm_event *event)
{
int ret;
lockdep_assert_held(&id_priv->handler_mutex);
trace_cm_event_handler(id_priv, event);
ret = id_priv->id.event_handler(&id_priv->id, event);
trace_cm_event_done(id_priv, event, ret);
return ret;
}
static int cma_ib_handler(struct ib_cm_id *cm_id,
const struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv = cm_id->context;
struct rdma_cm_event event = {};
enum rdma_cm_state state;
int ret;
mutex_lock(&id_priv->handler_mutex);
state = READ_ONCE(id_priv->state);
if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
state != RDMA_CM_CONNECT) ||
(ib_event->event == IB_CM_TIMEWAIT_EXIT &&
state != RDMA_CM_DISCONNECT))
goto out;
switch (ib_event->event) {
case IB_CM_REQ_ERROR:
case IB_CM_REP_ERROR:
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -ETIMEDOUT;
break;
case IB_CM_REP_RECEIVED:
if (state == RDMA_CM_CONNECT &&
(id_priv->id.qp_type != IB_QPT_UD)) {
trace_cm_send_mra(id_priv);
ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
}
if (id_priv->id.qp) {
event.status = cma_rep_recv(id_priv);
event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
RDMA_CM_EVENT_ESTABLISHED;
} else {
event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
}
cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
ib_event->private_data);
break;
case IB_CM_RTU_RECEIVED:
case IB_CM_USER_ESTABLISHED:
event.event = RDMA_CM_EVENT_ESTABLISHED;
break;
case IB_CM_DREQ_ERROR:
event.status = -ETIMEDOUT;
fallthrough;
case IB_CM_DREQ_RECEIVED:
case IB_CM_DREP_RECEIVED:
if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
RDMA_CM_DISCONNECT))
goto out;
event.event = RDMA_CM_EVENT_DISCONNECTED;
break;
case IB_CM_TIMEWAIT_EXIT:
event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
break;
case IB_CM_MRA_RECEIVED:
/* ignore event */
goto out;
case IB_CM_REJ_RECEIVED:
pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
ib_event->param.rej_rcvd.reason));
cma_modify_qp_err(id_priv);
event.status = ib_event->param.rej_rcvd.reason;
event.event = RDMA_CM_EVENT_REJECTED;
event.param.conn.private_data = ib_event->private_data;
event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
break;
default:
pr_err("RDMA CMA: unexpected IB CM event: %d\n",
ib_event->event);
goto out;
}
ret = cma_cm_event_handler(id_priv, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.ib = NULL;
destroy_id_handler_unlock(id_priv);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return 0;
}
static struct rdma_id_private *
cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
const struct ib_cm_event *ib_event,
struct net_device *net_dev)
{
struct rdma_id_private *listen_id_priv;
struct rdma_id_private *id_priv;
struct rdma_cm_id *id;
struct rdma_route *rt;
const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
const __be64 service_id =
ib_event->param.req_rcvd.primary_path->service_id;
int ret;
listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
listen_id->event_handler, listen_id->context,
listen_id->ps,
ib_event->param.req_rcvd.qp_type,
listen_id_priv);
if (IS_ERR(id_priv))
return NULL;
id = &id_priv->id;
if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
(struct sockaddr *)&id->route.addr.dst_addr,
listen_id, ib_event, ss_family, service_id))
goto err;
rt = &id->route;
rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
rt->path_rec = kmalloc_array(rt->num_pri_alt_paths,
sizeof(*rt->path_rec), GFP_KERNEL);
if (!rt->path_rec)
goto err;
rt->path_rec[0] = *path;
if (rt->num_pri_alt_paths == 2)
rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
if (net_dev) {
rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
} else {
if (!cma_protocol_roce(listen_id) &&
cma_any_addr(cma_src_addr(id_priv))) {
rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
} else if (!cma_any_addr(cma_src_addr(id_priv))) {
ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
if (ret)
goto err;
}
}
rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
id_priv->state = RDMA_CM_CONNECT;
return id_priv;
err:
rdma_destroy_id(id);
return NULL;
}
static struct rdma_id_private *
cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
const struct ib_cm_event *ib_event,
struct net_device *net_dev)
{
const struct rdma_id_private *listen_id_priv;
struct rdma_id_private *id_priv;
struct rdma_cm_id *id;
const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
struct net *net = listen_id->route.addr.dev_addr.net;
int ret;
listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
id_priv = __rdma_create_id(net, listen_id->event_handler,
listen_id->context, listen_id->ps, IB_QPT_UD,
listen_id_priv);
if (IS_ERR(id_priv))
return NULL;
id = &id_priv->id;
if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
(struct sockaddr *)&id->route.addr.dst_addr,
listen_id, ib_event, ss_family,
ib_event->param.sidr_req_rcvd.service_id))
goto err;
if (net_dev) {
rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
} else {
if (!cma_any_addr(cma_src_addr(id_priv))) {
ret = cma_translate_addr(cma_src_addr(id_priv),
&id->route.addr.dev_addr);
if (ret)
goto err;
}
}
id_priv->state = RDMA_CM_CONNECT;
return id_priv;
err:
rdma_destroy_id(id);
return NULL;
}
static void cma_set_req_event_data(struct rdma_cm_event *event,
const struct ib_cm_req_event_param *req_data,
void *private_data, int offset)
{
event->param.conn.private_data = private_data + offset;
event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
event->param.conn.responder_resources = req_data->responder_resources;
event->param.conn.initiator_depth = req_data->initiator_depth;
event->param.conn.flow_control = req_data->flow_control;
event->param.conn.retry_count = req_data->retry_count;
event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
event->param.conn.srq = req_data->srq;
event->param.conn.qp_num = req_data->remote_qpn;
event->ece.vendor_id = req_data->ece.vendor_id;
event->ece.attr_mod = req_data->ece.attr_mod;
}
static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
const struct ib_cm_event *ib_event)
{
return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
(ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
(id->qp_type == IB_QPT_UD)) ||
(!id->qp_type));
}
static int cma_ib_req_handler(struct ib_cm_id *cm_id,
const struct ib_cm_event *ib_event)
{
struct rdma_id_private *listen_id, *conn_id = NULL;
struct rdma_cm_event event = {};
struct cma_req_info req = {};
struct net_device *net_dev;
u8 offset;
int ret;
listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
if (IS_ERR(listen_id))
return PTR_ERR(listen_id);
trace_cm_req_handler(listen_id, ib_event->event);
if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
ret = -EINVAL;
goto net_dev_put;
}
mutex_lock(&listen_id->handler_mutex);
if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
ret = -ECONNABORTED;
goto err_unlock;
}
offset = cma_user_data_offset(listen_id);
event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
event.param.ud.private_data = ib_event->private_data + offset;
event.param.ud.private_data_len =
IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
} else {
conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
ib_event->private_data, offset);
}
if (!conn_id) {
ret = -ENOMEM;
goto err_unlock;
}
mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
if (ret) {
destroy_id_handler_unlock(conn_id);
goto err_unlock;
}
conn_id->cm_id.ib = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_ib_handler;
ret = cma_cm_event_handler(conn_id, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
conn_id->cm_id.ib = NULL;
mutex_unlock(&listen_id->handler_mutex);
destroy_id_handler_unlock(conn_id);
goto net_dev_put;
}
if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
conn_id->id.qp_type != IB_QPT_UD) {
trace_cm_send_mra(cm_id->context);
ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
}
mutex_unlock(&conn_id->handler_mutex);
err_unlock:
mutex_unlock(&listen_id->handler_mutex);
net_dev_put:
if (net_dev)
dev_put(net_dev);
return ret;
}
__be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
{
if (addr->sa_family == AF_IB)
return ((struct sockaddr_ib *) addr)->sib_sid;
return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
}
EXPORT_SYMBOL(rdma_get_service_id);
void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
union ib_gid *dgid)
{
struct rdma_addr *addr = &cm_id->route.addr;
if (!cm_id->device) {
if (sgid)
memset(sgid, 0, sizeof(*sgid));
if (dgid)
memset(dgid, 0, sizeof(*dgid));
return;
}
if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
if (sgid)
rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
if (dgid)
rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
} else {
if (sgid)
rdma_addr_get_sgid(&addr->dev_addr, sgid);
if (dgid)
rdma_addr_get_dgid(&addr->dev_addr, dgid);
}
}
EXPORT_SYMBOL(rdma_read_gids);
static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
{
struct rdma_id_private *id_priv = iw_id->context;
struct rdma_cm_event event = {};
int ret = 0;
struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
mutex_lock(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
goto out;
switch (iw_event->event) {
case IW_CM_EVENT_CLOSE:
event.event = RDMA_CM_EVENT_DISCONNECTED;
break;
case IW_CM_EVENT_CONNECT_REPLY:
memcpy(cma_src_addr(id_priv), laddr,
rdma_addr_size(laddr));
memcpy(cma_dst_addr(id_priv), raddr,
rdma_addr_size(raddr));
switch (iw_event->status) {
case 0:
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
break;
case -ECONNRESET:
case -ECONNREFUSED:
event.event = RDMA_CM_EVENT_REJECTED;
break;
case -ETIMEDOUT:
event.event = RDMA_CM_EVENT_UNREACHABLE;
break;
default:
event.event = RDMA_CM_EVENT_CONNECT_ERROR;
break;
}
break;
case IW_CM_EVENT_ESTABLISHED:
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
break;
default:
goto out;
}
event.status = iw_event->status;
event.param.conn.private_data = iw_event->private_data;
event.param.conn.private_data_len = iw_event->private_data_len;
ret = cma_cm_event_handler(id_priv, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.iw = NULL;
destroy_id_handler_unlock(id_priv);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static int iw_conn_req_handler(struct iw_cm_id *cm_id,
struct iw_cm_event *iw_event)
{
struct rdma_id_private *listen_id, *conn_id;
struct rdma_cm_event event = {};
int ret = -ECONNABORTED;
struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
event.param.conn.private_data = iw_event->private_data;
event.param.conn.private_data_len = iw_event->private_data_len;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
listen_id = cm_id->context;
mutex_lock(&listen_id->handler_mutex);
if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
goto out;
/* Create a new RDMA id for the new IW CM ID */
conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
listen_id->id.event_handler,
listen_id->id.context, RDMA_PS_TCP,
IB_QPT_RC, listen_id);
if (IS_ERR(conn_id)) {
ret = -ENOMEM;
goto out;
}
mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
conn_id->state = RDMA_CM_CONNECT;
ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
if (ret) {
mutex_unlock(&listen_id->handler_mutex);
destroy_id_handler_unlock(conn_id);
return ret;
}
ret = cma_iw_acquire_dev(conn_id, listen_id);
if (ret) {
mutex_unlock(&listen_id->handler_mutex);
destroy_id_handler_unlock(conn_id);
return ret;
}
conn_id->cm_id.iw = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_iw_handler;
memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
ret = cma_cm_event_handler(conn_id, &event);
if (ret) {
/* User wants to destroy the CM ID */
conn_id->cm_id.iw = NULL;
mutex_unlock(&listen_id->handler_mutex);
destroy_id_handler_unlock(conn_id);
return ret;
}
mutex_unlock(&conn_id->handler_mutex);
out:
mutex_unlock(&listen_id->handler_mutex);
return ret;
}
static int cma_ib_listen(struct rdma_id_private *id_priv)
{
struct sockaddr *addr;
struct ib_cm_id *id;
__be64 svc_id;
addr = cma_src_addr(id_priv);
svc_id = rdma_get_service_id(&id_priv->id, addr);
id = ib_cm_insert_listen(id_priv->id.device,
cma_ib_req_handler, svc_id);
if (IS_ERR(id))
return PTR_ERR(id);
id_priv->cm_id.ib = id;
return 0;
}
static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
{
int ret;
struct iw_cm_id *id;
id = iw_create_cm_id(id_priv->id.device,
iw_conn_req_handler,
id_priv);
if (IS_ERR(id))
return PTR_ERR(id);
mutex_lock(&id_priv->qp_mutex);
id->tos = id_priv->tos;
id->tos_set = id_priv->tos_set;
mutex_unlock(&id_priv->qp_mutex);
id->afonly = id_priv->afonly;
id_priv->cm_id.iw = id;
memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
if (ret) {
iw_destroy_cm_id(id_priv->cm_id.iw);
id_priv->cm_id.iw = NULL;
}
return ret;
}
static int cma_listen_handler(struct rdma_cm_id *id,
struct rdma_cm_event *event)
{
struct rdma_id_private *id_priv = id->context;
/* Listening IDs are always destroyed on removal */
if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
return -1;
id->context = id_priv->id.context;
id->event_handler = id_priv->id.event_handler;
trace_cm_event_handler(id_priv, event);
return id_priv->id.event_handler(id, event);
}
static int cma_listen_on_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev,
struct rdma_id_private **to_destroy)
{
struct rdma_id_private *dev_id_priv;
struct net *net = id_priv->id.route.addr.dev_addr.net;
int ret;
lockdep_assert_held(&lock);
*to_destroy = NULL;
if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
return 0;
dev_id_priv =
__rdma_create_id(net, cma_listen_handler, id_priv,
id_priv->id.ps, id_priv->id.qp_type, id_priv);
if (IS_ERR(dev_id_priv))
return PTR_ERR(dev_id_priv);
dev_id_priv->state = RDMA_CM_ADDR_BOUND;
memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
_cma_attach_to_dev(dev_id_priv, cma_dev);
rdma_restrack_add(&dev_id_priv->res);
cma_id_get(id_priv);
dev_id_priv->internal_id = 1;
dev_id_priv->afonly = id_priv->afonly;
mutex_lock(&id_priv->qp_mutex);
dev_id_priv->tos_set = id_priv->tos_set;
dev_id_priv->tos = id_priv->tos;
mutex_unlock(&id_priv->qp_mutex);
ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
if (ret)
goto err_listen;
list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
return 0;
err_listen:
/* Caller must destroy this after releasing lock */
*to_destroy = dev_id_priv;
dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
return ret;
}
static int cma_listen_on_all(struct rdma_id_private *id_priv)
{
struct rdma_id_private *to_destroy;
struct cma_device *cma_dev;
int ret;
mutex_lock(&lock);
list_add_tail(&id_priv->listen_any_item, &listen_any_list);
list_for_each_entry(cma_dev, &dev_list, list) {
ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
if (ret) {
/* Prevent racing with cma_process_remove() */
if (to_destroy)
list_del_init(&to_destroy->device_item);
goto err_listen;
}
}
mutex_unlock(&lock);
return 0;
err_listen:
_cma_cancel_listens(id_priv);
mutex_unlock(&lock);
if (to_destroy)
rdma_destroy_id(&to_destroy->id);
return ret;
}
void rdma_set_service_type(struct rdma_cm_id *id, int tos)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->qp_mutex);
id_priv->tos = (u8) tos;
id_priv->tos_set = true;
mutex_unlock(&id_priv->qp_mutex);
}
EXPORT_SYMBOL(rdma_set_service_type);
/**
* rdma_set_ack_timeout() - Set the ack timeout of QP associated
* with a connection identifier.
* @id: Communication identifier to associated with service type.
* @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
*
* This function should be called before rdma_connect() on active side,
* and on passive side before rdma_accept(). It is applicable to primary
* path only. The timeout will affect the local side of the QP, it is not
* negotiated with remote side and zero disables the timer. In case it is
* set before rdma_resolve_route, the value will also be used to determine
* PacketLifeTime for RoCE.
*
* Return: 0 for success
*/
int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
{
struct rdma_id_private *id_priv;
if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
return -EINVAL;
id_priv = container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->qp_mutex);
id_priv->timeout = timeout;
id_priv->timeout_set = true;
mutex_unlock(&id_priv->qp_mutex);
return 0;
}
EXPORT_SYMBOL(rdma_set_ack_timeout);
/**
* rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
* QP associated with a connection identifier.
* @id: Communication identifier to associated with service type.
* @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
* Timer Field" in the IBTA specification.
*
* This function should be called before rdma_connect() on active
* side, and on passive side before rdma_accept(). The timer value
* will be associated with the local QP. When it receives a send it is
* not read to handle, typically if the receive queue is empty, an RNR
* Retry NAK is returned to the requester with the min_rnr_timer
* encoded. The requester will then wait at least the time specified
* in the NAK before retrying. The default is zero, which translates
* to a minimum RNR Timer value of 655 ms.
*
* Return: 0 for success
*/
int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
{
struct rdma_id_private *id_priv;
/* It is a five-bit value */
if (min_rnr_timer & 0xe0)
return -EINVAL;
if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
return -EINVAL;
id_priv = container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->qp_mutex);
id_priv->min_rnr_timer = min_rnr_timer;
id_priv->min_rnr_timer_set = true;
mutex_unlock(&id_priv->qp_mutex);
return 0;
}
EXPORT_SYMBOL(rdma_set_min_rnr_timer);
static int route_set_path_rec_inbound(struct cma_work *work,
struct sa_path_rec *path_rec)
{
struct rdma_route *route = &work->id->id.route;
if (!route->path_rec_inbound) {
route->path_rec_inbound =
kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL);
if (!route->path_rec_inbound)
return -ENOMEM;
}
*route->path_rec_inbound = *path_rec;
return 0;
}
static int route_set_path_rec_outbound(struct cma_work *work,
struct sa_path_rec *path_rec)
{
struct rdma_route *route = &work->id->id.route;
if (!route->path_rec_outbound) {
route->path_rec_outbound =
kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL);
if (!route->path_rec_outbound)
return -ENOMEM;
}
*route->path_rec_outbound = *path_rec;
return 0;
}
static void cma_query_handler(int status, struct sa_path_rec *path_rec,
unsigned int num_prs, void *context)
{
struct cma_work *work = context;
struct rdma_route *route;
int i;
route = &work->id->id.route;
if (status)
goto fail;
for (i = 0; i < num_prs; i++) {
if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP))
*route->path_rec = path_rec[i];
else if (path_rec[i].flags & IB_PATH_INBOUND)
status = route_set_path_rec_inbound(work, &path_rec[i]);
else if (path_rec[i].flags & IB_PATH_OUTBOUND)
status = route_set_path_rec_outbound(work,
&path_rec[i]);
else
status = -EINVAL;
if (status)
goto fail;
}
route->num_pri_alt_paths = 1;
queue_work(cma_wq, &work->work);
return;
fail:
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
work->event.status = status;
pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
status);
queue_work(cma_wq, &work->work);
}
static int cma_query_ib_route(struct rdma_id_private *id_priv,
unsigned long timeout_ms, struct cma_work *work)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct sa_path_rec path_rec;
ib_sa_comp_mask comp_mask;
struct sockaddr_in6 *sin6;
struct sockaddr_ib *sib;
memset(&path_rec, 0, sizeof path_rec);
if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
else
path_rec.rec_type = SA_PATH_REC_TYPE_IB;
rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
path_rec.numb_path = 1;
path_rec.reversible = 1;
path_rec.service_id = rdma_get_service_id(&id_priv->id,
cma_dst_addr(id_priv));
comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
switch (cma_family(id_priv)) {
case AF_INET:
path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
break;
case AF_IB:
sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
break;
}
id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
id_priv->id.port_num, &path_rec,
comp_mask, timeout_ms,
GFP_KERNEL, cma_query_handler,
work, &id_priv->query);
return (id_priv->query_id < 0) ? id_priv->query_id : 0;
}
static void cma_iboe_join_work_handler(struct work_struct *work)
{
struct cma_multicast *mc =
container_of(work, struct cma_multicast, iboe_join.work);
struct rdma_cm_event *event = &mc->iboe_join.event;
struct rdma_id_private *id_priv = mc->id_priv;
int ret;
mutex_lock(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
goto out_unlock;
ret = cma_cm_event_handler(id_priv, event);
WARN_ON(ret);
out_unlock:
mutex_unlock(&id_priv->handler_mutex);
if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
rdma_destroy_ah_attr(&event->param.ud.ah_attr);
}
static void cma_work_handler(struct work_struct *_work)
{
struct cma_work *work = container_of(_work, struct cma_work, work);
struct rdma_id_private *id_priv = work->id;
mutex_lock(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
goto out_unlock;
if (work->old_state != 0 || work->new_state != 0) {
if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
goto out_unlock;
}
if (cma_cm_event_handler(id_priv, &work->event)) {
cma_id_put(id_priv);
destroy_id_handler_unlock(id_priv);
goto out_free;
}
out_unlock:
mutex_unlock(&id_priv->handler_mutex);
cma_id_put(id_priv);
out_free:
if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
kfree(work);
}
static void cma_init_resolve_route_work(struct cma_work *work,
struct rdma_id_private *id_priv)
{
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ROUTE_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
}
static void enqueue_resolve_addr_work(struct cma_work *work,
struct rdma_id_private *id_priv)
{
/* Balances with cma_id_put() in cma_work_handler */
cma_id_get(id_priv);
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ADDR_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
queue_work(cma_wq, &work->work);
}
static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
unsigned long timeout_ms)
{
struct rdma_route *route = &id_priv->id.route;
struct cma_work *work;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
cma_init_resolve_route_work(work, id_priv);
if (!route->path_rec)
route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
if (!route->path_rec) {
ret = -ENOMEM;
goto err1;
}
ret = cma_query_ib_route(id_priv, timeout_ms, work);
if (ret)
goto err2;
return 0;
err2:
kfree(route->path_rec);
route->path_rec = NULL;
err1:
kfree(work);
return ret;
}
static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
unsigned long supported_gids,
enum ib_gid_type default_gid)
{
if ((network_type == RDMA_NETWORK_IPV4 ||
network_type == RDMA_NETWORK_IPV6) &&
test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
return IB_GID_TYPE_ROCE_UDP_ENCAP;
return default_gid;
}
/*
* cma_iboe_set_path_rec_l2_fields() is helper function which sets
* path record type based on GID type.
* It also sets up other L2 fields which includes destination mac address
* netdev ifindex, of the path record.
* It returns the netdev of the bound interface for this path record entry.
*/
static struct net_device *
cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
{
struct rdma_route *route = &id_priv->id.route;
enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
struct rdma_addr *addr = &route->addr;
unsigned long supported_gids;
struct net_device *ndev;
if (!addr->dev_addr.bound_dev_if)
return NULL;
ndev = dev_get_by_index(addr->dev_addr.net,
addr->dev_addr.bound_dev_if);
if (!ndev)
return NULL;
supported_gids = roce_gid_type_mask_support(id_priv->id.device,
id_priv->id.port_num);
gid_type = cma_route_gid_type(addr->dev_addr.network,
supported_gids,
id_priv->gid_type);
/* Use the hint from IP Stack to select GID Type */
if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
gid_type = ib_network_to_gid_type(addr->dev_addr.network);
route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
route->path_rec->roce.route_resolved = true;
sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
return ndev;
}
int rdma_set_ib_path(struct rdma_cm_id *id,
struct sa_path_rec *path_rec)
{
struct rdma_id_private *id_priv;
struct net_device *ndev;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
RDMA_CM_ROUTE_RESOLVED))
return -EINVAL;
id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
GFP_KERNEL);
if (!id->route.path_rec) {
ret = -ENOMEM;
goto err;
}
if (rdma_protocol_roce(id->device, id->port_num)) {
ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
if (!ndev) {
ret = -ENODEV;
goto err_free;
}
dev_put(ndev);
}
id->route.num_pri_alt_paths = 1;
return 0;
err_free:
kfree(id->route.path_rec);
id->route.path_rec = NULL;
err:
cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
return ret;
}
EXPORT_SYMBOL(rdma_set_ib_path);
static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
{
struct cma_work *work;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
cma_init_resolve_route_work(work, id_priv);
queue_work(cma_wq, &work->work);
return 0;
}
static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
{
struct net_device *dev;
dev = vlan_dev_real_dev(vlan_ndev);
if (dev->num_tc)
return netdev_get_prio_tc_map(dev, prio);
return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
}
struct iboe_prio_tc_map {
int input_prio;
int output_tc;
bool found;
};
static int get_lower_vlan_dev_tc(struct net_device *dev,
struct netdev_nested_priv *priv)
{
struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
if (is_vlan_dev(dev))
map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
else if (dev->num_tc)
map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
else
map->output_tc = 0;
/* We are interested only in first level VLAN device, so always
* return 1 to stop iterating over next level devices.
*/
map->found = true;
return 1;
}
static int iboe_tos_to_sl(struct net_device *ndev, int tos)
{
struct iboe_prio_tc_map prio_tc_map = {};
int prio = rt_tos2priority(tos);
struct netdev_nested_priv priv;
/* If VLAN device, get it directly from the VLAN netdev */
if (is_vlan_dev(ndev))
return get_vlan_ndev_tc(ndev, prio);
prio_tc_map.input_prio = prio;
priv.data = (void *)&prio_tc_map;
rcu_read_lock();
netdev_walk_all_lower_dev_rcu(ndev,
get_lower_vlan_dev_tc,
&priv);
rcu_read_unlock();
/* If map is found from lower device, use it; Otherwise
* continue with the current netdevice to get priority to tc map.
*/
if (prio_tc_map.found)
return prio_tc_map.output_tc;
else if (ndev->num_tc)
return netdev_get_prio_tc_map(ndev, prio);
else
return 0;
}
static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
{
struct sockaddr_in6 *addr6;
u16 dport, sport;
u32 hash, fl;
addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
if ((cma_family(id_priv) != AF_INET6) || !fl) {
dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
hash = (u32)sport * 31 + dport;
fl = hash & IB_GRH_FLOWLABEL_MASK;
}
return cpu_to_be32(fl);
}
static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
{
struct rdma_route *route = &id_priv->id.route;
struct rdma_addr *addr = &route->addr;
struct cma_work *work;
int ret;
struct net_device *ndev;
u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
rdma_start_port(id_priv->cma_dev->device)];
u8 tos;
mutex_lock(&id_priv->qp_mutex);
tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
mutex_unlock(&id_priv->qp_mutex);
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
if (!route->path_rec) {
ret = -ENOMEM;
goto err1;
}
route->num_pri_alt_paths = 1;
ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
if (!ndev) {
ret = -ENODEV;
goto err2;
}
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&route->path_rec->sgid);
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
&route->path_rec->dgid);
if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
/* TODO: get the hoplimit from the inet/inet6 device */
route->path_rec->hop_limit = addr->dev_addr.hoplimit;
else
route->path_rec->hop_limit = 1;
route->path_rec->reversible = 1;
route->path_rec->pkey = cpu_to_be16(0xffff);
route->path_rec->mtu_selector = IB_SA_EQ;
route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
route->path_rec->traffic_class = tos;
route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
route->path_rec->rate_selector = IB_SA_EQ;
route->path_rec->rate = iboe_get_rate(ndev);
dev_put(ndev);
route->path_rec->packet_life_time_selector = IB_SA_EQ;
/* In case ACK timeout is set, use this value to calculate
* PacketLifeTime. As per IBTA 12.7.34,
* local ACK timeout = (2 * PacketLifeTime + Local CAs ACK delay).
* Assuming a negligible local ACK delay, we can use
* PacketLifeTime = local ACK timeout/2
* as a reasonable approximation for RoCE networks.
*/
mutex_lock(&id_priv->qp_mutex);
if (id_priv->timeout_set && id_priv->timeout)
route->path_rec->packet_life_time = id_priv->timeout - 1;
else
route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
mutex_unlock(&id_priv->qp_mutex);
if (!route->path_rec->mtu) {
ret = -EINVAL;
goto err2;
}
if (rdma_protocol_roce_udp_encap(id_priv->id.device,
id_priv->id.port_num))
route->path_rec->flow_label =
cma_get_roce_udp_flow_label(id_priv);
cma_init_resolve_route_work(work, id_priv);
queue_work(cma_wq, &work->work);
return 0;
err2:
kfree(route->path_rec);
route->path_rec = NULL;
route->num_pri_alt_paths = 0;
err1:
kfree(work);
return ret;
}
int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
{
struct rdma_id_private *id_priv;
int ret;
if (!timeout_ms)
return -EINVAL;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
return -EINVAL;
cma_id_get(id_priv);
if (rdma_cap_ib_sa(id->device, id->port_num))
ret = cma_resolve_ib_route(id_priv, timeout_ms);
else if (rdma_protocol_roce(id->device, id->port_num)) {
ret = cma_resolve_iboe_route(id_priv);
if (!ret)
cma_add_id_to_tree(id_priv);
}
else if (rdma_protocol_iwarp(id->device, id->port_num))
ret = cma_resolve_iw_route(id_priv);
else
ret = -ENOSYS;
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
cma_id_put(id_priv);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_route);
static void cma_set_loopback(struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
break;
case AF_INET6:
ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
0, 0, 0, htonl(1));
break;
default:
ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
0, 0, 0, htonl(1));
break;
}
}
static int cma_bind_loopback(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev, *cur_dev;
union ib_gid gid;
enum ib_port_state port_state;
unsigned int p;
u16 pkey;
int ret;
cma_dev = NULL;
mutex_lock(&lock);
list_for_each_entry(cur_dev, &dev_list, list) {
if (cma_family(id_priv) == AF_IB &&
!rdma_cap_ib_cm(cur_dev->device, 1))
continue;
if (!cma_dev)
cma_dev = cur_dev;
rdma_for_each_port (cur_dev->device, p) {
if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
port_state == IB_PORT_ACTIVE) {
cma_dev = cur_dev;
goto port_found;
}
}
}
if (!cma_dev) {
ret = -ENODEV;
goto out;
}
p = 1;
port_found:
ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
if (ret)
goto out;
ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
if (ret)
goto out;
id_priv->id.route.addr.dev_addr.dev_type =
(rdma_protocol_ib(cma_dev->device, p)) ?
ARPHRD_INFINIBAND : ARPHRD_ETHER;
rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
id_priv->id.port_num = p;
cma_attach_to_dev(id_priv, cma_dev);
rdma_restrack_add(&id_priv->res);
cma_set_loopback(cma_src_addr(id_priv));
out:
mutex_unlock(&lock);
return ret;
}
static void addr_handler(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *dev_addr, void *context)
{
struct rdma_id_private *id_priv = context;
struct rdma_cm_event event = {};
struct sockaddr *addr;
struct sockaddr_storage old_addr;
mutex_lock(&id_priv->handler_mutex);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
RDMA_CM_ADDR_RESOLVED))
goto out;
/*
* Store the previous src address, so that if we fail to acquire
* matching rdma device, old address can be restored back, which helps
* to cancel the cma listen operation correctly.
*/
addr = cma_src_addr(id_priv);
memcpy(&old_addr, addr, rdma_addr_size(addr));
memcpy(addr, src_addr, rdma_addr_size(src_addr));
if (!status && !id_priv->cma_dev) {
status = cma_acquire_dev_by_src_ip(id_priv);
if (status)
pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
status);
rdma_restrack_add(&id_priv->res);
} else if (status) {
pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
}
if (status) {
memcpy(addr, &old_addr,
rdma_addr_size((struct sockaddr *)&old_addr));
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
RDMA_CM_ADDR_BOUND))
goto out;
event.event = RDMA_CM_EVENT_ADDR_ERROR;
event.status = status;
} else
event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
if (cma_cm_event_handler(id_priv, &event)) {
destroy_id_handler_unlock(id_priv);
return;
}
out:
mutex_unlock(&id_priv->handler_mutex);
}
static int cma_resolve_loopback(struct rdma_id_private *id_priv)
{
struct cma_work *work;
union ib_gid gid;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
if (!id_priv->cma_dev) {
ret = cma_bind_loopback(id_priv);
if (ret)
goto err;
}
rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
enqueue_resolve_addr_work(work, id_priv);
return 0;
err:
kfree(work);
return ret;
}
static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
{
struct cma_work *work;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
if (!id_priv->cma_dev) {
ret = cma_resolve_ib_dev(id_priv);
if (ret)
goto err;
}
rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
enqueue_resolve_addr_work(work, id_priv);
return 0;
err:
kfree(work);
return ret;
}
int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
{
struct rdma_id_private *id_priv;
unsigned long flags;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irqsave(&id_priv->lock, flags);
if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
id_priv->state == RDMA_CM_IDLE) {
id_priv->reuseaddr = reuse;
ret = 0;
} else {
ret = -EINVAL;
}
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
EXPORT_SYMBOL(rdma_set_reuseaddr);
int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
{
struct rdma_id_private *id_priv;
unsigned long flags;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irqsave(&id_priv->lock, flags);
if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
id_priv->options |= (1 << CMA_OPTION_AFONLY);
id_priv->afonly = afonly;
ret = 0;
} else {
ret = -EINVAL;
}
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
EXPORT_SYMBOL(rdma_set_afonly);
static void cma_bind_port(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv)
{
struct sockaddr *addr;
struct sockaddr_ib *sib;
u64 sid, mask;
__be16 port;
lockdep_assert_held(&lock);
addr = cma_src_addr(id_priv);
port = htons(bind_list->port);
switch (addr->sa_family) {
case AF_INET:
((struct sockaddr_in *) addr)->sin_port = port;
break;
case AF_INET6:
((struct sockaddr_in6 *) addr)->sin6_port = port;
break;
case AF_IB:
sib = (struct sockaddr_ib *) addr;
sid = be64_to_cpu(sib->sib_sid);
mask = be64_to_cpu(sib->sib_sid_mask);
sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
sib->sib_sid_mask = cpu_to_be64(~0ULL);
break;
}
id_priv->bind_list = bind_list;
hlist_add_head(&id_priv->node, &bind_list->owners);
}
static int cma_alloc_port(enum rdma_ucm_port_space ps,
struct rdma_id_private *id_priv, unsigned short snum)
{
struct rdma_bind_list *bind_list;
int ret;
lockdep_assert_held(&lock);
bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
if (!bind_list)
return -ENOMEM;
ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
snum);
if (ret < 0)
goto err;
bind_list->ps = ps;
bind_list->port = snum;
cma_bind_port(bind_list, id_priv);
return 0;
err:
kfree(bind_list);
return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
}
static int cma_port_is_unique(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv)
{
struct rdma_id_private *cur_id;
struct sockaddr *daddr = cma_dst_addr(id_priv);
struct sockaddr *saddr = cma_src_addr(id_priv);
__be16 dport = cma_port(daddr);
lockdep_assert_held(&lock);
hlist_for_each_entry(cur_id, &bind_list->owners, node) {
struct sockaddr *cur_daddr = cma_dst_addr(cur_id);
struct sockaddr *cur_saddr = cma_src_addr(cur_id);
__be16 cur_dport = cma_port(cur_daddr);
if (id_priv == cur_id)
continue;
/* different dest port -> unique */
if (!cma_any_port(daddr) &&
!cma_any_port(cur_daddr) &&
(dport != cur_dport))
continue;
/* different src address -> unique */
if (!cma_any_addr(saddr) &&
!cma_any_addr(cur_saddr) &&
cma_addr_cmp(saddr, cur_saddr))
continue;
/* different dst address -> unique */
if (!cma_any_addr(daddr) &&
!cma_any_addr(cur_daddr) &&
cma_addr_cmp(daddr, cur_daddr))
continue;
return -EADDRNOTAVAIL;
}
return 0;
}
static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
struct rdma_id_private *id_priv)
{
static unsigned int last_used_port;
int low, high, remaining;
unsigned int rover;
struct net *net = id_priv->id.route.addr.dev_addr.net;
lockdep_assert_held(&lock);
inet_get_local_port_range(net, &low, &high);
remaining = (high - low) + 1;
rover = get_random_u32_inclusive(low, remaining + low - 1);
retry:
if (last_used_port != rover) {
struct rdma_bind_list *bind_list;
int ret;
bind_list = cma_ps_find(net, ps, (unsigned short)rover);
if (!bind_list) {
ret = cma_alloc_port(ps, id_priv, rover);
} else {
ret = cma_port_is_unique(bind_list, id_priv);
if (!ret)
cma_bind_port(bind_list, id_priv);
}
/*
* Remember previously used port number in order to avoid
* re-using same port immediately after it is closed.
*/
if (!ret)
last_used_port = rover;
if (ret != -EADDRNOTAVAIL)
return ret;
}
if (--remaining) {
rover++;
if ((rover < low) || (rover > high))
rover = low;
goto retry;
}
return -EADDRNOTAVAIL;
}
/*
* Check that the requested port is available. This is called when trying to
* bind to a specific port, or when trying to listen on a bound port. In
* the latter case, the provided id_priv may already be on the bind_list, but
* we still need to check that it's okay to start listening.
*/
static int cma_check_port(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv, uint8_t reuseaddr)
{
struct rdma_id_private *cur_id;
struct sockaddr *addr, *cur_addr;
lockdep_assert_held(&lock);
addr = cma_src_addr(id_priv);
hlist_for_each_entry(cur_id, &bind_list->owners, node) {
if (id_priv == cur_id)
continue;
if (reuseaddr && cur_id->reuseaddr)
continue;
cur_addr = cma_src_addr(cur_id);
if (id_priv->afonly && cur_id->afonly &&
(addr->sa_family != cur_addr->sa_family))
continue;
if (cma_any_addr(addr) || cma_any_addr(cur_addr))
return -EADDRNOTAVAIL;
if (!cma_addr_cmp(addr, cur_addr))
return -EADDRINUSE;
}
return 0;
}
static int cma_use_port(enum rdma_ucm_port_space ps,
struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list;
unsigned short snum;
int ret;
lockdep_assert_held(&lock);
snum = ntohs(cma_port(cma_src_addr(id_priv)));
if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
if (!bind_list) {
ret = cma_alloc_port(ps, id_priv, snum);
} else {
ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
if (!ret)
cma_bind_port(bind_list, id_priv);
}
return ret;
}
static enum rdma_ucm_port_space
cma_select_inet_ps(struct rdma_id_private *id_priv)
{
switch (id_priv->id.ps) {
case RDMA_PS_TCP:
case RDMA_PS_UDP:
case RDMA_PS_IPOIB:
case RDMA_PS_IB:
return id_priv->id.ps;
default:
return 0;
}
}
static enum rdma_ucm_port_space
cma_select_ib_ps(struct rdma_id_private *id_priv)
{
enum rdma_ucm_port_space ps = 0;
struct sockaddr_ib *sib;
u64 sid_ps, mask, sid;
sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
sid = be64_to_cpu(sib->sib_sid) & mask;
if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
sid_ps = RDMA_IB_IP_PS_IB;
ps = RDMA_PS_IB;
} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
(sid == (RDMA_IB_IP_PS_TCP & mask))) {
sid_ps = RDMA_IB_IP_PS_TCP;
ps = RDMA_PS_TCP;
} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
(sid == (RDMA_IB_IP_PS_UDP & mask))) {
sid_ps = RDMA_IB_IP_PS_UDP;
ps = RDMA_PS_UDP;
}
if (ps) {
sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
be64_to_cpu(sib->sib_sid_mask));
}
return ps;
}
static int cma_get_port(struct rdma_id_private *id_priv)
{
enum rdma_ucm_port_space ps;
int ret;
if (cma_family(id_priv) != AF_IB)
ps = cma_select_inet_ps(id_priv);
else
ps = cma_select_ib_ps(id_priv);
if (!ps)
return -EPROTONOSUPPORT;
mutex_lock(&lock);
if (cma_any_port(cma_src_addr(id_priv)))
ret = cma_alloc_any_port(ps, id_priv);
else
ret = cma_use_port(ps, id_priv);
mutex_unlock(&lock);
return ret;
}
static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
struct sockaddr *addr)
{
#if IS_ENABLED(CONFIG_IPV6)
struct sockaddr_in6 *sin6;
if (addr->sa_family != AF_INET6)
return 0;
sin6 = (struct sockaddr_in6 *) addr;
if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
return 0;
if (!sin6->sin6_scope_id)
return -EINVAL;
dev_addr->bound_dev_if = sin6->sin6_scope_id;
#endif
return 0;
}
int rdma_listen(struct rdma_cm_id *id, int backlog)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
int ret;
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
struct sockaddr_in any_in = {
.sin_family = AF_INET,
.sin_addr.s_addr = htonl(INADDR_ANY),
};
/* For a well behaved ULP state will be RDMA_CM_IDLE */
ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
if (ret)
return ret;
if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
RDMA_CM_LISTEN)))
return -EINVAL;
}
/*
* Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
* any more, and has to be unique in the bind list.
*/
if (id_priv->reuseaddr) {
mutex_lock(&lock);
ret = cma_check_port(id_priv->bind_list, id_priv, 0);
if (!ret)
id_priv->reuseaddr = 0;
mutex_unlock(&lock);
if (ret)
goto err;
}
id_priv->backlog = backlog;
if (id_priv->cma_dev) {
if (rdma_cap_ib_cm(id->device, 1)) {
ret = cma_ib_listen(id_priv);
if (ret)
goto err;
} else if (rdma_cap_iw_cm(id->device, 1)) {
ret = cma_iw_listen(id_priv, backlog);
if (ret)
goto err;
} else {
ret = -ENOSYS;
goto err;
}
} else {
ret = cma_listen_on_all(id_priv);
if (ret)
goto err;
}
return 0;
err:
id_priv->backlog = 0;
/*
* All the failure paths that lead here will not allow the req_handler's
* to have run.
*/
cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
return ret;
}
EXPORT_SYMBOL(rdma_listen);
static int rdma_bind_addr_dst(struct rdma_id_private *id_priv,
struct sockaddr *addr, const struct sockaddr *daddr)
{
struct sockaddr *id_daddr;
int ret;
if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
addr->sa_family != AF_IB)
return -EAFNOSUPPORT;
if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
return -EINVAL;
ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr);
if (ret)
goto err1;
memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
if (!cma_any_addr(addr)) {
ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr);
if (ret)
goto err1;
ret = cma_acquire_dev_by_src_ip(id_priv);
if (ret)
goto err1;
}
if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
if (addr->sa_family == AF_INET)
id_priv->afonly = 1;
#if IS_ENABLED(CONFIG_IPV6)
else if (addr->sa_family == AF_INET6) {
struct net *net = id_priv->id.route.addr.dev_addr.net;
id_priv->afonly = net->ipv6.sysctl.bindv6only;
}
#endif
}
id_daddr = cma_dst_addr(id_priv);
if (daddr != id_daddr)
memcpy(id_daddr, daddr, rdma_addr_size(addr));
id_daddr->sa_family = addr->sa_family;
ret = cma_get_port(id_priv);
if (ret)
goto err2;
if (!cma_any_addr(addr))
rdma_restrack_add(&id_priv->res);
return 0;
err2:
if (id_priv->cma_dev)
cma_release_dev(id_priv);
err1:
cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
return ret;
}
static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
const struct sockaddr *dst_addr)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
struct sockaddr_storage zero_sock = {};
if (src_addr && src_addr->sa_family)
return rdma_bind_addr_dst(id_priv, src_addr, dst_addr);
/*
* When the src_addr is not specified, automatically supply an any addr
*/
zero_sock.ss_family = dst_addr->sa_family;
if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
struct sockaddr_in6 *src_addr6 =
(struct sockaddr_in6 *)&zero_sock;
struct sockaddr_in6 *dst_addr6 =
(struct sockaddr_in6 *)dst_addr;
src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
id->route.addr.dev_addr.bound_dev_if =
dst_addr6->sin6_scope_id;
} else if (dst_addr->sa_family == AF_IB) {
((struct sockaddr_ib *)&zero_sock)->sib_pkey =
((struct sockaddr_ib *)dst_addr)->sib_pkey;
}
return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr);
}
/*
* If required, resolve the source address for bind and leave the id_priv in
* state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
* calls made by ULP, a previously bound ID will not be re-bound and src_addr is
* ignored.
*/
static int resolve_prepare_src(struct rdma_id_private *id_priv,
struct sockaddr *src_addr,
const struct sockaddr *dst_addr)
{
int ret;
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
/* For a well behaved ULP state will be RDMA_CM_IDLE */
ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
if (ret)
return ret;
if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
RDMA_CM_ADDR_QUERY)))
return -EINVAL;
}
if (cma_family(id_priv) != dst_addr->sa_family) {
ret = -EINVAL;
goto err_state;
}
return 0;
err_state:
cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
return ret;
}
int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
const struct sockaddr *dst_addr, unsigned long timeout_ms)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
int ret;
ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
if (ret)
return ret;
if (cma_any_addr(dst_addr)) {
ret = cma_resolve_loopback(id_priv);
} else {
if (dst_addr->sa_family == AF_IB) {
ret = cma_resolve_ib_addr(id_priv);
} else {
/*
* The FSM can return back to RDMA_CM_ADDR_BOUND after
* rdma_resolve_ip() is called, eg through the error
* path in addr_handler(). If this happens the existing
* request must be canceled before issuing a new one.
* Since canceling a request is a bit slow and this
* oddball path is rare, keep track once a request has
* been issued. The track turns out to be a permanent
* state since this is the only cancel as it is
* immediately before rdma_resolve_ip().
*/
if (id_priv->used_resolve_ip)
rdma_addr_cancel(&id->route.addr.dev_addr);
else
id_priv->used_resolve_ip = 1;
ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
&id->route.addr.dev_addr,
timeout_ms, addr_handler,
false, id_priv);
}
}
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_addr);
int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv));
}
EXPORT_SYMBOL(rdma_bind_addr);
static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
{
struct cma_hdr *cma_hdr;
cma_hdr = hdr;
cma_hdr->cma_version = CMA_VERSION;
if (cma_family(id_priv) == AF_INET) {
struct sockaddr_in *src4, *dst4;
src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
cma_set_ip_ver(cma_hdr, 4);
cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
cma_hdr->port = src4->sin_port;
} else if (cma_family(id_priv) == AF_INET6) {
struct sockaddr_in6 *src6, *dst6;
src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
cma_set_ip_ver(cma_hdr, 6);
cma_hdr->src_addr.ip6 = src6->sin6_addr;
cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
cma_hdr->port = src6->sin6_port;
}
return 0;
}
static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
const struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv = cm_id->context;
struct rdma_cm_event event = {};
const struct ib_cm_sidr_rep_event_param *rep =
&ib_event->param.sidr_rep_rcvd;
int ret;
mutex_lock(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
goto out;
switch (ib_event->event) {
case IB_CM_SIDR_REQ_ERROR:
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -ETIMEDOUT;
break;
case IB_CM_SIDR_REP_RECEIVED:
event.param.ud.private_data = ib_event->private_data;
event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
if (rep->status != IB_SIDR_SUCCESS) {
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = ib_event->param.sidr_rep_rcvd.status;
pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
event.status);
break;
}
ret = cma_set_qkey(id_priv, rep->qkey);
if (ret) {
pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
event.event = RDMA_CM_EVENT_ADDR_ERROR;
event.status = ret;
break;
}
ib_init_ah_attr_from_path(id_priv->id.device,
id_priv->id.port_num,
id_priv->id.route.path_rec,
&event.param.ud.ah_attr,
rep->sgid_attr);
event.param.ud.qp_num = rep->qpn;
event.param.ud.qkey = rep->qkey;
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.status = 0;
break;
default:
pr_err("RDMA CMA: unexpected IB CM event: %d\n",
ib_event->event);
goto out;
}
ret = cma_cm_event_handler(id_priv, &event);
rdma_destroy_ah_attr(&event.param.ud.ah_attr);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.ib = NULL;
destroy_id_handler_unlock(id_priv);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return 0;
}
static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_sidr_req_param req;
struct ib_cm_id *id;
void *private_data;
u8 offset;
int ret;
memset(&req, 0, sizeof req);
offset = cma_user_data_offset(id_priv);
if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
return -EINVAL;
if (req.private_data_len) {
private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
if (!private_data)
return -ENOMEM;
} else {
private_data = NULL;
}
if (conn_param->private_data && conn_param->private_data_len)
memcpy(private_data + offset, conn_param->private_data,
conn_param->private_data_len);
if (private_data) {
ret = cma_format_hdr(private_data, id_priv);
if (ret)
goto out;
req.private_data = private_data;
}
id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
id_priv);
if (IS_ERR(id)) {
ret = PTR_ERR(id);
goto out;
}
id_priv->cm_id.ib = id;
req.path = id_priv->id.route.path_rec;
req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
req.max_cm_retries = CMA_MAX_CM_RETRIES;
trace_cm_send_sidr_req(id_priv);
ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
if (ret) {
ib_destroy_cm_id(id_priv->cm_id.ib);
id_priv->cm_id.ib = NULL;
}
out:
kfree(private_data);
return ret;
}
static int cma_connect_ib(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_req_param req;
struct rdma_route *route;
void *private_data;
struct ib_cm_id *id;
u8 offset;
int ret;
memset(&req, 0, sizeof req);
offset = cma_user_data_offset(id_priv);
if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
return -EINVAL;
if (req.private_data_len) {
private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
if (!private_data)
return -ENOMEM;
} else {
private_data = NULL;
}
if (conn_param->private_data && conn_param->private_data_len)
memcpy(private_data + offset, conn_param->private_data,
conn_param->private_data_len);
id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
if (IS_ERR(id)) {
ret = PTR_ERR(id);
goto out;
}
id_priv->cm_id.ib = id;
route = &id_priv->id.route;
if (private_data) {
ret = cma_format_hdr(private_data, id_priv);
if (ret)
goto out;
req.private_data = private_data;
}
req.primary_path = &route->path_rec[0];
req.primary_path_inbound = route->path_rec_inbound;
req.primary_path_outbound = route->path_rec_outbound;
if (route->num_pri_alt_paths == 2)
req.alternate_path = &route->path_rec[1];
req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
/* Alternate path SGID attribute currently unsupported */
req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
req.qp_num = id_priv->qp_num;
req.qp_type = id_priv->id.qp_type;
req.starting_psn = id_priv->seq_num;
req.responder_resources = conn_param->responder_resources;
req.initiator_depth = conn_param->initiator_depth;
req.flow_control = conn_param->flow_control;
req.retry_count = min_t(u8, 7, conn_param->retry_count);
req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
req.max_cm_retries = CMA_MAX_CM_RETRIES;
req.srq = id_priv->srq ? 1 : 0;
req.ece.vendor_id = id_priv->ece.vendor_id;
req.ece.attr_mod = id_priv->ece.attr_mod;
trace_cm_send_req(id_priv);
ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
out:
if (ret && !IS_ERR(id)) {
ib_destroy_cm_id(id);
id_priv->cm_id.ib = NULL;
}
kfree(private_data);
return ret;
}
static int cma_connect_iw(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct iw_cm_id *cm_id;
int ret;
struct iw_cm_conn_param iw_param;
cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
if (IS_ERR(cm_id))
return PTR_ERR(cm_id);
mutex_lock(&id_priv->qp_mutex);
cm_id->tos = id_priv->tos;
cm_id->tos_set = id_priv->tos_set;
mutex_unlock(&id_priv->qp_mutex);
id_priv->cm_id.iw = cm_id;
memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
rdma_addr_size(cma_dst_addr(id_priv)));
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
goto out;
if (conn_param) {
iw_param.ord = conn_param->initiator_depth;
iw_param.ird = conn_param->responder_resources;
iw_param.private_data = conn_param->private_data;
iw_param.private_data_len = conn_param->private_data_len;
iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
} else {
memset(&iw_param, 0, sizeof iw_param);
iw_param.qpn = id_priv->qp_num;
}
ret = iw_cm_connect(cm_id, &iw_param);
out:
if (ret) {
iw_destroy_cm_id(cm_id);
id_priv->cm_id.iw = NULL;
}
return ret;
}
/**
* rdma_connect_locked - Initiate an active connection request.
* @id: Connection identifier to connect.
* @conn_param: Connection information used for connected QPs.
*
* Same as rdma_connect() but can only be called from the
* RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
*/
int rdma_connect_locked(struct rdma_cm_id *id,
struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
int ret;
if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
return -EINVAL;
if (!id->qp) {
id_priv->qp_num = conn_param->qp_num;
id_priv->srq = conn_param->srq;
}
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (id->qp_type == IB_QPT_UD)
ret = cma_resolve_ib_udp(id_priv, conn_param);
else
ret = cma_connect_ib(id_priv, conn_param);
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
ret = cma_connect_iw(id_priv, conn_param);
} else {
ret = -ENOSYS;
}
if (ret)
goto err_state;
return 0;
err_state:
cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
return ret;
}
EXPORT_SYMBOL(rdma_connect_locked);
/**
* rdma_connect - Initiate an active connection request.
* @id: Connection identifier to connect.
* @conn_param: Connection information used for connected QPs.
*
* Users must have resolved a route for the rdma_cm_id to connect with by having
* called rdma_resolve_route before calling this routine.
*
* This call will either connect to a remote QP or obtain remote QP information
* for unconnected rdma_cm_id's. The actual operation is based on the
* rdma_cm_id's port space.
*/
int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
int ret;
mutex_lock(&id_priv->handler_mutex);
ret = rdma_connect_locked(id, conn_param);
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
EXPORT_SYMBOL(rdma_connect);
/**
* rdma_connect_ece - Initiate an active connection request with ECE data.
* @id: Connection identifier to connect.
* @conn_param: Connection information used for connected QPs.
* @ece: ECE parameters
*
* See rdma_connect() explanation.
*/
int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
struct rdma_ucm_ece *ece)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
id_priv->ece.vendor_id = ece->vendor_id;
id_priv->ece.attr_mod = ece->attr_mod;
return rdma_connect(id, conn_param);
}
EXPORT_SYMBOL(rdma_connect_ece);
static int cma_accept_ib(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_rep_param rep;
int ret;
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
goto out;
ret = cma_modify_qp_rts(id_priv, conn_param);
if (ret)
goto out;
memset(&rep, 0, sizeof rep);
rep.qp_num = id_priv->qp_num;
rep.starting_psn = id_priv->seq_num;
rep.private_data = conn_param->private_data;
rep.private_data_len = conn_param->private_data_len;
rep.responder_resources = conn_param->responder_resources;
rep.initiator_depth = conn_param->initiator_depth;
rep.failover_accepted = 0;
rep.flow_control = conn_param->flow_control;
rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
rep.srq = id_priv->srq ? 1 : 0;
rep.ece.vendor_id = id_priv->ece.vendor_id;
rep.ece.attr_mod = id_priv->ece.attr_mod;
trace_cm_send_rep(id_priv);
ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
out:
return ret;
}
static int cma_accept_iw(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct iw_cm_conn_param iw_param;
int ret;
if (!conn_param)
return -EINVAL;
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
return ret;
iw_param.ord = conn_param->initiator_depth;
iw_param.ird = conn_param->responder_resources;
iw_param.private_data = conn_param->private_data;
iw_param.private_data_len = conn_param->private_data_len;
if (id_priv->id.qp)
iw_param.qpn = id_priv->qp_num;
else
iw_param.qpn = conn_param->qp_num;
return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
}
static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
enum ib_cm_sidr_status status, u32 qkey,
const void *private_data, int private_data_len)
{
struct ib_cm_sidr_rep_param rep;
int ret;
memset(&rep, 0, sizeof rep);
rep.status = status;
if (status == IB_SIDR_SUCCESS) {
ret = cma_set_qkey(id_priv, qkey);
if (ret)
return ret;
rep.qp_num = id_priv->qp_num;
rep.qkey = id_priv->qkey;
rep.ece.vendor_id = id_priv->ece.vendor_id;
rep.ece.attr_mod = id_priv->ece.attr_mod;
}
rep.private_data = private_data;
rep.private_data_len = private_data_len;
trace_cm_send_sidr_rep(id_priv);
return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
}
/**
* rdma_accept - Called to accept a connection request or response.
* @id: Connection identifier associated with the request.
* @conn_param: Information needed to establish the connection. This must be
* provided if accepting a connection request. If accepting a connection
* response, this parameter must be NULL.
*
* Typically, this routine is only called by the listener to accept a connection
* request. It must also be called on the active side of a connection if the
* user is performing their own QP transitions.
*
* In the case of error, a reject message is sent to the remote side and the
* state of the qp associated with the id is modified to error, such that any
* previously posted receive buffers would be flushed.
*
* This function is for use by kernel ULPs and must be called from under the
* handler callback.
*/
int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
int ret;
lockdep_assert_held(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
return -EINVAL;
if (!id->qp && conn_param) {
id_priv->qp_num = conn_param->qp_num;
id_priv->srq = conn_param->srq;
}
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (id->qp_type == IB_QPT_UD) {
if (conn_param)
ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
conn_param->qkey,
conn_param->private_data,
conn_param->private_data_len);
else
ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
0, NULL, 0);
} else {
if (conn_param)
ret = cma_accept_ib(id_priv, conn_param);
else
ret = cma_rep_recv(id_priv);
}
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
ret = cma_accept_iw(id_priv, conn_param);
} else {
ret = -ENOSYS;
}
if (ret)
goto reject;
return 0;
reject:
cma_modify_qp_err(id_priv);
rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
return ret;
}
EXPORT_SYMBOL(rdma_accept);
int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
struct rdma_ucm_ece *ece)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
id_priv->ece.vendor_id = ece->vendor_id;
id_priv->ece.attr_mod = ece->attr_mod;
return rdma_accept(id, conn_param);
}
EXPORT_SYMBOL(rdma_accept_ece);
void rdma_lock_handler(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->handler_mutex);
}
EXPORT_SYMBOL(rdma_lock_handler);
void rdma_unlock_handler(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
mutex_unlock(&id_priv->handler_mutex);
}
EXPORT_SYMBOL(rdma_unlock_handler);
int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
switch (id->device->node_type) {
case RDMA_NODE_IB_CA:
ret = ib_cm_notify(id_priv->cm_id.ib, event);
break;
default:
ret = 0;
break;
}
return ret;
}
EXPORT_SYMBOL(rdma_notify);
int rdma_reject(struct rdma_cm_id *id, const void *private_data,
u8 private_data_len, u8 reason)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (id->qp_type == IB_QPT_UD) {
ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
private_data, private_data_len);
} else {
trace_cm_send_rej(id_priv);
ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
private_data, private_data_len);
}
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
ret = iw_cm_reject(id_priv->cm_id.iw,
private_data, private_data_len);
} else {
ret = -ENOSYS;
}
return ret;
}
EXPORT_SYMBOL(rdma_reject);
int rdma_disconnect(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
if (rdma_cap_ib_cm(id->device, id->port_num)) {
ret = cma_modify_qp_err(id_priv);
if (ret)
goto out;
/* Initiate or respond to a disconnect. */
trace_cm_disconnect(id_priv);
if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
trace_cm_sent_drep(id_priv);
} else {
trace_cm_sent_dreq(id_priv);
}
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
} else
ret = -EINVAL;
out:
return ret;
}
EXPORT_SYMBOL(rdma_disconnect);
static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
struct ib_sa_multicast *multicast,
struct rdma_cm_event *event,
struct cma_multicast *mc)
{
struct rdma_dev_addr *dev_addr;
enum ib_gid_type gid_type;
struct net_device *ndev;
if (!status)
status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
else
pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
status);
event->status = status;
event->param.ud.private_data = mc->context;
if (status) {
event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
return;
}
dev_addr = &id_priv->id.route.addr.dev_addr;
ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
gid_type =
id_priv->cma_dev
->default_gid_type[id_priv->id.port_num -
rdma_start_port(
id_priv->cma_dev->device)];
event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
&multicast->rec, ndev, gid_type,
&event->param.ud.ah_attr)) {
event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
goto out;
}
event->param.ud.qp_num = 0xFFFFFF;
event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
out:
if (ndev)
dev_put(ndev);
}
static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
{
struct cma_multicast *mc = multicast->context;
struct rdma_id_private *id_priv = mc->id_priv;
struct rdma_cm_event event = {};
int ret = 0;
mutex_lock(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
goto out;
cma_make_mc_event(status, id_priv, multicast, &event, mc);
ret = cma_cm_event_handler(id_priv, &event);
rdma_destroy_ah_attr(&event.param.ud.ah_attr);
WARN_ON(ret);
out:
mutex_unlock(&id_priv->handler_mutex);
return 0;
}
static void cma_set_mgid(struct rdma_id_private *id_priv,
struct sockaddr *addr, union ib_gid *mgid)
{
unsigned char mc_map[MAX_ADDR_LEN];
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct sockaddr_in *sin = (struct sockaddr_in *) addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
if (cma_any_addr(addr)) {
memset(mgid, 0, sizeof *mgid);
} else if ((addr->sa_family == AF_INET6) &&
((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
0xFF10A01B)) {
/* IPv6 address is an SA assigned MGID. */
memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
} else if (addr->sa_family == AF_IB) {
memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
} else if (addr->sa_family == AF_INET6) {
ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
if (id_priv->id.ps == RDMA_PS_UDP)
mc_map[7] = 0x01; /* Use RDMA CM signature */
*mgid = *(union ib_gid *) (mc_map + 4);
} else {
ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
if (id_priv->id.ps == RDMA_PS_UDP)
mc_map[7] = 0x01; /* Use RDMA CM signature */
*mgid = *(union ib_gid *) (mc_map + 4);
}
}
static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
struct ib_sa_mcmember_rec rec;
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
ib_sa_comp_mask comp_mask;
int ret;
ib_addr_get_mgid(dev_addr, &rec.mgid);
ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
&rec.mgid, &rec);
if (ret)
return ret;
ret = cma_set_qkey(id_priv, 0);
if (ret)
return ret;
cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
rec.qkey = cpu_to_be32(id_priv->qkey);
rdma_addr_get_sgid(dev_addr, &rec.port_gid);
rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
rec.join_state = mc->join_state;
comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
IB_SA_MCMEMBER_REC_FLOW_LABEL |
IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
if (id_priv->id.ps == RDMA_PS_IPOIB)
comp_mask |= IB_SA_MCMEMBER_REC_RATE |
IB_SA_MCMEMBER_REC_RATE_SELECTOR |
IB_SA_MCMEMBER_REC_MTU_SELECTOR |
IB_SA_MCMEMBER_REC_MTU |
IB_SA_MCMEMBER_REC_HOP_LIMIT;
mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
id_priv->id.port_num, &rec, comp_mask,
GFP_KERNEL, cma_ib_mc_handler, mc);
return PTR_ERR_OR_ZERO(mc->sa_mc);
}
static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
enum ib_gid_type gid_type)
{
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
if (cma_any_addr(addr)) {
memset(mgid, 0, sizeof *mgid);
} else if (addr->sa_family == AF_INET6) {
memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
} else {
mgid->raw[0] =
(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
mgid->raw[1] =
(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
mgid->raw[2] = 0;
mgid->raw[3] = 0;
mgid->raw[4] = 0;
mgid->raw[5] = 0;
mgid->raw[6] = 0;
mgid->raw[7] = 0;
mgid->raw[8] = 0;
mgid->raw[9] = 0;
mgid->raw[10] = 0xff;
mgid->raw[11] = 0xff;
*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
}
}
static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int err = 0;
struct sockaddr *addr = (struct sockaddr *)&mc->addr;
struct net_device *ndev = NULL;
struct ib_sa_multicast ib;
enum ib_gid_type gid_type;
bool send_only;
send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
if (cma_zero_addr(addr))
return -EINVAL;
gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
rdma_start_port(id_priv->cma_dev->device)];
cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
ib.rec.pkey = cpu_to_be16(0xffff);
if (id_priv->id.ps == RDMA_PS_UDP)
ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
if (dev_addr->bound_dev_if)
ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
if (!ndev)
return -ENODEV;
ib.rec.rate = iboe_get_rate(ndev);
ib.rec.hop_limit = 1;
ib.rec.mtu = iboe_get_mtu(ndev->mtu);
if (addr->sa_family == AF_INET) {
if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
if (!send_only) {
err = cma_igmp_send(ndev, &ib.rec.mgid,
true);
}
}
} else {
if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
err = -ENOTSUPP;
}
dev_put(ndev);
if (err || !ib.rec.mtu)
return err ?: -EINVAL;
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&ib.rec.port_gid);
INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
queue_work(cma_wq, &mc->iboe_join.work);
return 0;
}
int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
u8 join_state, void *context)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
struct cma_multicast *mc;
int ret;
/* Not supported for kernel QPs */
if (WARN_ON(id->qp))
return -EINVAL;
/* ULP is calling this wrong. */
if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
return -EINVAL;
mc = kzalloc(sizeof(*mc), GFP_KERNEL);
if (!mc)
return -ENOMEM;
memcpy(&mc->addr, addr, rdma_addr_size(addr));
mc->context = context;
mc->id_priv = id_priv;
mc->join_state = join_state;
if (rdma_protocol_roce(id->device, id->port_num)) {
ret = cma_iboe_join_multicast(id_priv, mc);
if (ret)
goto out_err;
} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
ret = cma_join_ib_multicast(id_priv, mc);
if (ret)
goto out_err;
} else {
ret = -ENOSYS;
goto out_err;
}
spin_lock(&id_priv->lock);
list_add(&mc->list, &id_priv->mc_list);
spin_unlock(&id_priv->lock);
return 0;
out_err:
kfree(mc);
return ret;
}
EXPORT_SYMBOL(rdma_join_multicast);
void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
{
struct rdma_id_private *id_priv;
struct cma_multicast *mc;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irq(&id_priv->lock);
list_for_each_entry(mc, &id_priv->mc_list, list) {
if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
continue;
list_del(&mc->list);
spin_unlock_irq(&id_priv->lock);
WARN_ON(id_priv->cma_dev->device != id->device);
destroy_mc(id_priv, mc);
return;
}
spin_unlock_irq(&id_priv->lock);
}
EXPORT_SYMBOL(rdma_leave_multicast);
static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
{
struct rdma_dev_addr *dev_addr;
struct cma_work *work;
dev_addr = &id_priv->id.route.addr.dev_addr;
if ((dev_addr->bound_dev_if == ndev->ifindex) &&
(net_eq(dev_net(ndev), dev_addr->net)) &&
memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
pr_info("RDMA CM addr change for ndev %s used by id %p\n",
ndev->name, &id_priv->id);
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
INIT_WORK(&work->work, cma_work_handler);
work->id = id_priv;
work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
cma_id_get(id_priv);
queue_work(cma_wq, &work->work);
}
return 0;
}
static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
void *ptr)
{
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct cma_device *cma_dev;
struct rdma_id_private *id_priv;
int ret = NOTIFY_DONE;
if (event != NETDEV_BONDING_FAILOVER)
return NOTIFY_DONE;
if (!netif_is_bond_master(ndev))
return NOTIFY_DONE;
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list)
list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
ret = cma_netdev_change(ndev, id_priv);
if (ret)
goto out;
}
out:
mutex_unlock(&lock);
return ret;
}
static void cma_netevent_work_handler(struct work_struct *_work)
{
struct rdma_id_private *id_priv =
container_of(_work, struct rdma_id_private, id.net_work);
struct rdma_cm_event event = {};
mutex_lock(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
goto out_unlock;
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -ETIMEDOUT;
if (cma_cm_event_handler(id_priv, &event)) {
__acquire(&id_priv->handler_mutex);
id_priv->cm_id.ib = NULL;
cma_id_put(id_priv);
destroy_id_handler_unlock(id_priv);
return;
}
out_unlock:
mutex_unlock(&id_priv->handler_mutex);
cma_id_put(id_priv);
}
static int cma_netevent_callback(struct notifier_block *self,
unsigned long event, void *ctx)
{
struct id_table_entry *ips_node = NULL;
struct rdma_id_private *current_id;
struct neighbour *neigh = ctx;
unsigned long flags;
if (event != NETEVENT_NEIGH_UPDATE)
return NOTIFY_DONE;
spin_lock_irqsave(&id_table_lock, flags);
if (neigh->tbl->family == AF_INET6) {
struct sockaddr_in6 neigh_sock_6;
neigh_sock_6.sin6_family = AF_INET6;
neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
(struct sockaddr *)&neigh_sock_6);
} else if (neigh->tbl->family == AF_INET) {
struct sockaddr_in neigh_sock_4;
neigh_sock_4.sin_family = AF_INET;
neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
(struct sockaddr *)&neigh_sock_4);
} else
goto out;
if (!ips_node)
goto out;
list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
neigh->ha, ETH_ALEN))
continue;
INIT_WORK(&current_id->id.net_work, cma_netevent_work_handler);
cma_id_get(current_id);
queue_work(cma_wq, &current_id->id.net_work);
}
out:
spin_unlock_irqrestore(&id_table_lock, flags);
return NOTIFY_DONE;
}
static struct notifier_block cma_nb = {
.notifier_call = cma_netdev_callback
};
static struct notifier_block cma_netevent_cb = {
.notifier_call = cma_netevent_callback
};
static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
{
struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
enum rdma_cm_state state;
unsigned long flags;
mutex_lock(&id_priv->handler_mutex);
/* Record that we want to remove the device */
spin_lock_irqsave(&id_priv->lock, flags);
state = id_priv->state;
if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
spin_unlock_irqrestore(&id_priv->lock, flags);
mutex_unlock(&id_priv->handler_mutex);
cma_id_put(id_priv);
return;
}
id_priv->state = RDMA_CM_DEVICE_REMOVAL;
spin_unlock_irqrestore(&id_priv->lock, flags);
if (cma_cm_event_handler(id_priv, &event)) {
/*
* At this point the ULP promises it won't call
* rdma_destroy_id() concurrently
*/
cma_id_put(id_priv);
mutex_unlock(&id_priv->handler_mutex);
trace_cm_id_destroy(id_priv);
_destroy_id(id_priv, state);
return;
}
mutex_unlock(&id_priv->handler_mutex);
/*
* If this races with destroy then the thread that first assigns state
* to a destroying does the cancel.
*/
cma_cancel_operation(id_priv, state);
cma_id_put(id_priv);
}
static void cma_process_remove(struct cma_device *cma_dev)
{
mutex_lock(&lock);
while (!list_empty(&cma_dev->id_list)) {
struct rdma_id_private *id_priv = list_first_entry(
&cma_dev->id_list, struct rdma_id_private, device_item);
list_del_init(&id_priv->listen_item);
list_del_init(&id_priv->device_item);
cma_id_get(id_priv);
mutex_unlock(&lock);
cma_send_device_removal_put(id_priv);
mutex_lock(&lock);
}
mutex_unlock(&lock);
cma_dev_put(cma_dev);
wait_for_completion(&cma_dev->comp);
}
static bool cma_supported(struct ib_device *device)
{
u32 i;
rdma_for_each_port(device, i) {
if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
return true;
}
return false;
}
static int cma_add_one(struct ib_device *device)
{
struct rdma_id_private *to_destroy;
struct cma_device *cma_dev;
struct rdma_id_private *id_priv;
unsigned long supported_gids = 0;
int ret;
u32 i;
if (!cma_supported(device))
return -EOPNOTSUPP;
cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
if (!cma_dev)
return -ENOMEM;
cma_dev->device = device;
cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
sizeof(*cma_dev->default_gid_type),
GFP_KERNEL);
if (!cma_dev->default_gid_type) {
ret = -ENOMEM;
goto free_cma_dev;
}
cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
sizeof(*cma_dev->default_roce_tos),
GFP_KERNEL);
if (!cma_dev->default_roce_tos) {
ret = -ENOMEM;
goto free_gid_type;
}
rdma_for_each_port (device, i) {
supported_gids = roce_gid_type_mask_support(device, i);
WARN_ON(!supported_gids);
if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
cma_dev->default_gid_type[i - rdma_start_port(device)] =
CMA_PREFERRED_ROCE_GID_TYPE;
else
cma_dev->default_gid_type[i - rdma_start_port(device)] =
find_first_bit(&supported_gids, BITS_PER_LONG);
cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
}
init_completion(&cma_dev->comp);
refcount_set(&cma_dev->refcount, 1);
INIT_LIST_HEAD(&cma_dev->id_list);
ib_set_client_data(device, &cma_client, cma_dev);
mutex_lock(&lock);
list_add_tail(&cma_dev->list, &dev_list);
list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
if (ret)
goto free_listen;
}
mutex_unlock(&lock);
trace_cm_add_one(device);
return 0;
free_listen:
list_del(&cma_dev->list);
mutex_unlock(&lock);
/* cma_process_remove() will delete to_destroy */
cma_process_remove(cma_dev);
kfree(cma_dev->default_roce_tos);
free_gid_type:
kfree(cma_dev->default_gid_type);
free_cma_dev:
kfree(cma_dev);
return ret;
}
static void cma_remove_one(struct ib_device *device, void *client_data)
{
struct cma_device *cma_dev = client_data;
trace_cm_remove_one(device);
mutex_lock(&lock);
list_del(&cma_dev->list);
mutex_unlock(&lock);
cma_process_remove(cma_dev);
kfree(cma_dev->default_roce_tos);
kfree(cma_dev->default_gid_type);
kfree(cma_dev);
}
static int cma_init_net(struct net *net)
{
struct cma_pernet *pernet = cma_pernet(net);
xa_init(&pernet->tcp_ps);
xa_init(&pernet->udp_ps);
xa_init(&pernet->ipoib_ps);
xa_init(&pernet->ib_ps);
return 0;
}
static void cma_exit_net(struct net *net)
{
struct cma_pernet *pernet = cma_pernet(net);
WARN_ON(!xa_empty(&pernet->tcp_ps));
WARN_ON(!xa_empty(&pernet->udp_ps));
WARN_ON(!xa_empty(&pernet->ipoib_ps));
WARN_ON(!xa_empty(&pernet->ib_ps));
}
static struct pernet_operations cma_pernet_operations = {
.init = cma_init_net,
.exit = cma_exit_net,
.id = &cma_pernet_id,
.size = sizeof(struct cma_pernet),
};
static int __init cma_init(void)
{
int ret;
/*
* There is a rare lock ordering dependency in cma_netdev_callback()
* that only happens when bonding is enabled. Teach lockdep that rtnl
* must never be nested under lock so it can find these without having
* to test with bonding.
*/
if (IS_ENABLED(CONFIG_LOCKDEP)) {
rtnl_lock();
mutex_lock(&lock);
mutex_unlock(&lock);
rtnl_unlock();
}
cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
if (!cma_wq)
return -ENOMEM;
ret = register_pernet_subsys(&cma_pernet_operations);
if (ret)
goto err_wq;
ib_sa_register_client(&sa_client);
register_netdevice_notifier(&cma_nb);
register_netevent_notifier(&cma_netevent_cb);
ret = ib_register_client(&cma_client);
if (ret)
goto err;
ret = cma_configfs_init();
if (ret)
goto err_ib;
return 0;
err_ib:
ib_unregister_client(&cma_client);
err:
unregister_netevent_notifier(&cma_netevent_cb);
unregister_netdevice_notifier(&cma_nb);
ib_sa_unregister_client(&sa_client);
unregister_pernet_subsys(&cma_pernet_operations);
err_wq:
destroy_workqueue(cma_wq);
return ret;
}
static void __exit cma_cleanup(void)
{
cma_configfs_exit();
ib_unregister_client(&cma_client);
unregister_netevent_notifier(&cma_netevent_cb);
unregister_netdevice_notifier(&cma_nb);
ib_sa_unregister_client(&sa_client);
unregister_pernet_subsys(&cma_pernet_operations);
destroy_workqueue(cma_wq);
}
module_init(cma_init);
module_exit(cma_cleanup);