mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-04 04:06:26 +00:00
073c78edf5
commit823430c8e9
("memory tier: consolidate the initialization of memory tiers") introduces a locking change that use guard(mutex) to instead of mutex_lock/unlock() for memory_tier_lock. It unexpectedly expanded the locked region to include the hotplug_memory_notifier(), as a result, it triggers an locking dependency detected of ABBA deadlock. Exclude hotplug_memory_notifier() from the locked region to fixing it. The deadlock scenario is that when a memory online event occurs, the execution of memory notifier will access the read lock of the memory_chain.rwsem, then the reigistration of the memory notifier in memory_tier_init() acquires the write lock of the memory_chain.rwsem while holding memory_tier_lock. Then the memory online event continues to invoke the memory hotplug callback registered by memory_tier_init(). Since this callback tries to acquire the memory_tier_lock, a deadlock occurs. In fact, this deadlock can't happen because memory_tier_init() always executes before memory online events happen due to the subsys_initcall() has an higher priority than module_init(). [ 133.491106] WARNING: possible circular locking dependency detected [ 133.493656] 6.11.0-rc2+ #146 Tainted: G O N [ 133.504290] ------------------------------------------------------ [ 133.515194] (udev-worker)/1133 is trying to acquire lock: [ 133.525715] ffffffff87044e28 (memory_tier_lock){+.+.}-{3:3}, at: memtier_hotplug_callback+0x383/0x4b0 [ 133.536449] [ 133.536449] but task is already holding lock: [ 133.549847] ffffffff875d3310 ((memory_chain).rwsem){++++}-{3:3}, at: blocking_notifier_call_chain+0x60/0xb0 [ 133.556781] [ 133.556781] which lock already depends on the new lock. [ 133.556781] [ 133.569957] [ 133.569957] the existing dependency chain (in reverse order) is: [ 133.577618] [ 133.577618] -> #1 ((memory_chain).rwsem){++++}-{3:3}: [ 133.584997] down_write+0x97/0x210 [ 133.588647] blocking_notifier_chain_register+0x71/0xd0 [ 133.592537] register_memory_notifier+0x26/0x30 [ 133.596314] memory_tier_init+0x187/0x300 [ 133.599864] do_one_initcall+0x117/0x5d0 [ 133.603399] kernel_init_freeable+0xab0/0xeb0 [ 133.606986] kernel_init+0x28/0x2f0 [ 133.610312] ret_from_fork+0x59/0x90 [ 133.613652] ret_from_fork_asm+0x1a/0x30 [ 133.617012] [ 133.617012] -> #0 (memory_tier_lock){+.+.}-{3:3}: [ 133.623390] __lock_acquire+0x2efd/0x5c60 [ 133.626730] lock_acquire+0x1ce/0x580 [ 133.629757] __mutex_lock+0x15c/0x1490 [ 133.632731] mutex_lock_nested+0x1f/0x30 [ 133.635717] memtier_hotplug_callback+0x383/0x4b0 [ 133.638748] notifier_call_chain+0xbf/0x370 [ 133.641647] blocking_notifier_call_chain+0x76/0xb0 [ 133.644636] memory_notify+0x2e/0x40 [ 133.647427] online_pages+0x597/0x720 [ 133.650246] memory_subsys_online+0x4f6/0x7f0 [ 133.653107] device_online+0x141/0x1d0 [ 133.655831] online_memory_block+0x4d/0x60 [ 133.658616] walk_memory_blocks+0xc0/0x120 [ 133.661419] add_memory_resource+0x51d/0x6c0 [ 133.664202] add_memory_driver_managed+0xf5/0x180 [ 133.667060] dev_dax_kmem_probe+0x7f7/0xb40 [kmem] [ 133.669949] dax_bus_probe+0x147/0x230 [ 133.672687] really_probe+0x27f/0xac0 [ 133.675463] __driver_probe_device+0x1f3/0x460 [ 133.678493] driver_probe_device+0x56/0x1b0 [ 133.681366] __driver_attach+0x277/0x570 [ 133.684149] bus_for_each_dev+0x145/0x1e0 [ 133.686937] driver_attach+0x49/0x60 [ 133.689673] bus_add_driver+0x2f3/0x6b0 [ 133.692421] driver_register+0x170/0x4b0 [ 133.695118] __dax_driver_register+0x141/0x1b0 [ 133.697910] dax_kmem_init+0x54/0xff0 [kmem] [ 133.700794] do_one_initcall+0x117/0x5d0 [ 133.703455] do_init_module+0x277/0x750 [ 133.706054] load_module+0x5d1d/0x74f0 [ 133.708602] init_module_from_file+0x12c/0x1a0 [ 133.711234] idempotent_init_module+0x3f1/0x690 [ 133.713937] __x64_sys_finit_module+0x10e/0x1a0 [ 133.716492] x64_sys_call+0x184d/0x20d0 [ 133.719053] do_syscall_64+0x6d/0x140 [ 133.721537] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 133.724239] [ 133.724239] other info that might help us debug this: [ 133.724239] [ 133.730832] Possible unsafe locking scenario: [ 133.730832] [ 133.735298] CPU0 CPU1 [ 133.737759] ---- ---- [ 133.740165] rlock((memory_chain).rwsem); [ 133.742623] lock(memory_tier_lock); [ 133.745357] lock((memory_chain).rwsem); [ 133.748141] lock(memory_tier_lock); [ 133.750489] [ 133.750489] *** DEADLOCK *** [ 133.750489] [ 133.756742] 6 locks held by (udev-worker)/1133: [ 133.759179] #0: ffff888207be6158 (&dev->mutex){....}-{3:3}, at: __driver_attach+0x26c/0x570 [ 133.762299] #1: ffffffff875b5868 (device_hotplug_lock){+.+.}-{3:3}, at: lock_device_hotplug+0x20/0x30 [ 133.765565] #2: ffff88820cf6a108 (&dev->mutex){....}-{3:3}, at: device_online+0x2f/0x1d0 [ 133.768978] #3: ffffffff86d08ff0 (cpu_hotplug_lock){++++}-{0:0}, at: mem_hotplug_begin+0x17/0x30 [ 133.772312] #4: ffffffff8702dfb0 (mem_hotplug_lock){++++}-{0:0}, at: mem_hotplug_begin+0x23/0x30 [ 133.775544] #5: ffffffff875d3310 ((memory_chain).rwsem){++++}-{3:3}, at: blocking_notifier_call_chain+0x60/0xb0 [ 133.779113] [ 133.779113] stack backtrace: [ 133.783728] CPU: 5 UID: 0 PID: 1133 Comm: (udev-worker) Tainted: G O N 6.11.0-rc2+ #146 [ 133.787220] Tainted: [O]=OOT_MODULE, [N]=TEST [ 133.789948] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 [ 133.793291] Call Trace: [ 133.795826] <TASK> [ 133.798284] dump_stack_lvl+0xea/0x150 [ 133.801025] dump_stack+0x19/0x20 [ 133.803609] print_circular_bug+0x477/0x740 [ 133.806341] check_noncircular+0x2f4/0x3e0 [ 133.809056] ? __pfx_check_noncircular+0x10/0x10 [ 133.811866] ? __pfx_lockdep_lock+0x10/0x10 [ 133.814670] ? __sanitizer_cov_trace_const_cmp8+0x1c/0x30 [ 133.817610] __lock_acquire+0x2efd/0x5c60 [ 133.820339] ? __pfx___lock_acquire+0x10/0x10 [ 133.823128] ? __dax_driver_register+0x141/0x1b0 [ 133.825926] ? do_one_initcall+0x117/0x5d0 [ 133.828648] lock_acquire+0x1ce/0x580 [ 133.831349] ? memtier_hotplug_callback+0x383/0x4b0 [ 133.834293] ? __pfx_lock_acquire+0x10/0x10 [ 133.837134] __mutex_lock+0x15c/0x1490 [ 133.839829] ? memtier_hotplug_callback+0x383/0x4b0 [ 133.842753] ? memtier_hotplug_callback+0x383/0x4b0 [ 133.845602] ? __this_cpu_preempt_check+0x21/0x30 [ 133.848438] ? __pfx___mutex_lock+0x10/0x10 [ 133.851200] ? __pfx_lock_acquire+0x10/0x10 [ 133.853935] ? global_dirty_limits+0xc0/0x160 [ 133.856699] ? __sanitizer_cov_trace_switch+0x58/0xa0 [ 133.859564] mutex_lock_nested+0x1f/0x30 [ 133.862251] ? mutex_lock_nested+0x1f/0x30 [ 133.864964] memtier_hotplug_callback+0x383/0x4b0 [ 133.867752] notifier_call_chain+0xbf/0x370 [ 133.870550] ? writeback_set_ratelimit+0xe8/0x160 [ 133.873372] blocking_notifier_call_chain+0x76/0xb0 [ 133.876311] memory_notify+0x2e/0x40 [ 133.879013] online_pages+0x597/0x720 [ 133.881686] ? irqentry_exit+0x3e/0xa0 [ 133.884397] ? __pfx_online_pages+0x10/0x10 [ 133.887244] ? __sanitizer_cov_trace_const_cmp8+0x1c/0x30 [ 133.890299] ? mhp_init_memmap_on_memory+0x7a/0x1c0 [ 133.893203] memory_subsys_online+0x4f6/0x7f0 [ 133.896099] ? __pfx_memory_subsys_online+0x10/0x10 [ 133.899039] ? xa_load+0x16d/0x2e0 [ 133.901667] ? __pfx_xa_load+0x10/0x10 [ 133.904366] ? __pfx_memory_subsys_online+0x10/0x10 [ 133.907218] device_online+0x141/0x1d0 [ 133.909845] online_memory_block+0x4d/0x60 [ 133.912494] walk_memory_blocks+0xc0/0x120 [ 133.915104] ? __pfx_online_memory_block+0x10/0x10 [ 133.917776] add_memory_resource+0x51d/0x6c0 [ 133.920404] ? __pfx_add_memory_resource+0x10/0x10 [ 133.923104] ? _raw_write_unlock+0x31/0x60 [ 133.925781] ? register_memory_resource+0x119/0x180 [ 133.928450] add_memory_driver_managed+0xf5/0x180 [ 133.931036] dev_dax_kmem_probe+0x7f7/0xb40 [kmem] [ 133.933665] ? __pfx_dev_dax_kmem_probe+0x10/0x10 [kmem] [ 133.936332] ? __pfx___up_read+0x10/0x10 [ 133.938878] dax_bus_probe+0x147/0x230 [ 133.941332] ? __pfx_dax_bus_probe+0x10/0x10 [ 133.943954] really_probe+0x27f/0xac0 [ 133.946387] ? __sanitizer_cov_trace_const_cmp1+0x1e/0x30 [ 133.949106] __driver_probe_device+0x1f3/0x460 [ 133.951704] ? parse_option_str+0x149/0x190 [ 133.954241] driver_probe_device+0x56/0x1b0 [ 133.956749] __driver_attach+0x277/0x570 [ 133.959228] ? __pfx___driver_attach+0x10/0x10 [ 133.961776] bus_for_each_dev+0x145/0x1e0 [ 133.964367] ? __pfx_bus_for_each_dev+0x10/0x10 [ 133.967019] ? __kasan_check_read+0x15/0x20 [ 133.969543] ? _raw_spin_unlock+0x31/0x60 [ 133.972132] driver_attach+0x49/0x60 [ 133.974536] bus_add_driver+0x2f3/0x6b0 [ 133.977044] driver_register+0x170/0x4b0 [ 133.979480] __dax_driver_register+0x141/0x1b0 [ 133.982126] ? __pfx_dax_kmem_init+0x10/0x10 [kmem] [ 133.984724] dax_kmem_init+0x54/0xff0 [kmem] [ 133.987284] ? __pfx_dax_kmem_init+0x10/0x10 [kmem] [ 133.989965] do_one_initcall+0x117/0x5d0 [ 133.992506] ? __pfx_do_one_initcall+0x10/0x10 [ 133.995185] ? __kasan_kmalloc+0x88/0xa0 [ 133.997748] ? kasan_poison+0x3e/0x60 [ 134.000288] ? kasan_unpoison+0x2c/0x60 [ 134.002762] ? kasan_poison+0x3e/0x60 [ 134.005202] ? __asan_register_globals+0x62/0x80 [ 134.007753] ? __pfx_dax_kmem_init+0x10/0x10 [kmem] [ 134.010439] do_init_module+0x277/0x750 [ 134.012953] load_module+0x5d1d/0x74f0 [ 134.015406] ? __pfx_load_module+0x10/0x10 [ 134.017887] ? __pfx_ima_post_read_file+0x10/0x10 [ 134.020470] ? __sanitizer_cov_trace_const_cmp8+0x1c/0x30 [ 134.023127] ? __sanitizer_cov_trace_const_cmp4+0x1a/0x20 [ 134.025767] ? security_kernel_post_read_file+0xa2/0xd0 [ 134.028429] ? __sanitizer_cov_trace_const_cmp4+0x1a/0x20 [ 134.031162] ? kernel_read_file+0x503/0x820 [ 134.033645] ? __pfx_kernel_read_file+0x10/0x10 [ 134.036232] ? __pfx___lock_acquire+0x10/0x10 [ 134.038766] init_module_from_file+0x12c/0x1a0 [ 134.041291] ? init_module_from_file+0x12c/0x1a0 [ 134.043936] ? __pfx_init_module_from_file+0x10/0x10 [ 134.046516] ? __this_cpu_preempt_check+0x21/0x30 [ 134.049091] ? __kasan_check_read+0x15/0x20 [ 134.051551] ? do_raw_spin_unlock+0x60/0x210 [ 134.054077] idempotent_init_module+0x3f1/0x690 [ 134.056643] ? __pfx_idempotent_init_module+0x10/0x10 [ 134.059318] ? __sanitizer_cov_trace_const_cmp4+0x1a/0x20 [ 134.061995] ? __fget_light+0x17d/0x210 [ 134.064428] __x64_sys_finit_module+0x10e/0x1a0 [ 134.066976] x64_sys_call+0x184d/0x20d0 [ 134.069405] do_syscall_64+0x6d/0x140 [ 134.071926] entry_SYSCALL_64_after_hwframe+0x76/0x7e [yanfei.xu@intel.com: add mutex_lock/unlock() pair back] Link: https://lkml.kernel.org/r/20240830102447.1445296-1-yanfei.xu@intel.com Link: https://lkml.kernel.org/r/20240827113614.1343049-1-yanfei.xu@intel.com Fixes:823430c8e9
("memory tier: consolidate the initialization of memory tiers") Signed-off-by: Yanfei Xu <yanfei.xu@intel.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Ho-Ren (Jack) Chuang <horen.chuang@linux.dev> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
997 lines
27 KiB
C
997 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/slab.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/memory-tiers.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/sched/sysctl.h>
|
|
|
|
#include "internal.h"
|
|
|
|
struct memory_tier {
|
|
/* hierarchy of memory tiers */
|
|
struct list_head list;
|
|
/* list of all memory types part of this tier */
|
|
struct list_head memory_types;
|
|
/*
|
|
* start value of abstract distance. memory tier maps
|
|
* an abstract distance range,
|
|
* adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
|
|
*/
|
|
int adistance_start;
|
|
struct device dev;
|
|
/* All the nodes that are part of all the lower memory tiers. */
|
|
nodemask_t lower_tier_mask;
|
|
};
|
|
|
|
struct demotion_nodes {
|
|
nodemask_t preferred;
|
|
};
|
|
|
|
struct node_memory_type_map {
|
|
struct memory_dev_type *memtype;
|
|
int map_count;
|
|
};
|
|
|
|
static DEFINE_MUTEX(memory_tier_lock);
|
|
static LIST_HEAD(memory_tiers);
|
|
/*
|
|
* The list is used to store all memory types that are not created
|
|
* by a device driver.
|
|
*/
|
|
static LIST_HEAD(default_memory_types);
|
|
static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
|
|
struct memory_dev_type *default_dram_type;
|
|
nodemask_t default_dram_nodes __initdata = NODE_MASK_NONE;
|
|
|
|
static const struct bus_type memory_tier_subsys = {
|
|
.name = "memory_tiering",
|
|
.dev_name = "memory_tier",
|
|
};
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/**
|
|
* folio_use_access_time - check if a folio reuses cpupid for page access time
|
|
* @folio: folio to check
|
|
*
|
|
* folio's _last_cpupid field is repurposed by memory tiering. In memory
|
|
* tiering mode, cpupid of slow memory folio (not toptier memory) is used to
|
|
* record page access time.
|
|
*
|
|
* Return: the folio _last_cpupid is used to record page access time
|
|
*/
|
|
bool folio_use_access_time(struct folio *folio)
|
|
{
|
|
return (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
|
|
!node_is_toptier(folio_nid(folio));
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
static int top_tier_adistance;
|
|
/*
|
|
* node_demotion[] examples:
|
|
*
|
|
* Example 1:
|
|
*
|
|
* Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
|
|
*
|
|
* node distances:
|
|
* node 0 1 2 3
|
|
* 0 10 20 30 40
|
|
* 1 20 10 40 30
|
|
* 2 30 40 10 40
|
|
* 3 40 30 40 10
|
|
*
|
|
* memory_tiers0 = 0-1
|
|
* memory_tiers1 = 2-3
|
|
*
|
|
* node_demotion[0].preferred = 2
|
|
* node_demotion[1].preferred = 3
|
|
* node_demotion[2].preferred = <empty>
|
|
* node_demotion[3].preferred = <empty>
|
|
*
|
|
* Example 2:
|
|
*
|
|
* Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
|
|
*
|
|
* node distances:
|
|
* node 0 1 2
|
|
* 0 10 20 30
|
|
* 1 20 10 30
|
|
* 2 30 30 10
|
|
*
|
|
* memory_tiers0 = 0-2
|
|
*
|
|
* node_demotion[0].preferred = <empty>
|
|
* node_demotion[1].preferred = <empty>
|
|
* node_demotion[2].preferred = <empty>
|
|
*
|
|
* Example 3:
|
|
*
|
|
* Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
|
|
*
|
|
* node distances:
|
|
* node 0 1 2
|
|
* 0 10 20 30
|
|
* 1 20 10 40
|
|
* 2 30 40 10
|
|
*
|
|
* memory_tiers0 = 1
|
|
* memory_tiers1 = 0
|
|
* memory_tiers2 = 2
|
|
*
|
|
* node_demotion[0].preferred = 2
|
|
* node_demotion[1].preferred = 0
|
|
* node_demotion[2].preferred = <empty>
|
|
*
|
|
*/
|
|
static struct demotion_nodes *node_demotion __read_mostly;
|
|
#endif /* CONFIG_MIGRATION */
|
|
|
|
static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
|
|
|
|
/* The lock is used to protect `default_dram_perf*` info and nid. */
|
|
static DEFINE_MUTEX(default_dram_perf_lock);
|
|
static bool default_dram_perf_error;
|
|
static struct access_coordinate default_dram_perf;
|
|
static int default_dram_perf_ref_nid = NUMA_NO_NODE;
|
|
static const char *default_dram_perf_ref_source;
|
|
|
|
static inline struct memory_tier *to_memory_tier(struct device *device)
|
|
{
|
|
return container_of(device, struct memory_tier, dev);
|
|
}
|
|
|
|
static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
|
|
{
|
|
nodemask_t nodes = NODE_MASK_NONE;
|
|
struct memory_dev_type *memtype;
|
|
|
|
list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
|
|
nodes_or(nodes, nodes, memtype->nodes);
|
|
|
|
return nodes;
|
|
}
|
|
|
|
static void memory_tier_device_release(struct device *dev)
|
|
{
|
|
struct memory_tier *tier = to_memory_tier(dev);
|
|
/*
|
|
* synchronize_rcu in clear_node_memory_tier makes sure
|
|
* we don't have rcu access to this memory tier.
|
|
*/
|
|
kfree(tier);
|
|
}
|
|
|
|
static ssize_t nodelist_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
int ret;
|
|
nodemask_t nmask;
|
|
|
|
mutex_lock(&memory_tier_lock);
|
|
nmask = get_memtier_nodemask(to_memory_tier(dev));
|
|
ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
|
|
mutex_unlock(&memory_tier_lock);
|
|
return ret;
|
|
}
|
|
static DEVICE_ATTR_RO(nodelist);
|
|
|
|
static struct attribute *memtier_dev_attrs[] = {
|
|
&dev_attr_nodelist.attr,
|
|
NULL
|
|
};
|
|
|
|
static const struct attribute_group memtier_dev_group = {
|
|
.attrs = memtier_dev_attrs,
|
|
};
|
|
|
|
static const struct attribute_group *memtier_dev_groups[] = {
|
|
&memtier_dev_group,
|
|
NULL
|
|
};
|
|
|
|
static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
|
|
{
|
|
int ret;
|
|
bool found_slot = false;
|
|
struct memory_tier *memtier, *new_memtier;
|
|
int adistance = memtype->adistance;
|
|
unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
|
|
|
|
lockdep_assert_held_once(&memory_tier_lock);
|
|
|
|
adistance = round_down(adistance, memtier_adistance_chunk_size);
|
|
/*
|
|
* If the memtype is already part of a memory tier,
|
|
* just return that.
|
|
*/
|
|
if (!list_empty(&memtype->tier_sibling)) {
|
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
|
if (adistance == memtier->adistance_start)
|
|
return memtier;
|
|
}
|
|
WARN_ON(1);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
|
if (adistance == memtier->adistance_start) {
|
|
goto link_memtype;
|
|
} else if (adistance < memtier->adistance_start) {
|
|
found_slot = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
|
|
if (!new_memtier)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
new_memtier->adistance_start = adistance;
|
|
INIT_LIST_HEAD(&new_memtier->list);
|
|
INIT_LIST_HEAD(&new_memtier->memory_types);
|
|
if (found_slot)
|
|
list_add_tail(&new_memtier->list, &memtier->list);
|
|
else
|
|
list_add_tail(&new_memtier->list, &memory_tiers);
|
|
|
|
new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
|
|
new_memtier->dev.bus = &memory_tier_subsys;
|
|
new_memtier->dev.release = memory_tier_device_release;
|
|
new_memtier->dev.groups = memtier_dev_groups;
|
|
|
|
ret = device_register(&new_memtier->dev);
|
|
if (ret) {
|
|
list_del(&new_memtier->list);
|
|
put_device(&new_memtier->dev);
|
|
return ERR_PTR(ret);
|
|
}
|
|
memtier = new_memtier;
|
|
|
|
link_memtype:
|
|
list_add(&memtype->tier_sibling, &memtier->memory_types);
|
|
return memtier;
|
|
}
|
|
|
|
static struct memory_tier *__node_get_memory_tier(int node)
|
|
{
|
|
pg_data_t *pgdat;
|
|
|
|
pgdat = NODE_DATA(node);
|
|
if (!pgdat)
|
|
return NULL;
|
|
/*
|
|
* Since we hold memory_tier_lock, we can avoid
|
|
* RCU read locks when accessing the details. No
|
|
* parallel updates are possible here.
|
|
*/
|
|
return rcu_dereference_check(pgdat->memtier,
|
|
lockdep_is_held(&memory_tier_lock));
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
bool node_is_toptier(int node)
|
|
{
|
|
bool toptier;
|
|
pg_data_t *pgdat;
|
|
struct memory_tier *memtier;
|
|
|
|
pgdat = NODE_DATA(node);
|
|
if (!pgdat)
|
|
return false;
|
|
|
|
rcu_read_lock();
|
|
memtier = rcu_dereference(pgdat->memtier);
|
|
if (!memtier) {
|
|
toptier = true;
|
|
goto out;
|
|
}
|
|
if (memtier->adistance_start <= top_tier_adistance)
|
|
toptier = true;
|
|
else
|
|
toptier = false;
|
|
out:
|
|
rcu_read_unlock();
|
|
return toptier;
|
|
}
|
|
|
|
void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
|
|
{
|
|
struct memory_tier *memtier;
|
|
|
|
/*
|
|
* pg_data_t.memtier updates includes a synchronize_rcu()
|
|
* which ensures that we either find NULL or a valid memtier
|
|
* in NODE_DATA. protect the access via rcu_read_lock();
|
|
*/
|
|
rcu_read_lock();
|
|
memtier = rcu_dereference(pgdat->memtier);
|
|
if (memtier)
|
|
*targets = memtier->lower_tier_mask;
|
|
else
|
|
*targets = NODE_MASK_NONE;
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* next_demotion_node() - Get the next node in the demotion path
|
|
* @node: The starting node to lookup the next node
|
|
*
|
|
* Return: node id for next memory node in the demotion path hierarchy
|
|
* from @node; NUMA_NO_NODE if @node is terminal. This does not keep
|
|
* @node online or guarantee that it *continues* to be the next demotion
|
|
* target.
|
|
*/
|
|
int next_demotion_node(int node)
|
|
{
|
|
struct demotion_nodes *nd;
|
|
int target;
|
|
|
|
if (!node_demotion)
|
|
return NUMA_NO_NODE;
|
|
|
|
nd = &node_demotion[node];
|
|
|
|
/*
|
|
* node_demotion[] is updated without excluding this
|
|
* function from running.
|
|
*
|
|
* Make sure to use RCU over entire code blocks if
|
|
* node_demotion[] reads need to be consistent.
|
|
*/
|
|
rcu_read_lock();
|
|
/*
|
|
* If there are multiple target nodes, just select one
|
|
* target node randomly.
|
|
*
|
|
* In addition, we can also use round-robin to select
|
|
* target node, but we should introduce another variable
|
|
* for node_demotion[] to record last selected target node,
|
|
* that may cause cache ping-pong due to the changing of
|
|
* last target node. Or introducing per-cpu data to avoid
|
|
* caching issue, which seems more complicated. So selecting
|
|
* target node randomly seems better until now.
|
|
*/
|
|
target = node_random(&nd->preferred);
|
|
rcu_read_unlock();
|
|
|
|
return target;
|
|
}
|
|
|
|
static void disable_all_demotion_targets(void)
|
|
{
|
|
struct memory_tier *memtier;
|
|
int node;
|
|
|
|
for_each_node_state(node, N_MEMORY) {
|
|
node_demotion[node].preferred = NODE_MASK_NONE;
|
|
/*
|
|
* We are holding memory_tier_lock, it is safe
|
|
* to access pgda->memtier.
|
|
*/
|
|
memtier = __node_get_memory_tier(node);
|
|
if (memtier)
|
|
memtier->lower_tier_mask = NODE_MASK_NONE;
|
|
}
|
|
/*
|
|
* Ensure that the "disable" is visible across the system.
|
|
* Readers will see either a combination of before+disable
|
|
* state or disable+after. They will never see before and
|
|
* after state together.
|
|
*/
|
|
synchronize_rcu();
|
|
}
|
|
|
|
static void dump_demotion_targets(void)
|
|
{
|
|
int node;
|
|
|
|
for_each_node_state(node, N_MEMORY) {
|
|
struct memory_tier *memtier = __node_get_memory_tier(node);
|
|
nodemask_t preferred = node_demotion[node].preferred;
|
|
|
|
if (!memtier)
|
|
continue;
|
|
|
|
if (nodes_empty(preferred))
|
|
pr_info("Demotion targets for Node %d: null\n", node);
|
|
else
|
|
pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n",
|
|
node, nodemask_pr_args(&preferred),
|
|
nodemask_pr_args(&memtier->lower_tier_mask));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find an automatic demotion target for all memory
|
|
* nodes. Failing here is OK. It might just indicate
|
|
* being at the end of a chain.
|
|
*/
|
|
static void establish_demotion_targets(void)
|
|
{
|
|
struct memory_tier *memtier;
|
|
struct demotion_nodes *nd;
|
|
int target = NUMA_NO_NODE, node;
|
|
int distance, best_distance;
|
|
nodemask_t tier_nodes, lower_tier;
|
|
|
|
lockdep_assert_held_once(&memory_tier_lock);
|
|
|
|
if (!node_demotion)
|
|
return;
|
|
|
|
disable_all_demotion_targets();
|
|
|
|
for_each_node_state(node, N_MEMORY) {
|
|
best_distance = -1;
|
|
nd = &node_demotion[node];
|
|
|
|
memtier = __node_get_memory_tier(node);
|
|
if (!memtier || list_is_last(&memtier->list, &memory_tiers))
|
|
continue;
|
|
/*
|
|
* Get the lower memtier to find the demotion node list.
|
|
*/
|
|
memtier = list_next_entry(memtier, list);
|
|
tier_nodes = get_memtier_nodemask(memtier);
|
|
/*
|
|
* find_next_best_node, use 'used' nodemask as a skip list.
|
|
* Add all memory nodes except the selected memory tier
|
|
* nodelist to skip list so that we find the best node from the
|
|
* memtier nodelist.
|
|
*/
|
|
nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
|
|
|
|
/*
|
|
* Find all the nodes in the memory tier node list of same best distance.
|
|
* add them to the preferred mask. We randomly select between nodes
|
|
* in the preferred mask when allocating pages during demotion.
|
|
*/
|
|
do {
|
|
target = find_next_best_node(node, &tier_nodes);
|
|
if (target == NUMA_NO_NODE)
|
|
break;
|
|
|
|
distance = node_distance(node, target);
|
|
if (distance == best_distance || best_distance == -1) {
|
|
best_distance = distance;
|
|
node_set(target, nd->preferred);
|
|
} else {
|
|
break;
|
|
}
|
|
} while (1);
|
|
}
|
|
/*
|
|
* Promotion is allowed from a memory tier to higher
|
|
* memory tier only if the memory tier doesn't include
|
|
* compute. We want to skip promotion from a memory tier,
|
|
* if any node that is part of the memory tier have CPUs.
|
|
* Once we detect such a memory tier, we consider that tier
|
|
* as top tiper from which promotion is not allowed.
|
|
*/
|
|
list_for_each_entry_reverse(memtier, &memory_tiers, list) {
|
|
tier_nodes = get_memtier_nodemask(memtier);
|
|
nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
|
|
if (!nodes_empty(tier_nodes)) {
|
|
/*
|
|
* abstract distance below the max value of this memtier
|
|
* is considered toptier.
|
|
*/
|
|
top_tier_adistance = memtier->adistance_start +
|
|
MEMTIER_CHUNK_SIZE - 1;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* Now build the lower_tier mask for each node collecting node mask from
|
|
* all memory tier below it. This allows us to fallback demotion page
|
|
* allocation to a set of nodes that is closer the above selected
|
|
* preferred node.
|
|
*/
|
|
lower_tier = node_states[N_MEMORY];
|
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
|
/*
|
|
* Keep removing current tier from lower_tier nodes,
|
|
* This will remove all nodes in current and above
|
|
* memory tier from the lower_tier mask.
|
|
*/
|
|
tier_nodes = get_memtier_nodemask(memtier);
|
|
nodes_andnot(lower_tier, lower_tier, tier_nodes);
|
|
memtier->lower_tier_mask = lower_tier;
|
|
}
|
|
|
|
dump_demotion_targets();
|
|
}
|
|
|
|
#else
|
|
static inline void establish_demotion_targets(void) {}
|
|
#endif /* CONFIG_MIGRATION */
|
|
|
|
static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
|
|
{
|
|
if (!node_memory_types[node].memtype)
|
|
node_memory_types[node].memtype = memtype;
|
|
/*
|
|
* for each device getting added in the same NUMA node
|
|
* with this specific memtype, bump the map count. We
|
|
* Only take memtype device reference once, so that
|
|
* changing a node memtype can be done by droping the
|
|
* only reference count taken here.
|
|
*/
|
|
|
|
if (node_memory_types[node].memtype == memtype) {
|
|
if (!node_memory_types[node].map_count++)
|
|
kref_get(&memtype->kref);
|
|
}
|
|
}
|
|
|
|
static struct memory_tier *set_node_memory_tier(int node)
|
|
{
|
|
struct memory_tier *memtier;
|
|
struct memory_dev_type *memtype = default_dram_type;
|
|
int adist = MEMTIER_ADISTANCE_DRAM;
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
|
|
|
|
lockdep_assert_held_once(&memory_tier_lock);
|
|
|
|
if (!node_state(node, N_MEMORY))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
mt_calc_adistance(node, &adist);
|
|
if (!node_memory_types[node].memtype) {
|
|
memtype = mt_find_alloc_memory_type(adist, &default_memory_types);
|
|
if (IS_ERR(memtype)) {
|
|
memtype = default_dram_type;
|
|
pr_info("Failed to allocate a memory type. Fall back.\n");
|
|
}
|
|
}
|
|
|
|
__init_node_memory_type(node, memtype);
|
|
|
|
memtype = node_memory_types[node].memtype;
|
|
node_set(node, memtype->nodes);
|
|
memtier = find_create_memory_tier(memtype);
|
|
if (!IS_ERR(memtier))
|
|
rcu_assign_pointer(pgdat->memtier, memtier);
|
|
return memtier;
|
|
}
|
|
|
|
static void destroy_memory_tier(struct memory_tier *memtier)
|
|
{
|
|
list_del(&memtier->list);
|
|
device_unregister(&memtier->dev);
|
|
}
|
|
|
|
static bool clear_node_memory_tier(int node)
|
|
{
|
|
bool cleared = false;
|
|
pg_data_t *pgdat;
|
|
struct memory_tier *memtier;
|
|
|
|
pgdat = NODE_DATA(node);
|
|
if (!pgdat)
|
|
return false;
|
|
|
|
/*
|
|
* Make sure that anybody looking at NODE_DATA who finds
|
|
* a valid memtier finds memory_dev_types with nodes still
|
|
* linked to the memtier. We achieve this by waiting for
|
|
* rcu read section to finish using synchronize_rcu.
|
|
* This also enables us to free the destroyed memory tier
|
|
* with kfree instead of kfree_rcu
|
|
*/
|
|
memtier = __node_get_memory_tier(node);
|
|
if (memtier) {
|
|
struct memory_dev_type *memtype;
|
|
|
|
rcu_assign_pointer(pgdat->memtier, NULL);
|
|
synchronize_rcu();
|
|
memtype = node_memory_types[node].memtype;
|
|
node_clear(node, memtype->nodes);
|
|
if (nodes_empty(memtype->nodes)) {
|
|
list_del_init(&memtype->tier_sibling);
|
|
if (list_empty(&memtier->memory_types))
|
|
destroy_memory_tier(memtier);
|
|
}
|
|
cleared = true;
|
|
}
|
|
return cleared;
|
|
}
|
|
|
|
static void release_memtype(struct kref *kref)
|
|
{
|
|
struct memory_dev_type *memtype;
|
|
|
|
memtype = container_of(kref, struct memory_dev_type, kref);
|
|
kfree(memtype);
|
|
}
|
|
|
|
struct memory_dev_type *alloc_memory_type(int adistance)
|
|
{
|
|
struct memory_dev_type *memtype;
|
|
|
|
memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
|
|
if (!memtype)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
memtype->adistance = adistance;
|
|
INIT_LIST_HEAD(&memtype->tier_sibling);
|
|
memtype->nodes = NODE_MASK_NONE;
|
|
kref_init(&memtype->kref);
|
|
return memtype;
|
|
}
|
|
EXPORT_SYMBOL_GPL(alloc_memory_type);
|
|
|
|
void put_memory_type(struct memory_dev_type *memtype)
|
|
{
|
|
kref_put(&memtype->kref, release_memtype);
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_memory_type);
|
|
|
|
void init_node_memory_type(int node, struct memory_dev_type *memtype)
|
|
{
|
|
|
|
mutex_lock(&memory_tier_lock);
|
|
__init_node_memory_type(node, memtype);
|
|
mutex_unlock(&memory_tier_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(init_node_memory_type);
|
|
|
|
void clear_node_memory_type(int node, struct memory_dev_type *memtype)
|
|
{
|
|
mutex_lock(&memory_tier_lock);
|
|
if (node_memory_types[node].memtype == memtype || !memtype)
|
|
node_memory_types[node].map_count--;
|
|
/*
|
|
* If we umapped all the attached devices to this node,
|
|
* clear the node memory type.
|
|
*/
|
|
if (!node_memory_types[node].map_count) {
|
|
memtype = node_memory_types[node].memtype;
|
|
node_memory_types[node].memtype = NULL;
|
|
put_memory_type(memtype);
|
|
}
|
|
mutex_unlock(&memory_tier_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(clear_node_memory_type);
|
|
|
|
struct memory_dev_type *mt_find_alloc_memory_type(int adist, struct list_head *memory_types)
|
|
{
|
|
struct memory_dev_type *mtype;
|
|
|
|
list_for_each_entry(mtype, memory_types, list)
|
|
if (mtype->adistance == adist)
|
|
return mtype;
|
|
|
|
mtype = alloc_memory_type(adist);
|
|
if (IS_ERR(mtype))
|
|
return mtype;
|
|
|
|
list_add(&mtype->list, memory_types);
|
|
|
|
return mtype;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mt_find_alloc_memory_type);
|
|
|
|
void mt_put_memory_types(struct list_head *memory_types)
|
|
{
|
|
struct memory_dev_type *mtype, *mtn;
|
|
|
|
list_for_each_entry_safe(mtype, mtn, memory_types, list) {
|
|
list_del(&mtype->list);
|
|
put_memory_type(mtype);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(mt_put_memory_types);
|
|
|
|
/*
|
|
* This is invoked via `late_initcall()` to initialize memory tiers for
|
|
* memory nodes, both with and without CPUs. After the initialization of
|
|
* firmware and devices, adistance algorithms are expected to be provided.
|
|
*/
|
|
static int __init memory_tier_late_init(void)
|
|
{
|
|
int nid;
|
|
struct memory_tier *memtier;
|
|
|
|
get_online_mems();
|
|
guard(mutex)(&memory_tier_lock);
|
|
|
|
/* Assign each uninitialized N_MEMORY node to a memory tier. */
|
|
for_each_node_state(nid, N_MEMORY) {
|
|
/*
|
|
* Some device drivers may have initialized
|
|
* memory tiers, potentially bringing memory nodes
|
|
* online and configuring memory tiers.
|
|
* Exclude them here.
|
|
*/
|
|
if (node_memory_types[nid].memtype)
|
|
continue;
|
|
|
|
memtier = set_node_memory_tier(nid);
|
|
if (IS_ERR(memtier))
|
|
continue;
|
|
}
|
|
|
|
establish_demotion_targets();
|
|
put_online_mems();
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(memory_tier_late_init);
|
|
|
|
static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
|
|
{
|
|
pr_info(
|
|
"%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
|
|
prefix, coord->read_latency, coord->write_latency,
|
|
coord->read_bandwidth, coord->write_bandwidth);
|
|
}
|
|
|
|
int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
|
|
const char *source)
|
|
{
|
|
guard(mutex)(&default_dram_perf_lock);
|
|
if (default_dram_perf_error)
|
|
return -EIO;
|
|
|
|
if (perf->read_latency + perf->write_latency == 0 ||
|
|
perf->read_bandwidth + perf->write_bandwidth == 0)
|
|
return -EINVAL;
|
|
|
|
if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
|
|
default_dram_perf = *perf;
|
|
default_dram_perf_ref_nid = nid;
|
|
default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The performance of all default DRAM nodes is expected to be
|
|
* same (that is, the variation is less than 10%). And it
|
|
* will be used as base to calculate the abstract distance of
|
|
* other memory nodes.
|
|
*/
|
|
if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
|
|
default_dram_perf.read_latency ||
|
|
abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
|
|
default_dram_perf.write_latency ||
|
|
abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
|
|
default_dram_perf.read_bandwidth ||
|
|
abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
|
|
default_dram_perf.write_bandwidth) {
|
|
pr_info(
|
|
"memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
|
|
"DRAM node %d.\n", nid, default_dram_perf_ref_nid);
|
|
pr_info(" performance of reference DRAM node %d:\n",
|
|
default_dram_perf_ref_nid);
|
|
dump_hmem_attrs(&default_dram_perf, " ");
|
|
pr_info(" performance of DRAM node %d:\n", nid);
|
|
dump_hmem_attrs(perf, " ");
|
|
pr_info(
|
|
" disable default DRAM node performance based abstract distance algorithm.\n");
|
|
default_dram_perf_error = true;
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
|
|
{
|
|
guard(mutex)(&default_dram_perf_lock);
|
|
if (default_dram_perf_error)
|
|
return -EIO;
|
|
|
|
if (perf->read_latency + perf->write_latency == 0 ||
|
|
perf->read_bandwidth + perf->write_bandwidth == 0)
|
|
return -EINVAL;
|
|
|
|
if (default_dram_perf_ref_nid == NUMA_NO_NODE)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* The abstract distance of a memory node is in direct proportion to
|
|
* its memory latency (read + write) and inversely proportional to its
|
|
* memory bandwidth (read + write). The abstract distance, memory
|
|
* latency, and memory bandwidth of the default DRAM nodes are used as
|
|
* the base.
|
|
*/
|
|
*adist = MEMTIER_ADISTANCE_DRAM *
|
|
(perf->read_latency + perf->write_latency) /
|
|
(default_dram_perf.read_latency + default_dram_perf.write_latency) *
|
|
(default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
|
|
(perf->read_bandwidth + perf->write_bandwidth);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
|
|
|
|
/**
|
|
* register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
|
|
* @nb: The notifier block which describe the algorithm
|
|
*
|
|
* Return: 0 on success, errno on error.
|
|
*
|
|
* Every memory tiering abstract distance algorithm provider needs to
|
|
* register the algorithm with register_mt_adistance_algorithm(). To
|
|
* calculate the abstract distance for a specified memory node, the
|
|
* notifier function will be called unless some high priority
|
|
* algorithm has provided result. The prototype of the notifier
|
|
* function is as follows,
|
|
*
|
|
* int (*algorithm_notifier)(struct notifier_block *nb,
|
|
* unsigned long nid, void *data);
|
|
*
|
|
* Where "nid" specifies the memory node, "data" is the pointer to the
|
|
* returned abstract distance (that is, "int *adist"). If the
|
|
* algorithm provides the result, NOTIFY_STOP should be returned.
|
|
* Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
|
|
* algorithm in the chain to provide the result.
|
|
*/
|
|
int register_mt_adistance_algorithm(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
|
|
|
|
/**
|
|
* unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
|
|
* @nb: the notifier block which describe the algorithm
|
|
*
|
|
* Return: 0 on success, errno on error.
|
|
*/
|
|
int unregister_mt_adistance_algorithm(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
|
|
|
|
/**
|
|
* mt_calc_adistance() - Calculate abstract distance with registered algorithms
|
|
* @node: the node to calculate abstract distance for
|
|
* @adist: the returned abstract distance
|
|
*
|
|
* Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
|
|
* abstract distance algorithm provides the result, and return it via
|
|
* @adist. Otherwise, no algorithm can provide the result and @adist
|
|
* will be kept as it is.
|
|
*/
|
|
int mt_calc_adistance(int node, int *adist)
|
|
{
|
|
return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mt_calc_adistance);
|
|
|
|
static int __meminit memtier_hotplug_callback(struct notifier_block *self,
|
|
unsigned long action, void *_arg)
|
|
{
|
|
struct memory_tier *memtier;
|
|
struct memory_notify *arg = _arg;
|
|
|
|
/*
|
|
* Only update the node migration order when a node is
|
|
* changing status, like online->offline.
|
|
*/
|
|
if (arg->status_change_nid < 0)
|
|
return notifier_from_errno(0);
|
|
|
|
switch (action) {
|
|
case MEM_OFFLINE:
|
|
mutex_lock(&memory_tier_lock);
|
|
if (clear_node_memory_tier(arg->status_change_nid))
|
|
establish_demotion_targets();
|
|
mutex_unlock(&memory_tier_lock);
|
|
break;
|
|
case MEM_ONLINE:
|
|
mutex_lock(&memory_tier_lock);
|
|
memtier = set_node_memory_tier(arg->status_change_nid);
|
|
if (!IS_ERR(memtier))
|
|
establish_demotion_targets();
|
|
mutex_unlock(&memory_tier_lock);
|
|
break;
|
|
}
|
|
|
|
return notifier_from_errno(0);
|
|
}
|
|
|
|
static int __init memory_tier_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = subsys_virtual_register(&memory_tier_subsys, NULL);
|
|
if (ret)
|
|
panic("%s() failed to register memory tier subsystem\n", __func__);
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
|
|
GFP_KERNEL);
|
|
WARN_ON(!node_demotion);
|
|
#endif
|
|
|
|
mutex_lock(&memory_tier_lock);
|
|
/*
|
|
* For now we can have 4 faster memory tiers with smaller adistance
|
|
* than default DRAM tier.
|
|
*/
|
|
default_dram_type = mt_find_alloc_memory_type(MEMTIER_ADISTANCE_DRAM,
|
|
&default_memory_types);
|
|
mutex_unlock(&memory_tier_lock);
|
|
if (IS_ERR(default_dram_type))
|
|
panic("%s() failed to allocate default DRAM tier\n", __func__);
|
|
|
|
/* Record nodes with memory and CPU to set default DRAM performance. */
|
|
nodes_and(default_dram_nodes, node_states[N_MEMORY],
|
|
node_states[N_CPU]);
|
|
|
|
hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
|
|
return 0;
|
|
}
|
|
subsys_initcall(memory_tier_init);
|
|
|
|
bool numa_demotion_enabled = false;
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t demotion_enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%s\n",
|
|
numa_demotion_enabled ? "true" : "false");
|
|
}
|
|
|
|
static ssize_t demotion_enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = kstrtobool(buf, &numa_demotion_enabled);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct kobj_attribute numa_demotion_enabled_attr =
|
|
__ATTR_RW(demotion_enabled);
|
|
|
|
static struct attribute *numa_attrs[] = {
|
|
&numa_demotion_enabled_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group numa_attr_group = {
|
|
.attrs = numa_attrs,
|
|
};
|
|
|
|
static int __init numa_init_sysfs(void)
|
|
{
|
|
int err;
|
|
struct kobject *numa_kobj;
|
|
|
|
numa_kobj = kobject_create_and_add("numa", mm_kobj);
|
|
if (!numa_kobj) {
|
|
pr_err("failed to create numa kobject\n");
|
|
return -ENOMEM;
|
|
}
|
|
err = sysfs_create_group(numa_kobj, &numa_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register numa group\n");
|
|
goto delete_obj;
|
|
}
|
|
return 0;
|
|
|
|
delete_obj:
|
|
kobject_put(numa_kobj);
|
|
return err;
|
|
}
|
|
subsys_initcall(numa_init_sysfs);
|
|
#endif /* CONFIG_SYSFS */
|
|
#endif
|