linux-stable/mm/hugetlb.c
David Gibson 79ac6ba40e [PATCH] hugepage: Small fixes to hugepage clear/copy path
Move the loops used in mm/hugetlb.c to clear and copy hugepages to their
own functions for clarity.  As we do so, we add some checks of need_resched
- we are, after all copying megabytes of memory here.  We also add
might_sleep() accordingly.  We generally dropped locks around the clear and
copy, already but not everyone has PREEMPT enabled, so we should still be
checking explicitly.

For this to work, we need to remove the clear_huge_page() from
alloc_huge_page(), which is called with the page_table_lock held in the COW
path.  We move the clear_huge_page() to just after the alloc_huge_page() in
the hugepage no-page path.  In the COW path, the new page is about to be
copied over, so clearing it was just a waste of time anyway.  So as a side
effect we also fix the fact that we held the page_table_lock for far too
long in this path by calling alloc_huge_page() under it.

It causes no regressions on the libhugetlbfs testsuite (ppc64, POWER5).

Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 07:54:03 -08:00

616 lines
14 KiB
C

/*
* Generic hugetlb support.
* (C) William Irwin, April 2004
*/
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/cpuset.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <linux/hugetlb.h>
#include "internal.h"
const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
static unsigned long nr_huge_pages, free_huge_pages;
unsigned long max_huge_pages;
static struct list_head hugepage_freelists[MAX_NUMNODES];
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
static unsigned int free_huge_pages_node[MAX_NUMNODES];
static void clear_huge_page(struct page *page, unsigned long addr)
{
int i;
might_sleep();
for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
cond_resched();
clear_user_highpage(page + i, addr);
}
}
static void copy_huge_page(struct page *dst, struct page *src,
unsigned long addr)
{
int i;
might_sleep();
for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
cond_resched();
copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
}
}
/*
* Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
*/
static DEFINE_SPINLOCK(hugetlb_lock);
static void enqueue_huge_page(struct page *page)
{
int nid = page_to_nid(page);
list_add(&page->lru, &hugepage_freelists[nid]);
free_huge_pages++;
free_huge_pages_node[nid]++;
}
static struct page *dequeue_huge_page(struct vm_area_struct *vma,
unsigned long address)
{
int nid = numa_node_id();
struct page *page = NULL;
struct zonelist *zonelist = huge_zonelist(vma, address);
struct zone **z;
for (z = zonelist->zones; *z; z++) {
nid = (*z)->zone_pgdat->node_id;
if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
!list_empty(&hugepage_freelists[nid]))
break;
}
if (*z) {
page = list_entry(hugepage_freelists[nid].next,
struct page, lru);
list_del(&page->lru);
free_huge_pages--;
free_huge_pages_node[nid]--;
}
return page;
}
static int alloc_fresh_huge_page(void)
{
static int nid = 0;
struct page *page;
page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
HUGETLB_PAGE_ORDER);
nid = (nid + 1) % num_online_nodes();
if (page) {
page[1].lru.next = (void *)free_huge_page; /* dtor */
spin_lock(&hugetlb_lock);
nr_huge_pages++;
nr_huge_pages_node[page_to_nid(page)]++;
spin_unlock(&hugetlb_lock);
put_page(page); /* free it into the hugepage allocator */
return 1;
}
return 0;
}
void free_huge_page(struct page *page)
{
BUG_ON(page_count(page));
INIT_LIST_HEAD(&page->lru);
spin_lock(&hugetlb_lock);
enqueue_huge_page(page);
spin_unlock(&hugetlb_lock);
}
struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
{
struct page *page;
spin_lock(&hugetlb_lock);
page = dequeue_huge_page(vma, addr);
if (!page) {
spin_unlock(&hugetlb_lock);
return NULL;
}
spin_unlock(&hugetlb_lock);
set_page_refcounted(page);
return page;
}
static int __init hugetlb_init(void)
{
unsigned long i;
if (HPAGE_SHIFT == 0)
return 0;
for (i = 0; i < MAX_NUMNODES; ++i)
INIT_LIST_HEAD(&hugepage_freelists[i]);
for (i = 0; i < max_huge_pages; ++i) {
if (!alloc_fresh_huge_page())
break;
}
max_huge_pages = free_huge_pages = nr_huge_pages = i;
printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
return 0;
}
module_init(hugetlb_init);
static int __init hugetlb_setup(char *s)
{
if (sscanf(s, "%lu", &max_huge_pages) <= 0)
max_huge_pages = 0;
return 1;
}
__setup("hugepages=", hugetlb_setup);
#ifdef CONFIG_SYSCTL
static void update_and_free_page(struct page *page)
{
int i;
nr_huge_pages--;
nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
1 << PG_private | 1<< PG_writeback);
}
page[1].lru.next = NULL;
set_page_refcounted(page);
__free_pages(page, HUGETLB_PAGE_ORDER);
}
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(unsigned long count)
{
int i, nid;
for (i = 0; i < MAX_NUMNODES; ++i) {
struct page *page, *next;
list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
if (PageHighMem(page))
continue;
list_del(&page->lru);
update_and_free_page(page);
nid = page_zone(page)->zone_pgdat->node_id;
free_huge_pages--;
free_huge_pages_node[nid]--;
if (count >= nr_huge_pages)
return;
}
}
}
#else
static inline void try_to_free_low(unsigned long count)
{
}
#endif
static unsigned long set_max_huge_pages(unsigned long count)
{
while (count > nr_huge_pages) {
if (!alloc_fresh_huge_page())
return nr_huge_pages;
}
if (count >= nr_huge_pages)
return nr_huge_pages;
spin_lock(&hugetlb_lock);
try_to_free_low(count);
while (count < nr_huge_pages) {
struct page *page = dequeue_huge_page(NULL, 0);
if (!page)
break;
update_and_free_page(page);
}
spin_unlock(&hugetlb_lock);
return nr_huge_pages;
}
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
struct file *file, void __user *buffer,
size_t *length, loff_t *ppos)
{
proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
max_huge_pages = set_max_huge_pages(max_huge_pages);
return 0;
}
#endif /* CONFIG_SYSCTL */
int hugetlb_report_meminfo(char *buf)
{
return sprintf(buf,
"HugePages_Total: %5lu\n"
"HugePages_Free: %5lu\n"
"Hugepagesize: %5lu kB\n",
nr_huge_pages,
free_huge_pages,
HPAGE_SIZE/1024);
}
int hugetlb_report_node_meminfo(int nid, char *buf)
{
return sprintf(buf,
"Node %d HugePages_Total: %5u\n"
"Node %d HugePages_Free: %5u\n",
nid, nr_huge_pages_node[nid],
nid, free_huge_pages_node[nid]);
}
int is_hugepage_mem_enough(size_t size)
{
return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
}
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
}
/*
* We cannot handle pagefaults against hugetlb pages at all. They cause
* handle_mm_fault() to try to instantiate regular-sized pages in the
* hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
* this far.
*/
static struct page *hugetlb_nopage(struct vm_area_struct *vma,
unsigned long address, int *unused)
{
BUG();
return NULL;
}
struct vm_operations_struct hugetlb_vm_ops = {
.nopage = hugetlb_nopage,
};
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
int writable)
{
pte_t entry;
if (writable) {
entry =
pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
} else {
entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
}
entry = pte_mkyoung(entry);
entry = pte_mkhuge(entry);
return entry;
}
static void set_huge_ptep_writable(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
pte_t entry;
entry = pte_mkwrite(pte_mkdirty(*ptep));
ptep_set_access_flags(vma, address, ptep, entry, 1);
update_mmu_cache(vma, address, entry);
lazy_mmu_prot_update(entry);
}
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *vma)
{
pte_t *src_pte, *dst_pte, entry;
struct page *ptepage;
unsigned long addr;
int cow;
cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
src_pte = huge_pte_offset(src, addr);
if (!src_pte)
continue;
dst_pte = huge_pte_alloc(dst, addr);
if (!dst_pte)
goto nomem;
spin_lock(&dst->page_table_lock);
spin_lock(&src->page_table_lock);
if (!pte_none(*src_pte)) {
if (cow)
ptep_set_wrprotect(src, addr, src_pte);
entry = *src_pte;
ptepage = pte_page(entry);
get_page(ptepage);
add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
set_huge_pte_at(dst, addr, dst_pte, entry);
}
spin_unlock(&src->page_table_lock);
spin_unlock(&dst->page_table_lock);
}
return 0;
nomem:
return -ENOMEM;
}
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long address;
pte_t *ptep;
pte_t pte;
struct page *page;
WARN_ON(!is_vm_hugetlb_page(vma));
BUG_ON(start & ~HPAGE_MASK);
BUG_ON(end & ~HPAGE_MASK);
spin_lock(&mm->page_table_lock);
/* Update high watermark before we lower rss */
update_hiwater_rss(mm);
for (address = start; address < end; address += HPAGE_SIZE) {
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
pte = huge_ptep_get_and_clear(mm, address, ptep);
if (pte_none(pte))
continue;
page = pte_page(pte);
put_page(page);
add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
}
spin_unlock(&mm->page_table_lock);
flush_tlb_range(vma, start, end);
}
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, pte_t pte)
{
struct page *old_page, *new_page;
int avoidcopy;
old_page = pte_page(pte);
/* If no-one else is actually using this page, avoid the copy
* and just make the page writable */
avoidcopy = (page_count(old_page) == 1);
if (avoidcopy) {
set_huge_ptep_writable(vma, address, ptep);
return VM_FAULT_MINOR;
}
page_cache_get(old_page);
new_page = alloc_huge_page(vma, address);
if (!new_page) {
page_cache_release(old_page);
return VM_FAULT_OOM;
}
spin_unlock(&mm->page_table_lock);
copy_huge_page(new_page, old_page, address);
spin_lock(&mm->page_table_lock);
ptep = huge_pte_offset(mm, address & HPAGE_MASK);
if (likely(pte_same(*ptep, pte))) {
/* Break COW */
set_huge_pte_at(mm, address, ptep,
make_huge_pte(vma, new_page, 1));
/* Make the old page be freed below */
new_page = old_page;
}
page_cache_release(new_page);
page_cache_release(old_page);
return VM_FAULT_MINOR;
}
int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, int write_access)
{
int ret = VM_FAULT_SIGBUS;
unsigned long idx;
unsigned long size;
struct page *page;
struct address_space *mapping;
pte_t new_pte;
mapping = vma->vm_file->f_mapping;
idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
/*
* Use page lock to guard against racing truncation
* before we get page_table_lock.
*/
retry:
page = find_lock_page(mapping, idx);
if (!page) {
if (hugetlb_get_quota(mapping))
goto out;
page = alloc_huge_page(vma, address);
if (!page) {
hugetlb_put_quota(mapping);
ret = VM_FAULT_OOM;
goto out;
}
clear_huge_page(page, address);
if (vma->vm_flags & VM_SHARED) {
int err;
err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
if (err) {
put_page(page);
hugetlb_put_quota(mapping);
if (err == -EEXIST)
goto retry;
goto out;
}
} else
lock_page(page);
}
spin_lock(&mm->page_table_lock);
size = i_size_read(mapping->host) >> HPAGE_SHIFT;
if (idx >= size)
goto backout;
ret = VM_FAULT_MINOR;
if (!pte_none(*ptep))
goto backout;
add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
&& (vma->vm_flags & VM_SHARED)));
set_huge_pte_at(mm, address, ptep, new_pte);
if (write_access && !(vma->vm_flags & VM_SHARED)) {
/* Optimization, do the COW without a second fault */
ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
}
spin_unlock(&mm->page_table_lock);
unlock_page(page);
out:
return ret;
backout:
spin_unlock(&mm->page_table_lock);
hugetlb_put_quota(mapping);
unlock_page(page);
put_page(page);
goto out;
}
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, int write_access)
{
pte_t *ptep;
pte_t entry;
int ret;
ptep = huge_pte_alloc(mm, address);
if (!ptep)
return VM_FAULT_OOM;
entry = *ptep;
if (pte_none(entry))
return hugetlb_no_page(mm, vma, address, ptep, write_access);
ret = VM_FAULT_MINOR;
spin_lock(&mm->page_table_lock);
/* Check for a racing update before calling hugetlb_cow */
if (likely(pte_same(entry, *ptep)))
if (write_access && !pte_write(entry))
ret = hugetlb_cow(mm, vma, address, ptep, entry);
spin_unlock(&mm->page_table_lock);
return ret;
}
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page **pages, struct vm_area_struct **vmas,
unsigned long *position, int *length, int i)
{
unsigned long vpfn, vaddr = *position;
int remainder = *length;
vpfn = vaddr/PAGE_SIZE;
spin_lock(&mm->page_table_lock);
while (vaddr < vma->vm_end && remainder) {
pte_t *pte;
struct page *page;
/*
* Some archs (sparc64, sh*) have multiple pte_ts to
* each hugepage. We have to make * sure we get the
* first, for the page indexing below to work.
*/
pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
if (!pte || pte_none(*pte)) {
int ret;
spin_unlock(&mm->page_table_lock);
ret = hugetlb_fault(mm, vma, vaddr, 0);
spin_lock(&mm->page_table_lock);
if (ret == VM_FAULT_MINOR)
continue;
remainder = 0;
if (!i)
i = -EFAULT;
break;
}
if (pages) {
page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
get_page(page);
pages[i] = page;
}
if (vmas)
vmas[i] = vma;
vaddr += PAGE_SIZE;
++vpfn;
--remainder;
++i;
}
spin_unlock(&mm->page_table_lock);
*length = remainder;
*position = vaddr;
return i;
}
void hugetlb_change_protection(struct vm_area_struct *vma,
unsigned long address, unsigned long end, pgprot_t newprot)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long start = address;
pte_t *ptep;
pte_t pte;
BUG_ON(address >= end);
flush_cache_range(vma, address, end);
spin_lock(&mm->page_table_lock);
for (; address < end; address += HPAGE_SIZE) {
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
if (!pte_none(*ptep)) {
pte = huge_ptep_get_and_clear(mm, address, ptep);
pte = pte_mkhuge(pte_modify(pte, newprot));
set_huge_pte_at(mm, address, ptep, pte);
lazy_mmu_prot_update(pte);
}
}
spin_unlock(&mm->page_table_lock);
flush_tlb_range(vma, start, end);
}