Filipe Manana 0a8068a3dd btrfs: make ranged full fsyncs more efficient
Commit 0c713cbab6200b ("Btrfs: fix race between ranged fsync and writeback
of adjacent ranges") fixed a bug where we could end up with file extent
items in a log tree that represent file ranges that overlap due to a race
between the hole detection of a ranged full fsync and writeback for a
different file range.

The problem was solved by forcing any ranged full fsync to become a
non-ranged full fsync - setting the range start to 0 and the end offset to
LLONG_MAX. This was a simple solution because the code that detected and
marked holes was very complex, it used to be done at copy_items() and
implied several searches on the fs/subvolume tree. The drawback of that
solution was that we started to flush delalloc for the entire file and
wait for all the ordered extents to complete for ranged full fsyncs
(including ordered extents covering ranges completely outside the given
range). Fortunatelly ranged full fsyncs are not the most common case
(hopefully for most workloads).

However a later fix for detecting and marking holes was made by commit
0e56315ca147b3 ("Btrfs: fix missing hole after hole punching and fsync
when using NO_HOLES") and it simplified a lot the detection of holes,
and now copy_items() no longer does it and we do it in a much more simple
way at btrfs_log_holes().

This makes it now possible to simply make the code that detects holes to
operate only on the initial range and no longer need to operate on the
whole file, while also avoiding the need to flush delalloc for the entire
file and wait for ordered extents that cover ranges that don't overlap the
given range.

Another special care is that we must skip file extent items that fall
entirely outside the fsync range when copying inode items from the
fs/subvolume tree into the log tree - this is to avoid races with ordered
extent completion for extents falling outside the fsync range, which could
cause us to end up with file extent items in the log tree that have
overlapping ranges - for example if the fsync range is [1Mb, 2Mb], when
we copy inode items we could copy an extent item for the range [0, 512K],
then release the search path and before moving to the next leaf, an
ordered extent for a range of [256Kb, 512Kb] completes - this would
cause us to copy the new extent item for range [256Kb, 512Kb] into the
log tree after we have copied one for the range [0, 512Kb] - the extents
overlap, resulting in a corruption.

So this change just does these steps:

1) When the NO_HOLES feature is enabled it leaves the initial range
   intact - no longer sets it to [0, LLONG_MAX] when the full sync bit
   is set in the inode. If NO_HOLES is not enabled, always set the range
   to a full, just like before this change, to avoid missing file extent
   items representing holes after replaying the log (for both full and
   fast fsyncs);

2) Make the hole detection code to operate only on the fsync range;

3) Make the code that copies items from the fs/subvolume tree to skip
   copying file extent items that cover a range completely outside the
   range of the fsync.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:56 +01:00

3535 lines
93 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/falloc.h>
#include <linux/writeback.h>
#include <linux/compat.h>
#include <linux/slab.h>
#include <linux/btrfs.h>
#include <linux/uio.h>
#include <linux/iversion.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "print-tree.h"
#include "tree-log.h"
#include "locking.h"
#include "volumes.h"
#include "qgroup.h"
#include "compression.h"
#include "delalloc-space.h"
#include "reflink.h"
static struct kmem_cache *btrfs_inode_defrag_cachep;
/*
* when auto defrag is enabled we
* queue up these defrag structs to remember which
* inodes need defragging passes
*/
struct inode_defrag {
struct rb_node rb_node;
/* objectid */
u64 ino;
/*
* transid where the defrag was added, we search for
* extents newer than this
*/
u64 transid;
/* root objectid */
u64 root;
/* last offset we were able to defrag */
u64 last_offset;
/* if we've wrapped around back to zero once already */
int cycled;
};
static int __compare_inode_defrag(struct inode_defrag *defrag1,
struct inode_defrag *defrag2)
{
if (defrag1->root > defrag2->root)
return 1;
else if (defrag1->root < defrag2->root)
return -1;
else if (defrag1->ino > defrag2->ino)
return 1;
else if (defrag1->ino < defrag2->ino)
return -1;
else
return 0;
}
/* pop a record for an inode into the defrag tree. The lock
* must be held already
*
* If you're inserting a record for an older transid than an
* existing record, the transid already in the tree is lowered
*
* If an existing record is found the defrag item you
* pass in is freed
*/
static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
struct inode_defrag *defrag)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct inode_defrag *entry;
struct rb_node **p;
struct rb_node *parent = NULL;
int ret;
p = &fs_info->defrag_inodes.rb_node;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct inode_defrag, rb_node);
ret = __compare_inode_defrag(defrag, entry);
if (ret < 0)
p = &parent->rb_left;
else if (ret > 0)
p = &parent->rb_right;
else {
/* if we're reinserting an entry for
* an old defrag run, make sure to
* lower the transid of our existing record
*/
if (defrag->transid < entry->transid)
entry->transid = defrag->transid;
if (defrag->last_offset > entry->last_offset)
entry->last_offset = defrag->last_offset;
return -EEXIST;
}
}
set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
rb_link_node(&defrag->rb_node, parent, p);
rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
return 0;
}
static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
{
if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
return 0;
if (btrfs_fs_closing(fs_info))
return 0;
return 1;
}
/*
* insert a defrag record for this inode if auto defrag is
* enabled
*/
int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
struct btrfs_inode *inode)
{
struct btrfs_root *root = inode->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct inode_defrag *defrag;
u64 transid;
int ret;
if (!__need_auto_defrag(fs_info))
return 0;
if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
return 0;
if (trans)
transid = trans->transid;
else
transid = inode->root->last_trans;
defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
if (!defrag)
return -ENOMEM;
defrag->ino = btrfs_ino(inode);
defrag->transid = transid;
defrag->root = root->root_key.objectid;
spin_lock(&fs_info->defrag_inodes_lock);
if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
/*
* If we set IN_DEFRAG flag and evict the inode from memory,
* and then re-read this inode, this new inode doesn't have
* IN_DEFRAG flag. At the case, we may find the existed defrag.
*/
ret = __btrfs_add_inode_defrag(inode, defrag);
if (ret)
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
} else {
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
}
spin_unlock(&fs_info->defrag_inodes_lock);
return 0;
}
/*
* Requeue the defrag object. If there is a defrag object that points to
* the same inode in the tree, we will merge them together (by
* __btrfs_add_inode_defrag()) and free the one that we want to requeue.
*/
static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
struct inode_defrag *defrag)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
int ret;
if (!__need_auto_defrag(fs_info))
goto out;
/*
* Here we don't check the IN_DEFRAG flag, because we need merge
* them together.
*/
spin_lock(&fs_info->defrag_inodes_lock);
ret = __btrfs_add_inode_defrag(inode, defrag);
spin_unlock(&fs_info->defrag_inodes_lock);
if (ret)
goto out;
return;
out:
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
}
/*
* pick the defragable inode that we want, if it doesn't exist, we will get
* the next one.
*/
static struct inode_defrag *
btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
{
struct inode_defrag *entry = NULL;
struct inode_defrag tmp;
struct rb_node *p;
struct rb_node *parent = NULL;
int ret;
tmp.ino = ino;
tmp.root = root;
spin_lock(&fs_info->defrag_inodes_lock);
p = fs_info->defrag_inodes.rb_node;
while (p) {
parent = p;
entry = rb_entry(parent, struct inode_defrag, rb_node);
ret = __compare_inode_defrag(&tmp, entry);
if (ret < 0)
p = parent->rb_left;
else if (ret > 0)
p = parent->rb_right;
else
goto out;
}
if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
parent = rb_next(parent);
if (parent)
entry = rb_entry(parent, struct inode_defrag, rb_node);
else
entry = NULL;
}
out:
if (entry)
rb_erase(parent, &fs_info->defrag_inodes);
spin_unlock(&fs_info->defrag_inodes_lock);
return entry;
}
void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
{
struct inode_defrag *defrag;
struct rb_node *node;
spin_lock(&fs_info->defrag_inodes_lock);
node = rb_first(&fs_info->defrag_inodes);
while (node) {
rb_erase(node, &fs_info->defrag_inodes);
defrag = rb_entry(node, struct inode_defrag, rb_node);
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
cond_resched_lock(&fs_info->defrag_inodes_lock);
node = rb_first(&fs_info->defrag_inodes);
}
spin_unlock(&fs_info->defrag_inodes_lock);
}
#define BTRFS_DEFRAG_BATCH 1024
static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
struct inode_defrag *defrag)
{
struct btrfs_root *inode_root;
struct inode *inode;
struct btrfs_key key;
struct btrfs_ioctl_defrag_range_args range;
int num_defrag;
int index;
int ret;
/* get the inode */
key.objectid = defrag->root;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
index = srcu_read_lock(&fs_info->subvol_srcu);
inode_root = btrfs_get_fs_root(fs_info, &key, true);
if (IS_ERR(inode_root)) {
ret = PTR_ERR(inode_root);
goto cleanup;
}
key.objectid = defrag->ino;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
inode = btrfs_iget(fs_info->sb, &key, inode_root);
btrfs_put_root(inode_root);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
goto cleanup;
}
srcu_read_unlock(&fs_info->subvol_srcu, index);
/* do a chunk of defrag */
clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
memset(&range, 0, sizeof(range));
range.len = (u64)-1;
range.start = defrag->last_offset;
sb_start_write(fs_info->sb);
num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
BTRFS_DEFRAG_BATCH);
sb_end_write(fs_info->sb);
/*
* if we filled the whole defrag batch, there
* must be more work to do. Queue this defrag
* again
*/
if (num_defrag == BTRFS_DEFRAG_BATCH) {
defrag->last_offset = range.start;
btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
} else if (defrag->last_offset && !defrag->cycled) {
/*
* we didn't fill our defrag batch, but
* we didn't start at zero. Make sure we loop
* around to the start of the file.
*/
defrag->last_offset = 0;
defrag->cycled = 1;
btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
} else {
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
}
iput(inode);
return 0;
cleanup:
srcu_read_unlock(&fs_info->subvol_srcu, index);
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
return ret;
}
/*
* run through the list of inodes in the FS that need
* defragging
*/
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
{
struct inode_defrag *defrag;
u64 first_ino = 0;
u64 root_objectid = 0;
atomic_inc(&fs_info->defrag_running);
while (1) {
/* Pause the auto defragger. */
if (test_bit(BTRFS_FS_STATE_REMOUNTING,
&fs_info->fs_state))
break;
if (!__need_auto_defrag(fs_info))
break;
/* find an inode to defrag */
defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
first_ino);
if (!defrag) {
if (root_objectid || first_ino) {
root_objectid = 0;
first_ino = 0;
continue;
} else {
break;
}
}
first_ino = defrag->ino + 1;
root_objectid = defrag->root;
__btrfs_run_defrag_inode(fs_info, defrag);
}
atomic_dec(&fs_info->defrag_running);
/*
* during unmount, we use the transaction_wait queue to
* wait for the defragger to stop
*/
wake_up(&fs_info->transaction_wait);
return 0;
}
/* simple helper to fault in pages and copy. This should go away
* and be replaced with calls into generic code.
*/
static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
struct page **prepared_pages,
struct iov_iter *i)
{
size_t copied = 0;
size_t total_copied = 0;
int pg = 0;
int offset = offset_in_page(pos);
while (write_bytes > 0) {
size_t count = min_t(size_t,
PAGE_SIZE - offset, write_bytes);
struct page *page = prepared_pages[pg];
/*
* Copy data from userspace to the current page
*/
copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
/* Flush processor's dcache for this page */
flush_dcache_page(page);
/*
* if we get a partial write, we can end up with
* partially up to date pages. These add
* a lot of complexity, so make sure they don't
* happen by forcing this copy to be retried.
*
* The rest of the btrfs_file_write code will fall
* back to page at a time copies after we return 0.
*/
if (!PageUptodate(page) && copied < count)
copied = 0;
iov_iter_advance(i, copied);
write_bytes -= copied;
total_copied += copied;
/* Return to btrfs_file_write_iter to fault page */
if (unlikely(copied == 0))
break;
if (copied < PAGE_SIZE - offset) {
offset += copied;
} else {
pg++;
offset = 0;
}
}
return total_copied;
}
/*
* unlocks pages after btrfs_file_write is done with them
*/
static void btrfs_drop_pages(struct page **pages, size_t num_pages)
{
size_t i;
for (i = 0; i < num_pages; i++) {
/* page checked is some magic around finding pages that
* have been modified without going through btrfs_set_page_dirty
* clear it here. There should be no need to mark the pages
* accessed as prepare_pages should have marked them accessed
* in prepare_pages via find_or_create_page()
*/
ClearPageChecked(pages[i]);
unlock_page(pages[i]);
put_page(pages[i]);
}
}
static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
const u64 start,
const u64 len,
struct extent_state **cached_state)
{
u64 search_start = start;
const u64 end = start + len - 1;
while (search_start < end) {
const u64 search_len = end - search_start + 1;
struct extent_map *em;
u64 em_len;
int ret = 0;
em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
if (IS_ERR(em))
return PTR_ERR(em);
if (em->block_start != EXTENT_MAP_HOLE)
goto next;
em_len = em->len;
if (em->start < search_start)
em_len -= search_start - em->start;
if (em_len > search_len)
em_len = search_len;
ret = set_extent_bit(&inode->io_tree, search_start,
search_start + em_len - 1,
EXTENT_DELALLOC_NEW,
NULL, cached_state, GFP_NOFS);
next:
search_start = extent_map_end(em);
free_extent_map(em);
if (ret)
return ret;
}
return 0;
}
/*
* after copy_from_user, pages need to be dirtied and we need to make
* sure holes are created between the current EOF and the start of
* any next extents (if required).
*
* this also makes the decision about creating an inline extent vs
* doing real data extents, marking pages dirty and delalloc as required.
*/
int btrfs_dirty_pages(struct inode *inode, struct page **pages,
size_t num_pages, loff_t pos, size_t write_bytes,
struct extent_state **cached)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
int err = 0;
int i;
u64 num_bytes;
u64 start_pos;
u64 end_of_last_block;
u64 end_pos = pos + write_bytes;
loff_t isize = i_size_read(inode);
unsigned int extra_bits = 0;
start_pos = pos & ~((u64) fs_info->sectorsize - 1);
num_bytes = round_up(write_bytes + pos - start_pos,
fs_info->sectorsize);
end_of_last_block = start_pos + num_bytes - 1;
/*
* The pages may have already been dirty, clear out old accounting so
* we can set things up properly
*/
clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
0, 0, cached);
if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
if (start_pos >= isize &&
!(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
/*
* There can't be any extents following eof in this case
* so just set the delalloc new bit for the range
* directly.
*/
extra_bits |= EXTENT_DELALLOC_NEW;
} else {
err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
start_pos,
num_bytes, cached);
if (err)
return err;
}
}
err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
extra_bits, cached);
if (err)
return err;
for (i = 0; i < num_pages; i++) {
struct page *p = pages[i];
SetPageUptodate(p);
ClearPageChecked(p);
set_page_dirty(p);
}
/*
* we've only changed i_size in ram, and we haven't updated
* the disk i_size. There is no need to log the inode
* at this time.
*/
if (end_pos > isize)
i_size_write(inode, end_pos);
return 0;
}
/*
* this drops all the extents in the cache that intersect the range
* [start, end]. Existing extents are split as required.
*/
void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
int skip_pinned)
{
struct extent_map *em;
struct extent_map *split = NULL;
struct extent_map *split2 = NULL;
struct extent_map_tree *em_tree = &inode->extent_tree;
u64 len = end - start + 1;
u64 gen;
int ret;
int testend = 1;
unsigned long flags;
int compressed = 0;
bool modified;
WARN_ON(end < start);
if (end == (u64)-1) {
len = (u64)-1;
testend = 0;
}
while (1) {
int no_splits = 0;
modified = false;
if (!split)
split = alloc_extent_map();
if (!split2)
split2 = alloc_extent_map();
if (!split || !split2)
no_splits = 1;
write_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
if (!em) {
write_unlock(&em_tree->lock);
break;
}
flags = em->flags;
gen = em->generation;
if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
if (testend && em->start + em->len >= start + len) {
free_extent_map(em);
write_unlock(&em_tree->lock);
break;
}
start = em->start + em->len;
if (testend)
len = start + len - (em->start + em->len);
free_extent_map(em);
write_unlock(&em_tree->lock);
continue;
}
compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
clear_bit(EXTENT_FLAG_PINNED, &em->flags);
clear_bit(EXTENT_FLAG_LOGGING, &flags);
modified = !list_empty(&em->list);
if (no_splits)
goto next;
if (em->start < start) {
split->start = em->start;
split->len = start - em->start;
if (em->block_start < EXTENT_MAP_LAST_BYTE) {
split->orig_start = em->orig_start;
split->block_start = em->block_start;
if (compressed)
split->block_len = em->block_len;
else
split->block_len = split->len;
split->orig_block_len = max(split->block_len,
em->orig_block_len);
split->ram_bytes = em->ram_bytes;
} else {
split->orig_start = split->start;
split->block_len = 0;
split->block_start = em->block_start;
split->orig_block_len = 0;
split->ram_bytes = split->len;
}
split->generation = gen;
split->flags = flags;
split->compress_type = em->compress_type;
replace_extent_mapping(em_tree, em, split, modified);
free_extent_map(split);
split = split2;
split2 = NULL;
}
if (testend && em->start + em->len > start + len) {
u64 diff = start + len - em->start;
split->start = start + len;
split->len = em->start + em->len - (start + len);
split->flags = flags;
split->compress_type = em->compress_type;
split->generation = gen;
if (em->block_start < EXTENT_MAP_LAST_BYTE) {
split->orig_block_len = max(em->block_len,
em->orig_block_len);
split->ram_bytes = em->ram_bytes;
if (compressed) {
split->block_len = em->block_len;
split->block_start = em->block_start;
split->orig_start = em->orig_start;
} else {
split->block_len = split->len;
split->block_start = em->block_start
+ diff;
split->orig_start = em->orig_start;
}
} else {
split->ram_bytes = split->len;
split->orig_start = split->start;
split->block_len = 0;
split->block_start = em->block_start;
split->orig_block_len = 0;
}
if (extent_map_in_tree(em)) {
replace_extent_mapping(em_tree, em, split,
modified);
} else {
ret = add_extent_mapping(em_tree, split,
modified);
ASSERT(ret == 0); /* Logic error */
}
free_extent_map(split);
split = NULL;
}
next:
if (extent_map_in_tree(em))
remove_extent_mapping(em_tree, em);
write_unlock(&em_tree->lock);
/* once for us */
free_extent_map(em);
/* once for the tree*/
free_extent_map(em);
}
if (split)
free_extent_map(split);
if (split2)
free_extent_map(split2);
}
/*
* this is very complex, but the basic idea is to drop all extents
* in the range start - end. hint_block is filled in with a block number
* that would be a good hint to the block allocator for this file.
*
* If an extent intersects the range but is not entirely inside the range
* it is either truncated or split. Anything entirely inside the range
* is deleted from the tree.
*/
int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
struct btrfs_path *path, u64 start, u64 end,
u64 *drop_end, int drop_cache,
int replace_extent,
u32 extent_item_size,
int *key_inserted)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct btrfs_ref ref = { 0 };
struct btrfs_key key;
struct btrfs_key new_key;
u64 ino = btrfs_ino(BTRFS_I(inode));
u64 search_start = start;
u64 disk_bytenr = 0;
u64 num_bytes = 0;
u64 extent_offset = 0;
u64 extent_end = 0;
u64 last_end = start;
int del_nr = 0;
int del_slot = 0;
int extent_type;
int recow;
int ret;
int modify_tree = -1;
int update_refs;
int found = 0;
int leafs_visited = 0;
if (drop_cache)
btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
modify_tree = 0;
update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
root == fs_info->tree_root);
while (1) {
recow = 0;
ret = btrfs_lookup_file_extent(trans, root, path, ino,
search_start, modify_tree);
if (ret < 0)
break;
if (ret > 0 && path->slots[0] > 0 && search_start == start) {
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
if (key.objectid == ino &&
key.type == BTRFS_EXTENT_DATA_KEY)
path->slots[0]--;
}
ret = 0;
leafs_visited++;
next_slot:
leaf = path->nodes[0];
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
BUG_ON(del_nr > 0);
ret = btrfs_next_leaf(root, path);
if (ret < 0)
break;
if (ret > 0) {
ret = 0;
break;
}
leafs_visited++;
leaf = path->nodes[0];
recow = 1;
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid > ino)
break;
if (WARN_ON_ONCE(key.objectid < ino) ||
key.type < BTRFS_EXTENT_DATA_KEY) {
ASSERT(del_nr == 0);
path->slots[0]++;
goto next_slot;
}
if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
break;
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(leaf, fi);
if (extent_type == BTRFS_FILE_EXTENT_REG ||
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
extent_offset = btrfs_file_extent_offset(leaf, fi);
extent_end = key.offset +
btrfs_file_extent_num_bytes(leaf, fi);
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
extent_end = key.offset +
btrfs_file_extent_ram_bytes(leaf, fi);
} else {
/* can't happen */
BUG();
}
/*
* Don't skip extent items representing 0 byte lengths. They
* used to be created (bug) if while punching holes we hit
* -ENOSPC condition. So if we find one here, just ensure we
* delete it, otherwise we would insert a new file extent item
* with the same key (offset) as that 0 bytes length file
* extent item in the call to setup_items_for_insert() later
* in this function.
*/
if (extent_end == key.offset && extent_end >= search_start) {
last_end = extent_end;
goto delete_extent_item;
}
if (extent_end <= search_start) {
path->slots[0]++;
goto next_slot;
}
found = 1;
search_start = max(key.offset, start);
if (recow || !modify_tree) {
modify_tree = -1;
btrfs_release_path(path);
continue;
}
/*
* | - range to drop - |
* | -------- extent -------- |
*/
if (start > key.offset && end < extent_end) {
BUG_ON(del_nr > 0);
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
ret = -EOPNOTSUPP;
break;
}
memcpy(&new_key, &key, sizeof(new_key));
new_key.offset = start;
ret = btrfs_duplicate_item(trans, root, path,
&new_key);
if (ret == -EAGAIN) {
btrfs_release_path(path);
continue;
}
if (ret < 0)
break;
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
start - key.offset);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_offset += start - key.offset;
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - start);
btrfs_mark_buffer_dirty(leaf);
if (update_refs && disk_bytenr > 0) {
btrfs_init_generic_ref(&ref,
BTRFS_ADD_DELAYED_REF,
disk_bytenr, num_bytes, 0);
btrfs_init_data_ref(&ref,
root->root_key.objectid,
new_key.objectid,
start - extent_offset);
ret = btrfs_inc_extent_ref(trans, &ref);
BUG_ON(ret); /* -ENOMEM */
}
key.offset = start;
}
/*
* From here on out we will have actually dropped something, so
* last_end can be updated.
*/
last_end = extent_end;
/*
* | ---- range to drop ----- |
* | -------- extent -------- |
*/
if (start <= key.offset && end < extent_end) {
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
ret = -EOPNOTSUPP;
break;
}
memcpy(&new_key, &key, sizeof(new_key));
new_key.offset = end;
btrfs_set_item_key_safe(fs_info, path, &new_key);
extent_offset += end - key.offset;
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - end);
btrfs_mark_buffer_dirty(leaf);
if (update_refs && disk_bytenr > 0)
inode_sub_bytes(inode, end - key.offset);
break;
}
search_start = extent_end;
/*
* | ---- range to drop ----- |
* | -------- extent -------- |
*/
if (start > key.offset && end >= extent_end) {
BUG_ON(del_nr > 0);
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
ret = -EOPNOTSUPP;
break;
}
btrfs_set_file_extent_num_bytes(leaf, fi,
start - key.offset);
btrfs_mark_buffer_dirty(leaf);
if (update_refs && disk_bytenr > 0)
inode_sub_bytes(inode, extent_end - start);
if (end == extent_end)
break;
path->slots[0]++;
goto next_slot;
}
/*
* | ---- range to drop ----- |
* | ------ extent ------ |
*/
if (start <= key.offset && end >= extent_end) {
delete_extent_item:
if (del_nr == 0) {
del_slot = path->slots[0];
del_nr = 1;
} else {
BUG_ON(del_slot + del_nr != path->slots[0]);
del_nr++;
}
if (update_refs &&
extent_type == BTRFS_FILE_EXTENT_INLINE) {
inode_sub_bytes(inode,
extent_end - key.offset);
extent_end = ALIGN(extent_end,
fs_info->sectorsize);
} else if (update_refs && disk_bytenr > 0) {
btrfs_init_generic_ref(&ref,
BTRFS_DROP_DELAYED_REF,
disk_bytenr, num_bytes, 0);
btrfs_init_data_ref(&ref,
root->root_key.objectid,
key.objectid,
key.offset - extent_offset);
ret = btrfs_free_extent(trans, &ref);
BUG_ON(ret); /* -ENOMEM */
inode_sub_bytes(inode,
extent_end - key.offset);
}
if (end == extent_end)
break;
if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
path->slots[0]++;
goto next_slot;
}
ret = btrfs_del_items(trans, root, path, del_slot,
del_nr);
if (ret) {
btrfs_abort_transaction(trans, ret);
break;
}
del_nr = 0;
del_slot = 0;
btrfs_release_path(path);
continue;
}
BUG();
}
if (!ret && del_nr > 0) {
/*
* Set path->slots[0] to first slot, so that after the delete
* if items are move off from our leaf to its immediate left or
* right neighbor leafs, we end up with a correct and adjusted
* path->slots[0] for our insertion (if replace_extent != 0).
*/
path->slots[0] = del_slot;
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
if (ret)
btrfs_abort_transaction(trans, ret);
}
leaf = path->nodes[0];
/*
* If btrfs_del_items() was called, it might have deleted a leaf, in
* which case it unlocked our path, so check path->locks[0] matches a
* write lock.
*/
if (!ret && replace_extent && leafs_visited == 1 &&
(path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
path->locks[0] == BTRFS_WRITE_LOCK) &&
btrfs_leaf_free_space(leaf) >=
sizeof(struct btrfs_item) + extent_item_size) {
key.objectid = ino;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = start;
if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
struct btrfs_key slot_key;
btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
path->slots[0]++;
}
setup_items_for_insert(root, path, &key,
&extent_item_size,
extent_item_size,
sizeof(struct btrfs_item) +
extent_item_size, 1);
*key_inserted = 1;
}
if (!replace_extent || !(*key_inserted))
btrfs_release_path(path);
if (drop_end)
*drop_end = found ? min(end, last_end) : end;
return ret;
}
int btrfs_drop_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode, u64 start,
u64 end, int drop_cache)
{
struct btrfs_path *path;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
drop_cache, 0, 0, NULL);
btrfs_free_path(path);
return ret;
}
static int extent_mergeable(struct extent_buffer *leaf, int slot,
u64 objectid, u64 bytenr, u64 orig_offset,
u64 *start, u64 *end)
{
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
u64 extent_end;
if (slot < 0 || slot >= btrfs_header_nritems(leaf))
return 0;
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
return 0;
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
btrfs_file_extent_compression(leaf, fi) ||
btrfs_file_extent_encryption(leaf, fi) ||
btrfs_file_extent_other_encoding(leaf, fi))
return 0;
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
if ((*start && *start != key.offset) || (*end && *end != extent_end))
return 0;
*start = key.offset;
*end = extent_end;
return 1;
}
/*
* Mark extent in the range start - end as written.
*
* This changes extent type from 'pre-allocated' to 'regular'. If only
* part of extent is marked as written, the extent will be split into
* two or three.
*/
int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
struct btrfs_inode *inode, u64 start, u64 end)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root = inode->root;
struct extent_buffer *leaf;
struct btrfs_path *path;
struct btrfs_file_extent_item *fi;
struct btrfs_ref ref = { 0 };
struct btrfs_key key;
struct btrfs_key new_key;
u64 bytenr;
u64 num_bytes;
u64 extent_end;
u64 orig_offset;
u64 other_start;
u64 other_end;
u64 split;
int del_nr = 0;
int del_slot = 0;
int recow;
int ret;
u64 ino = btrfs_ino(inode);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
again:
recow = 0;
split = start;
key.objectid = ino;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = split;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0 && path->slots[0] > 0)
path->slots[0]--;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != ino ||
key.type != BTRFS_EXTENT_DATA_KEY) {
ret = -EINVAL;
btrfs_abort_transaction(trans, ret);
goto out;
}
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
ret = -EINVAL;
btrfs_abort_transaction(trans, ret);
goto out;
}
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
if (key.offset > start || extent_end < end) {
ret = -EINVAL;
btrfs_abort_transaction(trans, ret);
goto out;
}
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
memcpy(&new_key, &key, sizeof(new_key));
if (start == key.offset && end < extent_end) {
other_start = 0;
other_end = start;
if (extent_mergeable(leaf, path->slots[0] - 1,
ino, bytenr, orig_offset,
&other_start, &other_end)) {
new_key.offset = end;
btrfs_set_item_key_safe(fs_info, path, &new_key);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi,
trans->transid);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - end);
btrfs_set_file_extent_offset(leaf, fi,
end - orig_offset);
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi,
trans->transid);
btrfs_set_file_extent_num_bytes(leaf, fi,
end - other_start);
btrfs_mark_buffer_dirty(leaf);
goto out;
}
}
if (start > key.offset && end == extent_end) {
other_start = end;
other_end = 0;
if (extent_mergeable(leaf, path->slots[0] + 1,
ino, bytenr, orig_offset,
&other_start, &other_end)) {
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
start - key.offset);
btrfs_set_file_extent_generation(leaf, fi,
trans->transid);
path->slots[0]++;
new_key.offset = start;
btrfs_set_item_key_safe(fs_info, path, &new_key);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi,
trans->transid);
btrfs_set_file_extent_num_bytes(leaf, fi,
other_end - start);
btrfs_set_file_extent_offset(leaf, fi,
start - orig_offset);
btrfs_mark_buffer_dirty(leaf);
goto out;
}
}
while (start > key.offset || end < extent_end) {
if (key.offset == start)
split = end;
new_key.offset = split;
ret = btrfs_duplicate_item(trans, root, path, &new_key);
if (ret == -EAGAIN) {
btrfs_release_path(path);
goto again;
}
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out;
}
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
btrfs_set_file_extent_num_bytes(leaf, fi,
split - key.offset);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - split);
btrfs_mark_buffer_dirty(leaf);
btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
num_bytes, 0);
btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
orig_offset);
ret = btrfs_inc_extent_ref(trans, &ref);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
if (split == start) {
key.offset = start;
} else {
if (start != key.offset) {
ret = -EINVAL;
btrfs_abort_transaction(trans, ret);
goto out;
}
path->slots[0]--;
extent_end = end;
}
recow = 1;
}
other_start = end;
other_end = 0;
btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
num_bytes, 0);
btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
if (extent_mergeable(leaf, path->slots[0] + 1,
ino, bytenr, orig_offset,
&other_start, &other_end)) {
if (recow) {
btrfs_release_path(path);
goto again;
}
extent_end = other_end;
del_slot = path->slots[0] + 1;
del_nr++;
ret = btrfs_free_extent(trans, &ref);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
}
other_start = 0;
other_end = start;
if (extent_mergeable(leaf, path->slots[0] - 1,
ino, bytenr, orig_offset,
&other_start, &other_end)) {
if (recow) {
btrfs_release_path(path);
goto again;
}
key.offset = other_start;
del_slot = path->slots[0];
del_nr++;
ret = btrfs_free_extent(trans, &ref);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
}
if (del_nr == 0) {
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_type(leaf, fi,
BTRFS_FILE_EXTENT_REG);
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
btrfs_mark_buffer_dirty(leaf);
} else {
fi = btrfs_item_ptr(leaf, del_slot - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_type(leaf, fi,
BTRFS_FILE_EXTENT_REG);
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - key.offset);
btrfs_mark_buffer_dirty(leaf);
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out;
}
}
out:
btrfs_free_path(path);
return 0;
}
/*
* on error we return an unlocked page and the error value
* on success we return a locked page and 0
*/
static int prepare_uptodate_page(struct inode *inode,
struct page *page, u64 pos,
bool force_uptodate)
{
int ret = 0;
if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
!PageUptodate(page)) {
ret = btrfs_readpage(NULL, page);
if (ret)
return ret;
lock_page(page);
if (!PageUptodate(page)) {
unlock_page(page);
return -EIO;
}
if (page->mapping != inode->i_mapping) {
unlock_page(page);
return -EAGAIN;
}
}
return 0;
}
/*
* this just gets pages into the page cache and locks them down.
*/
static noinline int prepare_pages(struct inode *inode, struct page **pages,
size_t num_pages, loff_t pos,
size_t write_bytes, bool force_uptodate)
{
int i;
unsigned long index = pos >> PAGE_SHIFT;
gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
int err = 0;
int faili;
for (i = 0; i < num_pages; i++) {
again:
pages[i] = find_or_create_page(inode->i_mapping, index + i,
mask | __GFP_WRITE);
if (!pages[i]) {
faili = i - 1;
err = -ENOMEM;
goto fail;
}
if (i == 0)
err = prepare_uptodate_page(inode, pages[i], pos,
force_uptodate);
if (!err && i == num_pages - 1)
err = prepare_uptodate_page(inode, pages[i],
pos + write_bytes, false);
if (err) {
put_page(pages[i]);
if (err == -EAGAIN) {
err = 0;
goto again;
}
faili = i - 1;
goto fail;
}
wait_on_page_writeback(pages[i]);
}
return 0;
fail:
while (faili >= 0) {
unlock_page(pages[faili]);
put_page(pages[faili]);
faili--;
}
return err;
}
/*
* This function locks the extent and properly waits for data=ordered extents
* to finish before allowing the pages to be modified if need.
*
* The return value:
* 1 - the extent is locked
* 0 - the extent is not locked, and everything is OK
* -EAGAIN - need re-prepare the pages
* the other < 0 number - Something wrong happens
*/
static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
size_t num_pages, loff_t pos,
size_t write_bytes,
u64 *lockstart, u64 *lockend,
struct extent_state **cached_state)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
u64 start_pos;
u64 last_pos;
int i;
int ret = 0;
start_pos = round_down(pos, fs_info->sectorsize);
last_pos = start_pos
+ round_up(pos + write_bytes - start_pos,
fs_info->sectorsize) - 1;
if (start_pos < inode->vfs_inode.i_size) {
struct btrfs_ordered_extent *ordered;
lock_extent_bits(&inode->io_tree, start_pos, last_pos,
cached_state);
ordered = btrfs_lookup_ordered_range(inode, start_pos,
last_pos - start_pos + 1);
if (ordered &&
ordered->file_offset + ordered->num_bytes > start_pos &&
ordered->file_offset <= last_pos) {
unlock_extent_cached(&inode->io_tree, start_pos,
last_pos, cached_state);
for (i = 0; i < num_pages; i++) {
unlock_page(pages[i]);
put_page(pages[i]);
}
btrfs_start_ordered_extent(&inode->vfs_inode,
ordered, 1);
btrfs_put_ordered_extent(ordered);
return -EAGAIN;
}
if (ordered)
btrfs_put_ordered_extent(ordered);
*lockstart = start_pos;
*lockend = last_pos;
ret = 1;
}
/*
* It's possible the pages are dirty right now, but we don't want
* to clean them yet because copy_from_user may catch a page fault
* and we might have to fall back to one page at a time. If that
* happens, we'll unlock these pages and we'd have a window where
* reclaim could sneak in and drop the once-dirty page on the floor
* without writing it.
*
* We have the pages locked and the extent range locked, so there's
* no way someone can start IO on any dirty pages in this range.
*
* We'll call btrfs_dirty_pages() later on, and that will flip around
* delalloc bits and dirty the pages as required.
*/
for (i = 0; i < num_pages; i++) {
set_page_extent_mapped(pages[i]);
WARN_ON(!PageLocked(pages[i]));
}
return ret;
}
static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
size_t *write_bytes)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct btrfs_root *root = inode->root;
u64 lockstart, lockend;
u64 num_bytes;
int ret;
if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
return -EAGAIN;
lockstart = round_down(pos, fs_info->sectorsize);
lockend = round_up(pos + *write_bytes,
fs_info->sectorsize) - 1;
btrfs_lock_and_flush_ordered_range(inode, lockstart,
lockend, NULL);
num_bytes = lockend - lockstart + 1;
ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
NULL, NULL, NULL);
if (ret <= 0) {
ret = 0;
btrfs_drew_write_unlock(&root->snapshot_lock);
} else {
*write_bytes = min_t(size_t, *write_bytes ,
num_bytes - pos + lockstart);
}
unlock_extent(&inode->io_tree, lockstart, lockend);
return ret;
}
static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
struct iov_iter *i)
{
struct file *file = iocb->ki_filp;
loff_t pos = iocb->ki_pos;
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct page **pages = NULL;
struct extent_changeset *data_reserved = NULL;
u64 release_bytes = 0;
u64 lockstart;
u64 lockend;
size_t num_written = 0;
int nrptrs;
int ret = 0;
bool only_release_metadata = false;
bool force_page_uptodate = false;
nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
PAGE_SIZE / (sizeof(struct page *)));
nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
nrptrs = max(nrptrs, 8);
pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
if (!pages)
return -ENOMEM;
while (iov_iter_count(i) > 0) {
struct extent_state *cached_state = NULL;
size_t offset = offset_in_page(pos);
size_t sector_offset;
size_t write_bytes = min(iov_iter_count(i),
nrptrs * (size_t)PAGE_SIZE -
offset);
size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
PAGE_SIZE);
size_t reserve_bytes;
size_t dirty_pages;
size_t copied;
size_t dirty_sectors;
size_t num_sectors;
int extents_locked;
WARN_ON(num_pages > nrptrs);
/*
* Fault pages before locking them in prepare_pages
* to avoid recursive lock
*/
if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
ret = -EFAULT;
break;
}
only_release_metadata = false;
sector_offset = pos & (fs_info->sectorsize - 1);
reserve_bytes = round_up(write_bytes + sector_offset,
fs_info->sectorsize);
extent_changeset_release(data_reserved);
ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
write_bytes);
if (ret < 0) {
if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
BTRFS_INODE_PREALLOC)) &&
check_can_nocow(BTRFS_I(inode), pos,
&write_bytes) > 0) {
/*
* For nodata cow case, no need to reserve
* data space.
*/
only_release_metadata = true;
/*
* our prealloc extent may be smaller than
* write_bytes, so scale down.
*/
num_pages = DIV_ROUND_UP(write_bytes + offset,
PAGE_SIZE);
reserve_bytes = round_up(write_bytes +
sector_offset,
fs_info->sectorsize);
} else {
break;
}
}
WARN_ON(reserve_bytes == 0);
ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
reserve_bytes);
if (ret) {
if (!only_release_metadata)
btrfs_free_reserved_data_space(inode,
data_reserved, pos,
write_bytes);
else
btrfs_drew_write_unlock(&root->snapshot_lock);
break;
}
release_bytes = reserve_bytes;
again:
/*
* This is going to setup the pages array with the number of
* pages we want, so we don't really need to worry about the
* contents of pages from loop to loop
*/
ret = prepare_pages(inode, pages, num_pages,
pos, write_bytes,
force_page_uptodate);
if (ret) {
btrfs_delalloc_release_extents(BTRFS_I(inode),
reserve_bytes);
break;
}
extents_locked = lock_and_cleanup_extent_if_need(
BTRFS_I(inode), pages,
num_pages, pos, write_bytes, &lockstart,
&lockend, &cached_state);
if (extents_locked < 0) {
if (extents_locked == -EAGAIN)
goto again;
btrfs_delalloc_release_extents(BTRFS_I(inode),
reserve_bytes);
ret = extents_locked;
break;
}
copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
dirty_sectors = round_up(copied + sector_offset,
fs_info->sectorsize);
dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
/*
* if we have trouble faulting in the pages, fall
* back to one page at a time
*/
if (copied < write_bytes)
nrptrs = 1;
if (copied == 0) {
force_page_uptodate = true;
dirty_sectors = 0;
dirty_pages = 0;
} else {
force_page_uptodate = false;
dirty_pages = DIV_ROUND_UP(copied + offset,
PAGE_SIZE);
}
if (num_sectors > dirty_sectors) {
/* release everything except the sectors we dirtied */
release_bytes -= dirty_sectors <<
fs_info->sb->s_blocksize_bits;
if (only_release_metadata) {
btrfs_delalloc_release_metadata(BTRFS_I(inode),
release_bytes, true);
} else {
u64 __pos;
__pos = round_down(pos,
fs_info->sectorsize) +
(dirty_pages << PAGE_SHIFT);
btrfs_delalloc_release_space(inode,
data_reserved, __pos,
release_bytes, true);
}
}
release_bytes = round_up(copied + sector_offset,
fs_info->sectorsize);
if (copied > 0)
ret = btrfs_dirty_pages(inode, pages, dirty_pages,
pos, copied, &cached_state);
/*
* If we have not locked the extent range, because the range's
* start offset is >= i_size, we might still have a non-NULL
* cached extent state, acquired while marking the extent range
* as delalloc through btrfs_dirty_pages(). Therefore free any
* possible cached extent state to avoid a memory leak.
*/
if (extents_locked)
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
lockstart, lockend, &cached_state);
else
free_extent_state(cached_state);
btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
if (ret) {
btrfs_drop_pages(pages, num_pages);
break;
}
release_bytes = 0;
if (only_release_metadata)
btrfs_drew_write_unlock(&root->snapshot_lock);
if (only_release_metadata && copied > 0) {
lockstart = round_down(pos,
fs_info->sectorsize);
lockend = round_up(pos + copied,
fs_info->sectorsize) - 1;
set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
lockend, EXTENT_NORESERVE, NULL,
NULL, GFP_NOFS);
}
btrfs_drop_pages(pages, num_pages);
cond_resched();
balance_dirty_pages_ratelimited(inode->i_mapping);
if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
btrfs_btree_balance_dirty(fs_info);
pos += copied;
num_written += copied;
}
kfree(pages);
if (release_bytes) {
if (only_release_metadata) {
btrfs_drew_write_unlock(&root->snapshot_lock);
btrfs_delalloc_release_metadata(BTRFS_I(inode),
release_bytes, true);
} else {
btrfs_delalloc_release_space(inode, data_reserved,
round_down(pos, fs_info->sectorsize),
release_bytes, true);
}
}
extent_changeset_free(data_reserved);
return num_written ? num_written : ret;
}
static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
loff_t pos;
ssize_t written;
ssize_t written_buffered;
loff_t endbyte;
int err;
written = generic_file_direct_write(iocb, from);
if (written < 0 || !iov_iter_count(from))
return written;
pos = iocb->ki_pos;
written_buffered = btrfs_buffered_write(iocb, from);
if (written_buffered < 0) {
err = written_buffered;
goto out;
}
/*
* Ensure all data is persisted. We want the next direct IO read to be
* able to read what was just written.
*/
endbyte = pos + written_buffered - 1;
err = btrfs_fdatawrite_range(inode, pos, endbyte);
if (err)
goto out;
err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
if (err)
goto out;
written += written_buffered;
iocb->ki_pos = pos + written_buffered;
invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
endbyte >> PAGE_SHIFT);
out:
return written ? written : err;
}
static void update_time_for_write(struct inode *inode)
{
struct timespec64 now;
if (IS_NOCMTIME(inode))
return;
now = current_time(inode);
if (!timespec64_equal(&inode->i_mtime, &now))
inode->i_mtime = now;
if (!timespec64_equal(&inode->i_ctime, &now))
inode->i_ctime = now;
if (IS_I_VERSION(inode))
inode_inc_iversion(inode);
}
static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
u64 start_pos;
u64 end_pos;
ssize_t num_written = 0;
const bool sync = iocb->ki_flags & IOCB_DSYNC;
ssize_t err;
loff_t pos;
size_t count;
loff_t oldsize;
int clean_page = 0;
if (!(iocb->ki_flags & IOCB_DIRECT) &&
(iocb->ki_flags & IOCB_NOWAIT))
return -EOPNOTSUPP;
if (iocb->ki_flags & IOCB_NOWAIT) {
if (!inode_trylock(inode))
return -EAGAIN;
} else {
inode_lock(inode);
}
err = generic_write_checks(iocb, from);
if (err <= 0) {
inode_unlock(inode);
return err;
}
pos = iocb->ki_pos;
count = iov_iter_count(from);
if (iocb->ki_flags & IOCB_NOWAIT) {
/*
* We will allocate space in case nodatacow is not set,
* so bail
*/
if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
BTRFS_INODE_PREALLOC)) ||
check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
inode_unlock(inode);
return -EAGAIN;
}
}
current->backing_dev_info = inode_to_bdi(inode);
err = file_remove_privs(file);
if (err) {
inode_unlock(inode);
goto out;
}
/*
* If BTRFS flips readonly due to some impossible error
* (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
* although we have opened a file as writable, we have
* to stop this write operation to ensure FS consistency.
*/
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
inode_unlock(inode);
err = -EROFS;
goto out;
}
/*
* We reserve space for updating the inode when we reserve space for the
* extent we are going to write, so we will enospc out there. We don't
* need to start yet another transaction to update the inode as we will
* update the inode when we finish writing whatever data we write.
*/
update_time_for_write(inode);
start_pos = round_down(pos, fs_info->sectorsize);
oldsize = i_size_read(inode);
if (start_pos > oldsize) {
/* Expand hole size to cover write data, preventing empty gap */
end_pos = round_up(pos + count,
fs_info->sectorsize);
err = btrfs_cont_expand(inode, oldsize, end_pos);
if (err) {
inode_unlock(inode);
goto out;
}
if (start_pos > round_up(oldsize, fs_info->sectorsize))
clean_page = 1;
}
if (sync)
atomic_inc(&BTRFS_I(inode)->sync_writers);
if (iocb->ki_flags & IOCB_DIRECT) {
num_written = __btrfs_direct_write(iocb, from);
} else {
num_written = btrfs_buffered_write(iocb, from);
if (num_written > 0)
iocb->ki_pos = pos + num_written;
if (clean_page)
pagecache_isize_extended(inode, oldsize,
i_size_read(inode));
}
inode_unlock(inode);
/*
* We also have to set last_sub_trans to the current log transid,
* otherwise subsequent syncs to a file that's been synced in this
* transaction will appear to have already occurred.
*/
spin_lock(&BTRFS_I(inode)->lock);
BTRFS_I(inode)->last_sub_trans = root->log_transid;
spin_unlock(&BTRFS_I(inode)->lock);
if (num_written > 0)
num_written = generic_write_sync(iocb, num_written);
if (sync)
atomic_dec(&BTRFS_I(inode)->sync_writers);
out:
current->backing_dev_info = NULL;
return num_written ? num_written : err;
}
int btrfs_release_file(struct inode *inode, struct file *filp)
{
struct btrfs_file_private *private = filp->private_data;
if (private && private->filldir_buf)
kfree(private->filldir_buf);
kfree(private);
filp->private_data = NULL;
/*
* ordered_data_close is set by setattr when we are about to truncate
* a file from a non-zero size to a zero size. This tries to
* flush down new bytes that may have been written if the
* application were using truncate to replace a file in place.
*/
if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
&BTRFS_I(inode)->runtime_flags))
filemap_flush(inode->i_mapping);
return 0;
}
static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
{
int ret;
struct blk_plug plug;
/*
* This is only called in fsync, which would do synchronous writes, so
* a plug can merge adjacent IOs as much as possible. Esp. in case of
* multiple disks using raid profile, a large IO can be split to
* several segments of stripe length (currently 64K).
*/
blk_start_plug(&plug);
atomic_inc(&BTRFS_I(inode)->sync_writers);
ret = btrfs_fdatawrite_range(inode, start, end);
atomic_dec(&BTRFS_I(inode)->sync_writers);
blk_finish_plug(&plug);
return ret;
}
/*
* fsync call for both files and directories. This logs the inode into
* the tree log instead of forcing full commits whenever possible.
*
* It needs to call filemap_fdatawait so that all ordered extent updates are
* in the metadata btree are up to date for copying to the log.
*
* It drops the inode mutex before doing the tree log commit. This is an
* important optimization for directories because holding the mutex prevents
* new operations on the dir while we write to disk.
*/
int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
struct dentry *dentry = file_dentry(file);
struct inode *inode = d_inode(dentry);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
struct btrfs_log_ctx ctx;
int ret = 0, err;
trace_btrfs_sync_file(file, datasync);
btrfs_init_log_ctx(&ctx, inode);
/*
* Set the range to full if the NO_HOLES feature is not enabled.
* This is to avoid missing file extent items representing holes after
* replaying the log.
*/
if (!btrfs_fs_incompat(fs_info, NO_HOLES)) {
start = 0;
end = LLONG_MAX;
}
/*
* We write the dirty pages in the range and wait until they complete
* out of the ->i_mutex. If so, we can flush the dirty pages by
* multi-task, and make the performance up. See
* btrfs_wait_ordered_range for an explanation of the ASYNC check.
*/
ret = start_ordered_ops(inode, start, end);
if (ret)
goto out;
inode_lock(inode);
/*
* We take the dio_sem here because the tree log stuff can race with
* lockless dio writes and get an extent map logged for an extent we
* never waited on. We need it this high up for lockdep reasons.
*/
down_write(&BTRFS_I(inode)->dio_sem);
atomic_inc(&root->log_batch);
/*
* Before we acquired the inode's lock, someone may have dirtied more
* pages in the target range. We need to make sure that writeback for
* any such pages does not start while we are logging the inode, because
* if it does, any of the following might happen when we are not doing a
* full inode sync:
*
* 1) We log an extent after its writeback finishes but before its
* checksums are added to the csum tree, leading to -EIO errors
* when attempting to read the extent after a log replay.
*
* 2) We can end up logging an extent before its writeback finishes.
* Therefore after the log replay we will have a file extent item
* pointing to an unwritten extent (and no data checksums as well).
*
* So trigger writeback for any eventual new dirty pages and then we
* wait for all ordered extents to complete below.
*/
ret = start_ordered_ops(inode, start, end);
if (ret) {
inode_unlock(inode);
goto out;
}
/*
* We have to do this here to avoid the priority inversion of waiting on
* IO of a lower priority task while holding a transaction open.
*
* Also, the range length can be represented by u64, we have to do the
* typecasts to avoid signed overflow if it's [0, LLONG_MAX].
*/
ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
if (ret) {
up_write(&BTRFS_I(inode)->dio_sem);
inode_unlock(inode);
goto out;
}
atomic_inc(&root->log_batch);
smp_mb();
if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
/*
* We've had everything committed since the last time we were
* modified so clear this flag in case it was set for whatever
* reason, it's no longer relevant.
*/
clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
&BTRFS_I(inode)->runtime_flags);
/*
* An ordered extent might have started before and completed
* already with io errors, in which case the inode was not
* updated and we end up here. So check the inode's mapping
* for any errors that might have happened since we last
* checked called fsync.
*/
ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
up_write(&BTRFS_I(inode)->dio_sem);
inode_unlock(inode);
goto out;
}
/*
* We use start here because we will need to wait on the IO to complete
* in btrfs_sync_log, which could require joining a transaction (for
* example checking cross references in the nocow path). If we use join
* here we could get into a situation where we're waiting on IO to
* happen that is blocked on a transaction trying to commit. With start
* we inc the extwriter counter, so we wait for all extwriters to exit
* before we start blocking joiners. This comment is to keep somebody
* from thinking they are super smart and changing this to
* btrfs_join_transaction *cough*Josef*cough*.
*/
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
up_write(&BTRFS_I(inode)->dio_sem);
inode_unlock(inode);
goto out;
}
ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
if (ret < 0) {
/* Fallthrough and commit/free transaction. */
ret = 1;
}
/* we've logged all the items and now have a consistent
* version of the file in the log. It is possible that
* someone will come in and modify the file, but that's
* fine because the log is consistent on disk, and we
* have references to all of the file's extents
*
* It is possible that someone will come in and log the
* file again, but that will end up using the synchronization
* inside btrfs_sync_log to keep things safe.
*/
up_write(&BTRFS_I(inode)->dio_sem);
inode_unlock(inode);
if (ret != BTRFS_NO_LOG_SYNC) {
if (!ret) {
ret = btrfs_sync_log(trans, root, &ctx);
if (!ret) {
ret = btrfs_end_transaction(trans);
goto out;
}
}
ret = btrfs_commit_transaction(trans);
} else {
ret = btrfs_end_transaction(trans);
}
out:
ASSERT(list_empty(&ctx.list));
err = file_check_and_advance_wb_err(file);
if (!ret)
ret = err;
return ret > 0 ? -EIO : ret;
}
static const struct vm_operations_struct btrfs_file_vm_ops = {
.fault = filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = btrfs_page_mkwrite,
};
static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct address_space *mapping = filp->f_mapping;
if (!mapping->a_ops->readpage)
return -ENOEXEC;
file_accessed(filp);
vma->vm_ops = &btrfs_file_vm_ops;
return 0;
}
static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
int slot, u64 start, u64 end)
{
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
if (slot < 0 || slot >= btrfs_header_nritems(leaf))
return 0;
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != btrfs_ino(inode) ||
key.type != BTRFS_EXTENT_DATA_KEY)
return 0;
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
return 0;
if (btrfs_file_extent_disk_bytenr(leaf, fi))
return 0;
if (key.offset == end)
return 1;
if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
return 1;
return 0;
}
static int fill_holes(struct btrfs_trans_handle *trans,
struct btrfs_inode *inode,
struct btrfs_path *path, u64 offset, u64 end)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root = inode->root;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct extent_map *hole_em;
struct extent_map_tree *em_tree = &inode->extent_tree;
struct btrfs_key key;
int ret;
if (btrfs_fs_incompat(fs_info, NO_HOLES))
goto out;
key.objectid = btrfs_ino(inode);
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = offset;
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
if (ret <= 0) {
/*
* We should have dropped this offset, so if we find it then
* something has gone horribly wrong.
*/
if (ret == 0)
ret = -EINVAL;
return ret;
}
leaf = path->nodes[0];
if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
u64 num_bytes;
path->slots[0]--;
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
end - offset;
btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_offset(leaf, fi, 0);
btrfs_mark_buffer_dirty(leaf);
goto out;
}
if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
u64 num_bytes;
key.offset = offset;
btrfs_set_item_key_safe(fs_info, path, &key);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
offset;
btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_offset(leaf, fi, 0);
btrfs_mark_buffer_dirty(leaf);
goto out;
}
btrfs_release_path(path);
ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
if (ret)
return ret;
out:
btrfs_release_path(path);
hole_em = alloc_extent_map();
if (!hole_em) {
btrfs_drop_extent_cache(inode, offset, end - 1, 0);
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
} else {
hole_em->start = offset;
hole_em->len = end - offset;
hole_em->ram_bytes = hole_em->len;
hole_em->orig_start = offset;
hole_em->block_start = EXTENT_MAP_HOLE;
hole_em->block_len = 0;
hole_em->orig_block_len = 0;
hole_em->compress_type = BTRFS_COMPRESS_NONE;
hole_em->generation = trans->transid;
do {
btrfs_drop_extent_cache(inode, offset, end - 1, 0);
write_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, hole_em, 1);
write_unlock(&em_tree->lock);
} while (ret == -EEXIST);
free_extent_map(hole_em);
if (ret)
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
&inode->runtime_flags);
}
return 0;
}
/*
* Find a hole extent on given inode and change start/len to the end of hole
* extent.(hole/vacuum extent whose em->start <= start &&
* em->start + em->len > start)
* When a hole extent is found, return 1 and modify start/len.
*/
static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct extent_map *em;
int ret = 0;
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
round_down(*start, fs_info->sectorsize),
round_up(*len, fs_info->sectorsize));
if (IS_ERR(em))
return PTR_ERR(em);
/* Hole or vacuum extent(only exists in no-hole mode) */
if (em->block_start == EXTENT_MAP_HOLE) {
ret = 1;
*len = em->start + em->len > *start + *len ?
0 : *start + *len - em->start - em->len;
*start = em->start + em->len;
}
free_extent_map(em);
return ret;
}
static int btrfs_punch_hole_lock_range(struct inode *inode,
const u64 lockstart,
const u64 lockend,
struct extent_state **cached_state)
{
while (1) {
struct btrfs_ordered_extent *ordered;
int ret;
truncate_pagecache_range(inode, lockstart, lockend);
lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
cached_state);
ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
/*
* We need to make sure we have no ordered extents in this range
* and nobody raced in and read a page in this range, if we did
* we need to try again.
*/
if ((!ordered ||
(ordered->file_offset + ordered->num_bytes <= lockstart ||
ordered->file_offset > lockend)) &&
!filemap_range_has_page(inode->i_mapping,
lockstart, lockend)) {
if (ordered)
btrfs_put_ordered_extent(ordered);
break;
}
if (ordered)
btrfs_put_ordered_extent(ordered);
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
lockend, cached_state);
ret = btrfs_wait_ordered_range(inode, lockstart,
lockend - lockstart + 1);
if (ret)
return ret;
}
return 0;
}
static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
struct inode *inode,
struct btrfs_path *path,
struct btrfs_clone_extent_info *clone_info,
const u64 clone_len)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_file_extent_item *extent;
struct extent_buffer *leaf;
struct btrfs_key key;
int slot;
struct btrfs_ref ref = { 0 };
u64 ref_offset;
int ret;
if (clone_len == 0)
return 0;
if (clone_info->disk_offset == 0 &&
btrfs_fs_incompat(fs_info, NO_HOLES))
return 0;
key.objectid = btrfs_ino(BTRFS_I(inode));
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = clone_info->file_offset;
ret = btrfs_insert_empty_item(trans, root, path, &key,
clone_info->item_size);
if (ret)
return ret;
leaf = path->nodes[0];
slot = path->slots[0];
write_extent_buffer(leaf, clone_info->extent_buf,
btrfs_item_ptr_offset(leaf, slot),
clone_info->item_size);
extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
clone_info->file_offset, clone_len);
if (ret)
return ret;
/* If it's a hole, nothing more needs to be done. */
if (clone_info->disk_offset == 0)
return 0;
inode_add_bytes(inode, clone_len);
btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
clone_info->disk_offset,
clone_info->disk_len, 0);
ref_offset = clone_info->file_offset - clone_info->data_offset;
btrfs_init_data_ref(&ref, root->root_key.objectid,
btrfs_ino(BTRFS_I(inode)), ref_offset);
ret = btrfs_inc_extent_ref(trans, &ref);
return ret;
}
/*
* The respective range must have been previously locked, as well as the inode.
* The end offset is inclusive (last byte of the range).
* @clone_info is NULL for fallocate's hole punching and non-NULL for extent
* cloning.
* When cloning, we don't want to end up in a state where we dropped extents
* without inserting a new one, so we must abort the transaction to avoid a
* corruption.
*/
int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
const u64 start, const u64 end,
struct btrfs_clone_extent_info *clone_info,
struct btrfs_trans_handle **trans_out)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans = NULL;
struct btrfs_block_rsv *rsv;
unsigned int rsv_count;
u64 cur_offset;
u64 drop_end;
u64 len = end - start;
int ret = 0;
if (end <= start)
return -EINVAL;
rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
if (!rsv) {
ret = -ENOMEM;
goto out;
}
rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
rsv->failfast = 1;
/*
* 1 - update the inode
* 1 - removing the extents in the range
* 1 - adding the hole extent if no_holes isn't set or if we are cloning
* an extent
*/
if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
rsv_count = 3;
else
rsv_count = 2;
trans = btrfs_start_transaction(root, rsv_count);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
goto out_free;
}
ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
min_size, false);
BUG_ON(ret);
trans->block_rsv = rsv;
cur_offset = start;
while (cur_offset < end) {
ret = __btrfs_drop_extents(trans, root, inode, path,
cur_offset, end + 1, &drop_end,
1, 0, 0, NULL);
if (ret != -ENOSPC) {
/*
* When cloning we want to avoid transaction aborts when
* nothing was done and we are attempting to clone parts
* of inline extents, in such cases -EOPNOTSUPP is
* returned by __btrfs_drop_extents() without having
* changed anything in the file.
*/
if (clone_info && ret && ret != -EOPNOTSUPP)
btrfs_abort_transaction(trans, ret);
break;
}
trans->block_rsv = &fs_info->trans_block_rsv;
if (!clone_info && cur_offset < drop_end &&
cur_offset < ino_size) {
ret = fill_holes(trans, BTRFS_I(inode), path,
cur_offset, drop_end);
if (ret) {
/*
* If we failed then we didn't insert our hole
* entries for the area we dropped, so now the
* fs is corrupted, so we must abort the
* transaction.
*/
btrfs_abort_transaction(trans, ret);
break;
}
} else if (!clone_info && cur_offset < drop_end) {
/*
* We are past the i_size here, but since we didn't
* insert holes we need to clear the mapped area so we
* know to not set disk_i_size in this area until a new
* file extent is inserted here.
*/
ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
cur_offset, drop_end - cur_offset);
if (ret) {
/*
* We couldn't clear our area, so we could
* presumably adjust up and corrupt the fs, so
* we need to abort.
*/
btrfs_abort_transaction(trans, ret);
break;
}
}
if (clone_info && drop_end > clone_info->file_offset) {
u64 clone_len = drop_end - clone_info->file_offset;
ret = btrfs_insert_clone_extent(trans, inode, path,
clone_info, clone_len);
if (ret) {
btrfs_abort_transaction(trans, ret);
break;
}
clone_info->data_len -= clone_len;
clone_info->data_offset += clone_len;
clone_info->file_offset += clone_len;
}
cur_offset = drop_end;
ret = btrfs_update_inode(trans, root, inode);
if (ret)
break;
btrfs_end_transaction(trans);
btrfs_btree_balance_dirty(fs_info);
trans = btrfs_start_transaction(root, rsv_count);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
break;
}
ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
rsv, min_size, false);
BUG_ON(ret); /* shouldn't happen */
trans->block_rsv = rsv;
if (!clone_info) {
ret = find_first_non_hole(inode, &cur_offset, &len);
if (unlikely(ret < 0))
break;
if (ret && !len) {
ret = 0;
break;
}
}
}
/*
* If we were cloning, force the next fsync to be a full one since we
* we replaced (or just dropped in the case of cloning holes when
* NO_HOLES is enabled) extents and extent maps.
* This is for the sake of simplicity, and cloning into files larger
* than 16Mb would force the full fsync any way (when
* try_release_extent_mapping() is invoked during page cache truncation.
*/
if (clone_info)
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
&BTRFS_I(inode)->runtime_flags);
if (ret)
goto out_trans;
trans->block_rsv = &fs_info->trans_block_rsv;
/*
* If we are using the NO_HOLES feature we might have had already an
* hole that overlaps a part of the region [lockstart, lockend] and
* ends at (or beyond) lockend. Since we have no file extent items to
* represent holes, drop_end can be less than lockend and so we must
* make sure we have an extent map representing the existing hole (the
* call to __btrfs_drop_extents() might have dropped the existing extent
* map representing the existing hole), otherwise the fast fsync path
* will not record the existence of the hole region
* [existing_hole_start, lockend].
*/
if (drop_end <= end)
drop_end = end + 1;
/*
* Don't insert file hole extent item if it's for a range beyond eof
* (because it's useless) or if it represents a 0 bytes range (when
* cur_offset == drop_end).
*/
if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
ret = fill_holes(trans, BTRFS_I(inode), path,
cur_offset, drop_end);
if (ret) {
/* Same comment as above. */
btrfs_abort_transaction(trans, ret);
goto out_trans;
}
} else if (!clone_info && cur_offset < drop_end) {
/* See the comment in the loop above for the reasoning here. */
ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
cur_offset, drop_end - cur_offset);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out_trans;
}
}
if (clone_info) {
ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
clone_info->data_len);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out_trans;
}
}
out_trans:
if (!trans)
goto out_free;
trans->block_rsv = &fs_info->trans_block_rsv;
if (ret)
btrfs_end_transaction(trans);
else
*trans_out = trans;
out_free:
btrfs_free_block_rsv(fs_info, rsv);
out:
return ret;
}
static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_state *cached_state = NULL;
struct btrfs_path *path;
struct btrfs_trans_handle *trans = NULL;
u64 lockstart;
u64 lockend;
u64 tail_start;
u64 tail_len;
u64 orig_start = offset;
int ret = 0;
bool same_block;
u64 ino_size;
bool truncated_block = false;
bool updated_inode = false;
ret = btrfs_wait_ordered_range(inode, offset, len);
if (ret)
return ret;
inode_lock(inode);
ino_size = round_up(inode->i_size, fs_info->sectorsize);
ret = find_first_non_hole(inode, &offset, &len);
if (ret < 0)
goto out_only_mutex;
if (ret && !len) {
/* Already in a large hole */
ret = 0;
goto out_only_mutex;
}
lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
lockend = round_down(offset + len,
btrfs_inode_sectorsize(inode)) - 1;
same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
/*
* We needn't truncate any block which is beyond the end of the file
* because we are sure there is no data there.
*/
/*
* Only do this if we are in the same block and we aren't doing the
* entire block.
*/
if (same_block && len < fs_info->sectorsize) {
if (offset < ino_size) {
truncated_block = true;
ret = btrfs_truncate_block(inode, offset, len, 0);
} else {
ret = 0;
}
goto out_only_mutex;
}
/* zero back part of the first block */
if (offset < ino_size) {
truncated_block = true;
ret = btrfs_truncate_block(inode, offset, 0, 0);
if (ret) {
inode_unlock(inode);
return ret;
}
}
/* Check the aligned pages after the first unaligned page,
* if offset != orig_start, which means the first unaligned page
* including several following pages are already in holes,
* the extra check can be skipped */
if (offset == orig_start) {
/* after truncate page, check hole again */
len = offset + len - lockstart;
offset = lockstart;
ret = find_first_non_hole(inode, &offset, &len);
if (ret < 0)
goto out_only_mutex;
if (ret && !len) {
ret = 0;
goto out_only_mutex;
}
lockstart = offset;
}
/* Check the tail unaligned part is in a hole */
tail_start = lockend + 1;
tail_len = offset + len - tail_start;
if (tail_len) {
ret = find_first_non_hole(inode, &tail_start, &tail_len);
if (unlikely(ret < 0))
goto out_only_mutex;
if (!ret) {
/* zero the front end of the last page */
if (tail_start + tail_len < ino_size) {
truncated_block = true;
ret = btrfs_truncate_block(inode,
tail_start + tail_len,
0, 1);
if (ret)
goto out_only_mutex;
}
}
}
if (lockend < lockstart) {
ret = 0;
goto out_only_mutex;
}
ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
&cached_state);
if (ret)
goto out_only_mutex;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
&trans);
btrfs_free_path(path);
if (ret)
goto out;
ASSERT(trans != NULL);
inode_inc_iversion(inode);
inode->i_mtime = inode->i_ctime = current_time(inode);
ret = btrfs_update_inode(trans, root, inode);
updated_inode = true;
btrfs_end_transaction(trans);
btrfs_btree_balance_dirty(fs_info);
out:
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
&cached_state);
out_only_mutex:
if (!updated_inode && truncated_block && !ret) {
/*
* If we only end up zeroing part of a page, we still need to
* update the inode item, so that all the time fields are
* updated as well as the necessary btrfs inode in memory fields
* for detecting, at fsync time, if the inode isn't yet in the
* log tree or it's there but not up to date.
*/
struct timespec64 now = current_time(inode);
inode_inc_iversion(inode);
inode->i_mtime = now;
inode->i_ctime = now;
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
} else {
int ret2;
ret = btrfs_update_inode(trans, root, inode);
ret2 = btrfs_end_transaction(trans);
if (!ret)
ret = ret2;
}
}
inode_unlock(inode);
return ret;
}
/* Helper structure to record which range is already reserved */
struct falloc_range {
struct list_head list;
u64 start;
u64 len;
};
/*
* Helper function to add falloc range
*
* Caller should have locked the larger range of extent containing
* [start, len)
*/
static int add_falloc_range(struct list_head *head, u64 start, u64 len)
{
struct falloc_range *prev = NULL;
struct falloc_range *range = NULL;
if (list_empty(head))
goto insert;
/*
* As fallocate iterate by bytenr order, we only need to check
* the last range.
*/
prev = list_entry(head->prev, struct falloc_range, list);
if (prev->start + prev->len == start) {
prev->len += len;
return 0;
}
insert:
range = kmalloc(sizeof(*range), GFP_KERNEL);
if (!range)
return -ENOMEM;
range->start = start;
range->len = len;
list_add_tail(&range->list, head);
return 0;
}
static int btrfs_fallocate_update_isize(struct inode *inode,
const u64 end,
const int mode)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret;
int ret2;
if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
return 0;
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans))
return PTR_ERR(trans);
inode->i_ctime = current_time(inode);
i_size_write(inode, end);
btrfs_inode_safe_disk_i_size_write(inode, 0);
ret = btrfs_update_inode(trans, root, inode);
ret2 = btrfs_end_transaction(trans);
return ret ? ret : ret2;
}
enum {
RANGE_BOUNDARY_WRITTEN_EXTENT,
RANGE_BOUNDARY_PREALLOC_EXTENT,
RANGE_BOUNDARY_HOLE,
};
static int btrfs_zero_range_check_range_boundary(struct inode *inode,
u64 offset)
{
const u64 sectorsize = btrfs_inode_sectorsize(inode);
struct extent_map *em;
int ret;
offset = round_down(offset, sectorsize);
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
if (IS_ERR(em))
return PTR_ERR(em);
if (em->block_start == EXTENT_MAP_HOLE)
ret = RANGE_BOUNDARY_HOLE;
else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
else
ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
free_extent_map(em);
return ret;
}
static int btrfs_zero_range(struct inode *inode,
loff_t offset,
loff_t len,
const int mode)
{
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
struct extent_map *em;
struct extent_changeset *data_reserved = NULL;
int ret;
u64 alloc_hint = 0;
const u64 sectorsize = btrfs_inode_sectorsize(inode);
u64 alloc_start = round_down(offset, sectorsize);
u64 alloc_end = round_up(offset + len, sectorsize);
u64 bytes_to_reserve = 0;
bool space_reserved = false;
inode_dio_wait(inode);
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
alloc_end - alloc_start);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto out;
}
/*
* Avoid hole punching and extent allocation for some cases. More cases
* could be considered, but these are unlikely common and we keep things
* as simple as possible for now. Also, intentionally, if the target
* range contains one or more prealloc extents together with regular
* extents and holes, we drop all the existing extents and allocate a
* new prealloc extent, so that we get a larger contiguous disk extent.
*/
if (em->start <= alloc_start &&
test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
const u64 em_end = em->start + em->len;
if (em_end >= offset + len) {
/*
* The whole range is already a prealloc extent,
* do nothing except updating the inode's i_size if
* needed.
*/
free_extent_map(em);
ret = btrfs_fallocate_update_isize(inode, offset + len,
mode);
goto out;
}
/*
* Part of the range is already a prealloc extent, so operate
* only on the remaining part of the range.
*/
alloc_start = em_end;
ASSERT(IS_ALIGNED(alloc_start, sectorsize));
len = offset + len - alloc_start;
offset = alloc_start;
alloc_hint = em->block_start + em->len;
}
free_extent_map(em);
if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
sectorsize);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto out;
}
if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
free_extent_map(em);
ret = btrfs_fallocate_update_isize(inode, offset + len,
mode);
goto out;
}
if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
free_extent_map(em);
ret = btrfs_truncate_block(inode, offset, len, 0);
if (!ret)
ret = btrfs_fallocate_update_isize(inode,
offset + len,
mode);
return ret;
}
free_extent_map(em);
alloc_start = round_down(offset, sectorsize);
alloc_end = alloc_start + sectorsize;
goto reserve_space;
}
alloc_start = round_up(offset, sectorsize);
alloc_end = round_down(offset + len, sectorsize);
/*
* For unaligned ranges, check the pages at the boundaries, they might
* map to an extent, in which case we need to partially zero them, or
* they might map to a hole, in which case we need our allocation range
* to cover them.
*/
if (!IS_ALIGNED(offset, sectorsize)) {
ret = btrfs_zero_range_check_range_boundary(inode, offset);
if (ret < 0)
goto out;
if (ret == RANGE_BOUNDARY_HOLE) {
alloc_start = round_down(offset, sectorsize);
ret = 0;
} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
ret = btrfs_truncate_block(inode, offset, 0, 0);
if (ret)
goto out;
} else {
ret = 0;
}
}
if (!IS_ALIGNED(offset + len, sectorsize)) {
ret = btrfs_zero_range_check_range_boundary(inode,
offset + len);
if (ret < 0)
goto out;
if (ret == RANGE_BOUNDARY_HOLE) {
alloc_end = round_up(offset + len, sectorsize);
ret = 0;
} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
ret = btrfs_truncate_block(inode, offset + len, 0, 1);
if (ret)
goto out;
} else {
ret = 0;
}
}
reserve_space:
if (alloc_start < alloc_end) {
struct extent_state *cached_state = NULL;
const u64 lockstart = alloc_start;
const u64 lockend = alloc_end - 1;
bytes_to_reserve = alloc_end - alloc_start;
ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
bytes_to_reserve);
if (ret < 0)
goto out;
space_reserved = true;
ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
alloc_start, bytes_to_reserve);
if (ret)
goto out;
ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
&cached_state);
if (ret)
goto out;
ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
alloc_end - alloc_start,
i_blocksize(inode),
offset + len, &alloc_hint);
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
lockend, &cached_state);
/* btrfs_prealloc_file_range releases reserved space on error */
if (ret) {
space_reserved = false;
goto out;
}
}
ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
out:
if (ret && space_reserved)
btrfs_free_reserved_data_space(inode, data_reserved,
alloc_start, bytes_to_reserve);
extent_changeset_free(data_reserved);
return ret;
}
static long btrfs_fallocate(struct file *file, int mode,
loff_t offset, loff_t len)
{
struct inode *inode = file_inode(file);
struct extent_state *cached_state = NULL;
struct extent_changeset *data_reserved = NULL;
struct falloc_range *range;
struct falloc_range *tmp;
struct list_head reserve_list;
u64 cur_offset;
u64 last_byte;
u64 alloc_start;
u64 alloc_end;
u64 alloc_hint = 0;
u64 locked_end;
u64 actual_end = 0;
struct extent_map *em;
int blocksize = btrfs_inode_sectorsize(inode);
int ret;
alloc_start = round_down(offset, blocksize);
alloc_end = round_up(offset + len, blocksize);
cur_offset = alloc_start;
/* Make sure we aren't being give some crap mode */
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
FALLOC_FL_ZERO_RANGE))
return -EOPNOTSUPP;
if (mode & FALLOC_FL_PUNCH_HOLE)
return btrfs_punch_hole(inode, offset, len);
/*
* Only trigger disk allocation, don't trigger qgroup reserve
*
* For qgroup space, it will be checked later.
*/
if (!(mode & FALLOC_FL_ZERO_RANGE)) {
ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
alloc_end - alloc_start);
if (ret < 0)
return ret;
}
inode_lock(inode);
if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
ret = inode_newsize_ok(inode, offset + len);
if (ret)
goto out;
}
/*
* TODO: Move these two operations after we have checked
* accurate reserved space, or fallocate can still fail but
* with page truncated or size expanded.
*
* But that's a minor problem and won't do much harm BTW.
*/
if (alloc_start > inode->i_size) {
ret = btrfs_cont_expand(inode, i_size_read(inode),
alloc_start);
if (ret)
goto out;
} else if (offset + len > inode->i_size) {
/*
* If we are fallocating from the end of the file onward we
* need to zero out the end of the block if i_size lands in the
* middle of a block.
*/
ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
if (ret)
goto out;
}
/*
* wait for ordered IO before we have any locks. We'll loop again
* below with the locks held.
*/
ret = btrfs_wait_ordered_range(inode, alloc_start,
alloc_end - alloc_start);
if (ret)
goto out;
if (mode & FALLOC_FL_ZERO_RANGE) {
ret = btrfs_zero_range(inode, offset, len, mode);
inode_unlock(inode);
return ret;
}
locked_end = alloc_end - 1;
while (1) {
struct btrfs_ordered_extent *ordered;
/* the extent lock is ordered inside the running
* transaction
*/
lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
locked_end, &cached_state);
ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
if (ordered &&
ordered->file_offset + ordered->num_bytes > alloc_start &&
ordered->file_offset < alloc_end) {
btrfs_put_ordered_extent(ordered);
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
alloc_start, locked_end,
&cached_state);
/*
* we can't wait on the range with the transaction
* running or with the extent lock held
*/
ret = btrfs_wait_ordered_range(inode, alloc_start,
alloc_end - alloc_start);
if (ret)
goto out;
} else {
if (ordered)
btrfs_put_ordered_extent(ordered);
break;
}
}
/* First, check if we exceed the qgroup limit */
INIT_LIST_HEAD(&reserve_list);
while (cur_offset < alloc_end) {
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
alloc_end - cur_offset);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
break;
}
last_byte = min(extent_map_end(em), alloc_end);
actual_end = min_t(u64, extent_map_end(em), offset + len);
last_byte = ALIGN(last_byte, blocksize);
if (em->block_start == EXTENT_MAP_HOLE ||
(cur_offset >= inode->i_size &&
!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
ret = add_falloc_range(&reserve_list, cur_offset,
last_byte - cur_offset);
if (ret < 0) {
free_extent_map(em);
break;
}
ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
cur_offset, last_byte - cur_offset);
if (ret < 0) {
cur_offset = last_byte;
free_extent_map(em);
break;
}
} else {
/*
* Do not need to reserve unwritten extent for this
* range, free reserved data space first, otherwise
* it'll result in false ENOSPC error.
*/
btrfs_free_reserved_data_space(inode, data_reserved,
cur_offset, last_byte - cur_offset);
}
free_extent_map(em);
cur_offset = last_byte;
}
/*
* If ret is still 0, means we're OK to fallocate.
* Or just cleanup the list and exit.
*/
list_for_each_entry_safe(range, tmp, &reserve_list, list) {
if (!ret)
ret = btrfs_prealloc_file_range(inode, mode,
range->start,
range->len, i_blocksize(inode),
offset + len, &alloc_hint);
else
btrfs_free_reserved_data_space(inode,
data_reserved, range->start,
range->len);
list_del(&range->list);
kfree(range);
}
if (ret < 0)
goto out_unlock;
/*
* We didn't need to allocate any more space, but we still extended the
* size of the file so we need to update i_size and the inode item.
*/
ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
out_unlock:
unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
&cached_state);
out:
inode_unlock(inode);
/* Let go of our reservation. */
if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
btrfs_free_reserved_data_space(inode, data_reserved,
cur_offset, alloc_end - cur_offset);
extent_changeset_free(data_reserved);
return ret;
}
static loff_t find_desired_extent(struct inode *inode, loff_t offset,
int whence)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct extent_map *em = NULL;
struct extent_state *cached_state = NULL;
loff_t i_size = inode->i_size;
u64 lockstart;
u64 lockend;
u64 start;
u64 len;
int ret = 0;
if (i_size == 0 || offset >= i_size)
return -ENXIO;
/*
* offset can be negative, in this case we start finding DATA/HOLE from
* the very start of the file.
*/
start = max_t(loff_t, 0, offset);
lockstart = round_down(start, fs_info->sectorsize);
lockend = round_up(i_size, fs_info->sectorsize);
if (lockend <= lockstart)
lockend = lockstart + fs_info->sectorsize;
lockend--;
len = lockend - lockstart + 1;
lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
&cached_state);
while (start < i_size) {
em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
em = NULL;
break;
}
if (whence == SEEK_HOLE &&
(em->block_start == EXTENT_MAP_HOLE ||
test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
break;
else if (whence == SEEK_DATA &&
(em->block_start != EXTENT_MAP_HOLE &&
!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
break;
start = em->start + em->len;
free_extent_map(em);
em = NULL;
cond_resched();
}
free_extent_map(em);
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
&cached_state);
if (ret) {
offset = ret;
} else {
if (whence == SEEK_DATA && start >= i_size)
offset = -ENXIO;
else
offset = min_t(loff_t, start, i_size);
}
return offset;
}
static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
{
struct inode *inode = file->f_mapping->host;
switch (whence) {
default:
return generic_file_llseek(file, offset, whence);
case SEEK_DATA:
case SEEK_HOLE:
inode_lock_shared(inode);
offset = find_desired_extent(inode, offset, whence);
inode_unlock_shared(inode);
break;
}
if (offset < 0)
return offset;
return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
}
static int btrfs_file_open(struct inode *inode, struct file *filp)
{
filp->f_mode |= FMODE_NOWAIT;
return generic_file_open(inode, filp);
}
const struct file_operations btrfs_file_operations = {
.llseek = btrfs_file_llseek,
.read_iter = generic_file_read_iter,
.splice_read = generic_file_splice_read,
.write_iter = btrfs_file_write_iter,
.mmap = btrfs_file_mmap,
.open = btrfs_file_open,
.release = btrfs_release_file,
.fsync = btrfs_sync_file,
.fallocate = btrfs_fallocate,
.unlocked_ioctl = btrfs_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = btrfs_compat_ioctl,
#endif
.remap_file_range = btrfs_remap_file_range,
};
void __cold btrfs_auto_defrag_exit(void)
{
kmem_cache_destroy(btrfs_inode_defrag_cachep);
}
int __init btrfs_auto_defrag_init(void)
{
btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
sizeof(struct inode_defrag), 0,
SLAB_MEM_SPREAD,
NULL);
if (!btrfs_inode_defrag_cachep)
return -ENOMEM;
return 0;
}
int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
{
int ret;
/*
* So with compression we will find and lock a dirty page and clear the
* first one as dirty, setup an async extent, and immediately return
* with the entire range locked but with nobody actually marked with
* writeback. So we can't just filemap_write_and_wait_range() and
* expect it to work since it will just kick off a thread to do the
* actual work. So we need to call filemap_fdatawrite_range _again_
* since it will wait on the page lock, which won't be unlocked until
* after the pages have been marked as writeback and so we're good to go
* from there. We have to do this otherwise we'll miss the ordered
* extents and that results in badness. Please Josef, do not think you
* know better and pull this out at some point in the future, it is
* right and you are wrong.
*/
ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
&BTRFS_I(inode)->runtime_flags))
ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
return ret;
}