Reinette Chatre 76f8f009f6 selftests/resctrl: Remove unused measurement code
The MBM and MBA resctrl selftests run a benchmark during which
it takes measurements of read memory bandwidth via perf.
Code exists to support measurements of write memory bandwidth
but there exists no path with which this code can execute.

While code exists for write memory bandwidth measurement
there has not yet been a use case for it. Remove this unused code.
Rename relevant functions to include "read" so that it is clear
that it relates only to memory bandwidth reads, while renaming
the functions also add consistency by changing the "membw"
instances to more prevalent "mem_bw".

Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2024-11-04 17:02:03 -07:00

855 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Basic resctrl file system operations
*
* Copyright (C) 2018 Intel Corporation
*
* Authors:
* Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>,
* Fenghua Yu <fenghua.yu@intel.com>
*/
#include <fcntl.h>
#include <limits.h>
#include "resctrl.h"
static int find_resctrl_mount(char *buffer)
{
FILE *mounts;
char line[256], *fs, *mntpoint;
mounts = fopen("/proc/mounts", "r");
if (!mounts) {
ksft_perror("/proc/mounts");
return -ENXIO;
}
while (!feof(mounts)) {
if (!fgets(line, 256, mounts))
break;
fs = strtok(line, " \t");
if (!fs)
continue;
mntpoint = strtok(NULL, " \t");
if (!mntpoint)
continue;
fs = strtok(NULL, " \t");
if (!fs)
continue;
if (strcmp(fs, "resctrl"))
continue;
fclose(mounts);
if (buffer)
strncpy(buffer, mntpoint, 256);
return 0;
}
fclose(mounts);
return -ENOENT;
}
/*
* mount_resctrlfs - Mount resctrl FS at /sys/fs/resctrl
*
* Mounts resctrl FS. Fails if resctrl FS is already mounted to avoid
* pre-existing settings interfering with the test results.
*
* Return: 0 on success, < 0 on error.
*/
int mount_resctrlfs(void)
{
int ret;
ret = find_resctrl_mount(NULL);
if (ret != -ENOENT)
return -1;
ksft_print_msg("Mounting resctrl to \"%s\"\n", RESCTRL_PATH);
ret = mount("resctrl", RESCTRL_PATH, "resctrl", 0, NULL);
if (ret)
ksft_perror("mount");
return ret;
}
int umount_resctrlfs(void)
{
char mountpoint[256];
int ret;
ret = find_resctrl_mount(mountpoint);
if (ret == -ENOENT)
return 0;
if (ret)
return ret;
if (umount(mountpoint)) {
ksft_perror("Unable to umount resctrl");
return -1;
}
return 0;
}
/*
* get_cache_level - Convert cache level from string to integer
* @cache_type: Cache level as string
*
* Return: cache level as integer or -1 if @cache_type is invalid.
*/
static int get_cache_level(const char *cache_type)
{
if (!strcmp(cache_type, "L3"))
return 3;
if (!strcmp(cache_type, "L2"))
return 2;
ksft_print_msg("Invalid cache level\n");
return -1;
}
static int get_resource_cache_level(const char *resource)
{
/* "MB" use L3 (LLC) as resource */
if (!strcmp(resource, "MB"))
return 3;
return get_cache_level(resource);
}
/*
* get_domain_id - Get resctrl domain ID for a specified CPU
* @resource: resource name
* @cpu_no: CPU number
* @domain_id: domain ID (cache ID; for MB, L3 cache ID)
*
* Return: >= 0 on success, < 0 on failure.
*/
int get_domain_id(const char *resource, int cpu_no, int *domain_id)
{
char phys_pkg_path[1024];
int cache_num;
FILE *fp;
cache_num = get_resource_cache_level(resource);
if (cache_num < 0)
return cache_num;
sprintf(phys_pkg_path, "%s%d/cache/index%d/id", PHYS_ID_PATH, cpu_no, cache_num);
fp = fopen(phys_pkg_path, "r");
if (!fp) {
ksft_perror("Failed to open cache id file");
return -1;
}
if (fscanf(fp, "%d", domain_id) <= 0) {
ksft_perror("Could not get domain ID");
fclose(fp);
return -1;
}
fclose(fp);
return 0;
}
/*
* get_cache_size - Get cache size for a specified CPU
* @cpu_no: CPU number
* @cache_type: Cache level L2/L3
* @cache_size: pointer to cache_size
*
* Return: = 0 on success, < 0 on failure.
*/
int get_cache_size(int cpu_no, const char *cache_type, unsigned long *cache_size)
{
char cache_path[1024], cache_str[64];
int length, i, cache_num;
FILE *fp;
cache_num = get_cache_level(cache_type);
if (cache_num < 0)
return cache_num;
sprintf(cache_path, "/sys/bus/cpu/devices/cpu%d/cache/index%d/size",
cpu_no, cache_num);
fp = fopen(cache_path, "r");
if (!fp) {
ksft_perror("Failed to open cache size");
return -1;
}
if (fscanf(fp, "%63s", cache_str) <= 0) {
ksft_perror("Could not get cache_size");
fclose(fp);
return -1;
}
fclose(fp);
length = (int)strlen(cache_str);
*cache_size = 0;
for (i = 0; i < length; i++) {
if ((cache_str[i] >= '0') && (cache_str[i] <= '9'))
*cache_size = *cache_size * 10 + (cache_str[i] - '0');
else if (cache_str[i] == 'K')
*cache_size = *cache_size * 1024;
else if (cache_str[i] == 'M')
*cache_size = *cache_size * 1024 * 1024;
else
break;
}
return 0;
}
#define CORE_SIBLINGS_PATH "/sys/bus/cpu/devices/cpu"
/*
* get_bit_mask - Get bit mask from given file
* @filename: File containing the mask
* @mask: The bit mask returned as unsigned long
*
* Return: = 0 on success, < 0 on failure.
*/
static int get_bit_mask(const char *filename, unsigned long *mask)
{
FILE *fp;
if (!filename || !mask)
return -1;
fp = fopen(filename, "r");
if (!fp) {
ksft_print_msg("Failed to open bit mask file '%s': %s\n",
filename, strerror(errno));
return -1;
}
if (fscanf(fp, "%lx", mask) <= 0) {
ksft_print_msg("Could not read bit mask file '%s': %s\n",
filename, strerror(errno));
fclose(fp);
return -1;
}
fclose(fp);
return 0;
}
/*
* resource_info_unsigned_get - Read an unsigned value from
* /sys/fs/resctrl/info/@resource/@filename
* @resource: Resource name that matches directory name in
* /sys/fs/resctrl/info
* @filename: File in /sys/fs/resctrl/info/@resource
* @val: Contains read value on success.
*
* Return: = 0 on success, < 0 on failure. On success the read
* value is saved into @val.
*/
int resource_info_unsigned_get(const char *resource, const char *filename,
unsigned int *val)
{
char file_path[PATH_MAX];
FILE *fp;
snprintf(file_path, sizeof(file_path), "%s/%s/%s", INFO_PATH, resource,
filename);
fp = fopen(file_path, "r");
if (!fp) {
ksft_print_msg("Error opening %s: %m\n", file_path);
return -1;
}
if (fscanf(fp, "%u", val) <= 0) {
ksft_print_msg("Could not get contents of %s: %m\n", file_path);
fclose(fp);
return -1;
}
fclose(fp);
return 0;
}
/*
* create_bit_mask- Create bit mask from start, len pair
* @start: LSB of the mask
* @len Number of bits in the mask
*/
unsigned long create_bit_mask(unsigned int start, unsigned int len)
{
return ((1UL << len) - 1UL) << start;
}
/*
* count_contiguous_bits - Returns the longest train of bits in a bit mask
* @val A bit mask
* @start The location of the least-significant bit of the longest train
*
* Return: The length of the contiguous bits in the longest train of bits
*/
unsigned int count_contiguous_bits(unsigned long val, unsigned int *start)
{
unsigned long last_val;
unsigned int count = 0;
while (val) {
last_val = val;
val &= (val >> 1);
count++;
}
if (start) {
if (count)
*start = ffsl(last_val) - 1;
else
*start = 0;
}
return count;
}
/*
* get_full_cbm - Get full Cache Bit Mask (CBM)
* @cache_type: Cache type as "L2" or "L3"
* @mask: Full cache bit mask representing the maximal portion of cache
* available for allocation, returned as unsigned long.
*
* Return: = 0 on success, < 0 on failure.
*/
int get_full_cbm(const char *cache_type, unsigned long *mask)
{
char cbm_path[PATH_MAX];
int ret;
if (!cache_type)
return -1;
snprintf(cbm_path, sizeof(cbm_path), "%s/%s/cbm_mask",
INFO_PATH, cache_type);
ret = get_bit_mask(cbm_path, mask);
if (ret || !*mask)
return -1;
return 0;
}
/*
* get_shareable_mask - Get shareable mask from shareable_bits
* @cache_type: Cache type as "L2" or "L3"
* @shareable_mask: Shareable mask returned as unsigned long
*
* Return: = 0 on success, < 0 on failure.
*/
static int get_shareable_mask(const char *cache_type, unsigned long *shareable_mask)
{
char mask_path[PATH_MAX];
if (!cache_type)
return -1;
snprintf(mask_path, sizeof(mask_path), "%s/%s/shareable_bits",
INFO_PATH, cache_type);
return get_bit_mask(mask_path, shareable_mask);
}
/*
* get_mask_no_shareable - Get Cache Bit Mask (CBM) without shareable bits
* @cache_type: Cache type as "L2" or "L3"
* @mask: The largest exclusive portion of the cache out of the
* full CBM, returned as unsigned long
*
* Parts of a cache may be shared with other devices such as GPU. This function
* calculates the largest exclusive portion of the cache where no other devices
* besides CPU have access to the cache portion.
*
* Return: = 0 on success, < 0 on failure.
*/
int get_mask_no_shareable(const char *cache_type, unsigned long *mask)
{
unsigned long full_mask, shareable_mask;
unsigned int start, len;
if (get_full_cbm(cache_type, &full_mask) < 0)
return -1;
if (get_shareable_mask(cache_type, &shareable_mask) < 0)
return -1;
len = count_contiguous_bits(full_mask & ~shareable_mask, &start);
if (!len)
return -1;
*mask = create_bit_mask(start, len);
return 0;
}
/*
* taskset_benchmark - Taskset PID (i.e. benchmark) to a specified cpu
* @bm_pid: PID that should be binded
* @cpu_no: CPU number at which the PID would be binded
* @old_affinity: When not NULL, set to old CPU affinity
*
* Return: 0 on success, < 0 on error.
*/
int taskset_benchmark(pid_t bm_pid, int cpu_no, cpu_set_t *old_affinity)
{
cpu_set_t my_set;
if (old_affinity) {
CPU_ZERO(old_affinity);
if (sched_getaffinity(bm_pid, sizeof(*old_affinity),
old_affinity)) {
ksft_perror("Unable to read CPU affinity");
return -1;
}
}
CPU_ZERO(&my_set);
CPU_SET(cpu_no, &my_set);
if (sched_setaffinity(bm_pid, sizeof(cpu_set_t), &my_set)) {
ksft_perror("Unable to taskset benchmark");
return -1;
}
return 0;
}
/*
* taskset_restore - Taskset PID to the earlier CPU affinity
* @bm_pid: PID that should be reset
* @old_affinity: The old CPU affinity to restore
*
* Return: 0 on success, < 0 on error.
*/
int taskset_restore(pid_t bm_pid, cpu_set_t *old_affinity)
{
if (sched_setaffinity(bm_pid, sizeof(*old_affinity), old_affinity)) {
ksft_perror("Unable to restore CPU affinity");
return -1;
}
return 0;
}
/*
* create_grp - Create a group only if one doesn't exist
* @grp_name: Name of the group
* @grp: Full path and name of the group
* @parent_grp: Full path and name of the parent group
*
* Creates a group @grp_name if it does not exist yet. If @grp_name is NULL,
* it is interpreted as the root group which always results in success.
*
* Return: 0 on success, < 0 on error.
*/
static int create_grp(const char *grp_name, char *grp, const char *parent_grp)
{
int found_grp = 0;
struct dirent *ep;
DIR *dp;
if (!grp_name)
return 0;
/* Check if requested grp exists or not */
dp = opendir(parent_grp);
if (dp) {
while ((ep = readdir(dp)) != NULL) {
if (strcmp(ep->d_name, grp_name) == 0)
found_grp = 1;
}
closedir(dp);
} else {
ksft_perror("Unable to open resctrl for group");
return -1;
}
/* Requested grp doesn't exist, hence create it */
if (found_grp == 0) {
if (mkdir(grp, 0) == -1) {
ksft_perror("Unable to create group");
return -1;
}
}
return 0;
}
static int write_pid_to_tasks(char *tasks, pid_t pid)
{
FILE *fp;
fp = fopen(tasks, "w");
if (!fp) {
ksft_perror("Failed to open tasks file");
return -1;
}
if (fprintf(fp, "%d\n", (int)pid) < 0) {
ksft_print_msg("Failed to write pid to tasks file\n");
fclose(fp);
return -1;
}
fclose(fp);
return 0;
}
/*
* write_bm_pid_to_resctrl - Write a PID (i.e. benchmark) to resctrl FS
* @bm_pid: PID that should be written
* @ctrlgrp: Name of the control monitor group (con_mon grp)
* @mongrp: Name of the monitor group (mon grp)
*
* If a con_mon grp is requested, create it and write pid to it, otherwise
* write pid to root con_mon grp.
* If a mon grp is requested, create it and write pid to it, otherwise
* pid is not written, this means that pid is in con_mon grp and hence
* should consult con_mon grp's mon_data directory for results.
*
* Return: 0 on success, < 0 on error.
*/
int write_bm_pid_to_resctrl(pid_t bm_pid, const char *ctrlgrp, const char *mongrp)
{
char controlgroup[128], monitorgroup[512], monitorgroup_p[256];
char tasks[1024];
int ret = 0;
if (ctrlgrp)
sprintf(controlgroup, "%s/%s", RESCTRL_PATH, ctrlgrp);
else
sprintf(controlgroup, "%s", RESCTRL_PATH);
/* Create control and monitoring group and write pid into it */
ret = create_grp(ctrlgrp, controlgroup, RESCTRL_PATH);
if (ret)
goto out;
sprintf(tasks, "%s/tasks", controlgroup);
ret = write_pid_to_tasks(tasks, bm_pid);
if (ret)
goto out;
/* Create monitor group and write pid into if it is used */
if (mongrp) {
sprintf(monitorgroup_p, "%s/mon_groups", controlgroup);
sprintf(monitorgroup, "%s/%s", monitorgroup_p, mongrp);
ret = create_grp(mongrp, monitorgroup, monitorgroup_p);
if (ret)
goto out;
sprintf(tasks, "%s/mon_groups/%s/tasks",
controlgroup, mongrp);
ret = write_pid_to_tasks(tasks, bm_pid);
if (ret)
goto out;
}
out:
ksft_print_msg("Writing benchmark parameters to resctrl FS\n");
if (ret)
ksft_print_msg("Failed writing to resctrlfs\n");
return ret;
}
/*
* write_schemata - Update schemata of a con_mon grp
* @ctrlgrp: Name of the con_mon grp
* @schemata: Schemata that should be updated to
* @cpu_no: CPU number that the benchmark PID is binded to
* @resource: Resctrl resource (Eg: MB, L3, L2, etc.)
*
* Update schemata of a con_mon grp *only* if requested resctrl resource is
* allocation type
*
* Return: 0 on success, < 0 on error.
*/
int write_schemata(const char *ctrlgrp, char *schemata, int cpu_no,
const char *resource)
{
char controlgroup[1024], reason[128], schema[1024] = {};
int domain_id, fd, schema_len, ret = 0;
if (!schemata) {
ksft_print_msg("Skipping empty schemata update\n");
return -1;
}
if (get_domain_id(resource, cpu_no, &domain_id) < 0) {
sprintf(reason, "Failed to get domain ID");
ret = -1;
goto out;
}
if (ctrlgrp)
sprintf(controlgroup, "%s/%s/schemata", RESCTRL_PATH, ctrlgrp);
else
sprintf(controlgroup, "%s/schemata", RESCTRL_PATH);
schema_len = snprintf(schema, sizeof(schema), "%s:%d=%s\n",
resource, domain_id, schemata);
if (schema_len < 0 || schema_len >= sizeof(schema)) {
snprintf(reason, sizeof(reason),
"snprintf() failed with return value : %d", schema_len);
ret = -1;
goto out;
}
fd = open(controlgroup, O_WRONLY);
if (fd < 0) {
snprintf(reason, sizeof(reason),
"open() failed : %s", strerror(errno));
ret = -1;
goto err_schema_not_empty;
}
if (write(fd, schema, schema_len) < 0) {
snprintf(reason, sizeof(reason),
"write() failed : %s", strerror(errno));
close(fd);
ret = -1;
goto err_schema_not_empty;
}
close(fd);
err_schema_not_empty:
schema[schema_len - 1] = 0;
out:
ksft_print_msg("Write schema \"%s\" to resctrl FS%s%s\n",
schema, ret ? " # " : "",
ret ? reason : "");
return ret;
}
bool check_resctrlfs_support(void)
{
FILE *inf = fopen("/proc/filesystems", "r");
DIR *dp;
char *res;
bool ret = false;
if (!inf)
return false;
res = fgrep(inf, "nodev\tresctrl\n");
if (res) {
ret = true;
free(res);
}
fclose(inf);
ksft_print_msg("%s Check kernel supports resctrl filesystem\n",
ret ? "Pass:" : "Fail:");
if (!ret)
return ret;
dp = opendir(RESCTRL_PATH);
ksft_print_msg("%s Check resctrl mountpoint \"%s\" exists\n",
dp ? "Pass:" : "Fail:", RESCTRL_PATH);
if (dp)
closedir(dp);
ksft_print_msg("resctrl filesystem %s mounted\n",
find_resctrl_mount(NULL) ? "not" : "is");
return ret;
}
char *fgrep(FILE *inf, const char *str)
{
char line[256];
int slen = strlen(str);
while (!feof(inf)) {
if (!fgets(line, 256, inf))
break;
if (strncmp(line, str, slen))
continue;
return strdup(line);
}
return NULL;
}
/*
* resctrl_resource_exists - Check if a resource is supported.
* @resource: Resctrl resource (e.g., MB, L3, L2, L3_MON, etc.)
*
* Return: True if the resource is supported, else false. False is
* also returned if resctrl FS is not mounted.
*/
bool resctrl_resource_exists(const char *resource)
{
char res_path[PATH_MAX];
struct stat statbuf;
int ret;
if (!resource)
return false;
ret = find_resctrl_mount(NULL);
if (ret)
return false;
snprintf(res_path, sizeof(res_path), "%s/%s", INFO_PATH, resource);
if (stat(res_path, &statbuf))
return false;
return true;
}
/*
* resctrl_mon_feature_exists - Check if requested monitoring feature is valid.
* @resource: Resource that uses the mon_features file. Currently only L3_MON
* is valid.
* @feature: Required monitor feature (in mon_features file).
*
* Return: True if the feature is supported, else false.
*/
bool resctrl_mon_feature_exists(const char *resource, const char *feature)
{
char res_path[PATH_MAX];
char *res;
FILE *inf;
if (!feature || !resource)
return false;
snprintf(res_path, sizeof(res_path), "%s/%s/mon_features", INFO_PATH, resource);
inf = fopen(res_path, "r");
if (!inf)
return false;
res = fgrep(inf, feature);
free(res);
fclose(inf);
return !!res;
}
/*
* resource_info_file_exists - Check if a file is present inside
* /sys/fs/resctrl/info/@resource.
* @resource: Required resource (Eg: MB, L3, L2, etc.)
* @file: Required file.
*
* Return: True if the /sys/fs/resctrl/info/@resource/@file exists, else false.
*/
bool resource_info_file_exists(const char *resource, const char *file)
{
char res_path[PATH_MAX];
struct stat statbuf;
if (!file || !resource)
return false;
snprintf(res_path, sizeof(res_path), "%s/%s/%s", INFO_PATH, resource,
file);
if (stat(res_path, &statbuf))
return false;
return true;
}
bool test_resource_feature_check(const struct resctrl_test *test)
{
return resctrl_resource_exists(test->resource);
}
int filter_dmesg(void)
{
char line[1024];
FILE *fp;
int pipefds[2];
pid_t pid;
int ret;
ret = pipe(pipefds);
if (ret) {
ksft_perror("pipe");
return ret;
}
fflush(stdout);
pid = fork();
if (pid == 0) {
close(pipefds[0]);
dup2(pipefds[1], STDOUT_FILENO);
execlp("dmesg", "dmesg", NULL);
ksft_perror("Executing dmesg");
exit(1);
}
close(pipefds[1]);
fp = fdopen(pipefds[0], "r");
if (!fp) {
ksft_perror("fdopen(pipe)");
kill(pid, SIGTERM);
return -1;
}
while (fgets(line, 1024, fp)) {
if (strstr(line, "intel_rdt:"))
ksft_print_msg("dmesg: %s", line);
if (strstr(line, "resctrl:"))
ksft_print_msg("dmesg: %s", line);
}
fclose(fp);
waitpid(pid, NULL, 0);
return 0;
}
int perf_event_open(struct perf_event_attr *hw_event, pid_t pid, int cpu,
int group_fd, unsigned long flags)
{
int ret;
ret = syscall(__NR_perf_event_open, hw_event, pid, cpu,
group_fd, flags);
return ret;
}
unsigned int count_bits(unsigned long n)
{
unsigned int count = 0;
while (n) {
count += n & 1;
n >>= 1;
}
return count;
}