mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-10 07:00:48 +00:00
63734a32a4
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jeff Garzik <jeff@garzik.org>
3205 lines
89 KiB
C
3205 lines
89 KiB
C
/*
|
|
A FORE Systems 200E-series driver for ATM on Linux.
|
|
Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
|
|
|
|
Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
|
|
|
|
This driver simultaneously supports PCA-200E and SBA-200E adapters
|
|
on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/module.h>
|
|
#include <linux/atmdev.h>
|
|
#include <linux/sonet.h>
|
|
#include <linux/atm_suni.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/io.h>
|
|
#include <asm/string.h>
|
|
#include <asm/page.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/atomic.h>
|
|
|
|
#ifdef CONFIG_ATM_FORE200E_SBA
|
|
#include <asm/idprom.h>
|
|
#include <asm/sbus.h>
|
|
#include <asm/openprom.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/pgtable.h>
|
|
#endif
|
|
|
|
#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
|
|
#define FORE200E_USE_TASKLET
|
|
#endif
|
|
|
|
#if 0 /* enable the debugging code of the buffer supply queues */
|
|
#define FORE200E_BSQ_DEBUG
|
|
#endif
|
|
|
|
#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
|
|
#define FORE200E_52BYTE_AAL0_SDU
|
|
#endif
|
|
|
|
#include "fore200e.h"
|
|
#include "suni.h"
|
|
|
|
#define FORE200E_VERSION "0.3e"
|
|
|
|
#define FORE200E "fore200e: "
|
|
|
|
#if 0 /* override .config */
|
|
#define CONFIG_ATM_FORE200E_DEBUG 1
|
|
#endif
|
|
#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
|
|
#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
|
|
printk(FORE200E format, ##args); } while (0)
|
|
#else
|
|
#define DPRINTK(level, format, args...) do {} while (0)
|
|
#endif
|
|
|
|
|
|
#define FORE200E_ALIGN(addr, alignment) \
|
|
((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
|
|
|
|
#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
|
|
|
|
#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
|
|
|
|
#define FORE200E_NEXT_ENTRY(index, modulo) (index = ++(index) % (modulo))
|
|
|
|
#if 1
|
|
#define ASSERT(expr) if (!(expr)) { \
|
|
printk(FORE200E "assertion failed! %s[%d]: %s\n", \
|
|
__func__, __LINE__, #expr); \
|
|
panic(FORE200E "%s", __func__); \
|
|
}
|
|
#else
|
|
#define ASSERT(expr) do {} while (0)
|
|
#endif
|
|
|
|
|
|
static const struct atmdev_ops fore200e_ops;
|
|
static const struct fore200e_bus fore200e_bus[];
|
|
|
|
static LIST_HEAD(fore200e_boards);
|
|
|
|
|
|
MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
|
|
MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
|
|
MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
|
|
|
|
|
|
static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
|
|
{ BUFFER_S1_NBR, BUFFER_L1_NBR },
|
|
{ BUFFER_S2_NBR, BUFFER_L2_NBR }
|
|
};
|
|
|
|
static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
|
|
{ BUFFER_S1_SIZE, BUFFER_L1_SIZE },
|
|
{ BUFFER_S2_SIZE, BUFFER_L2_SIZE }
|
|
};
|
|
|
|
|
|
#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
|
|
static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
|
|
#endif
|
|
|
|
|
|
#if 0 /* currently unused */
|
|
static int
|
|
fore200e_fore2atm_aal(enum fore200e_aal aal)
|
|
{
|
|
switch(aal) {
|
|
case FORE200E_AAL0: return ATM_AAL0;
|
|
case FORE200E_AAL34: return ATM_AAL34;
|
|
case FORE200E_AAL5: return ATM_AAL5;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
|
|
static enum fore200e_aal
|
|
fore200e_atm2fore_aal(int aal)
|
|
{
|
|
switch(aal) {
|
|
case ATM_AAL0: return FORE200E_AAL0;
|
|
case ATM_AAL34: return FORE200E_AAL34;
|
|
case ATM_AAL1:
|
|
case ATM_AAL2:
|
|
case ATM_AAL5: return FORE200E_AAL5;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
static char*
|
|
fore200e_irq_itoa(int irq)
|
|
{
|
|
static char str[8];
|
|
sprintf(str, "%d", irq);
|
|
return str;
|
|
}
|
|
|
|
|
|
/* allocate and align a chunk of memory intended to hold the data behing exchanged
|
|
between the driver and the adapter (using streaming DVMA) */
|
|
|
|
static int
|
|
fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
|
|
{
|
|
unsigned long offset = 0;
|
|
|
|
if (alignment <= sizeof(int))
|
|
alignment = 0;
|
|
|
|
chunk->alloc_size = size + alignment;
|
|
chunk->align_size = size;
|
|
chunk->direction = direction;
|
|
|
|
chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
|
|
if (chunk->alloc_addr == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (alignment > 0)
|
|
offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
|
|
|
|
chunk->align_addr = chunk->alloc_addr + offset;
|
|
|
|
chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* free a chunk of memory */
|
|
|
|
static void
|
|
fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
|
|
{
|
|
fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
|
|
|
|
kfree(chunk->alloc_addr);
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_spin(int msecs)
|
|
{
|
|
unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
|
|
while (time_before(jiffies, timeout));
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
|
|
{
|
|
unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
|
|
int ok;
|
|
|
|
mb();
|
|
do {
|
|
if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
|
|
break;
|
|
|
|
} while (time_before(jiffies, timeout));
|
|
|
|
#if 1
|
|
if (!ok) {
|
|
printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
|
|
*addr, val);
|
|
}
|
|
#endif
|
|
|
|
return ok;
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
|
|
{
|
|
unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
|
|
int ok;
|
|
|
|
do {
|
|
if ((ok = (fore200e->bus->read(addr) == val)))
|
|
break;
|
|
|
|
} while (time_before(jiffies, timeout));
|
|
|
|
#if 1
|
|
if (!ok) {
|
|
printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
|
|
fore200e->bus->read(addr), val);
|
|
}
|
|
#endif
|
|
|
|
return ok;
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_free_rx_buf(struct fore200e* fore200e)
|
|
{
|
|
int scheme, magn, nbr;
|
|
struct buffer* buffer;
|
|
|
|
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
|
|
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
|
|
|
|
if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
|
|
|
|
for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
|
|
|
|
struct chunk* data = &buffer[ nbr ].data;
|
|
|
|
if (data->alloc_addr != NULL)
|
|
fore200e_chunk_free(fore200e, data);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_uninit_bs_queue(struct fore200e* fore200e)
|
|
{
|
|
int scheme, magn;
|
|
|
|
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
|
|
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
|
|
|
|
struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
|
|
struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
|
|
|
|
if (status->alloc_addr)
|
|
fore200e->bus->dma_chunk_free(fore200e, status);
|
|
|
|
if (rbd_block->alloc_addr)
|
|
fore200e->bus->dma_chunk_free(fore200e, rbd_block);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_reset(struct fore200e* fore200e, int diag)
|
|
{
|
|
int ok;
|
|
|
|
fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
|
|
|
|
fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
|
|
|
|
fore200e->bus->reset(fore200e);
|
|
|
|
if (diag) {
|
|
ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
|
|
if (ok == 0) {
|
|
|
|
printk(FORE200E "device %s self-test failed\n", fore200e->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
printk(FORE200E "device %s self-test passed\n", fore200e->name);
|
|
|
|
fore200e->state = FORE200E_STATE_RESET;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_shutdown(struct fore200e* fore200e)
|
|
{
|
|
printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
|
|
fore200e->name, fore200e->phys_base,
|
|
fore200e_irq_itoa(fore200e->irq));
|
|
|
|
if (fore200e->state > FORE200E_STATE_RESET) {
|
|
/* first, reset the board to prevent further interrupts or data transfers */
|
|
fore200e_reset(fore200e, 0);
|
|
}
|
|
|
|
/* then, release all allocated resources */
|
|
switch(fore200e->state) {
|
|
|
|
case FORE200E_STATE_COMPLETE:
|
|
kfree(fore200e->stats);
|
|
|
|
case FORE200E_STATE_IRQ:
|
|
free_irq(fore200e->irq, fore200e->atm_dev);
|
|
|
|
case FORE200E_STATE_ALLOC_BUF:
|
|
fore200e_free_rx_buf(fore200e);
|
|
|
|
case FORE200E_STATE_INIT_BSQ:
|
|
fore200e_uninit_bs_queue(fore200e);
|
|
|
|
case FORE200E_STATE_INIT_RXQ:
|
|
fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
|
|
fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
|
|
|
|
case FORE200E_STATE_INIT_TXQ:
|
|
fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
|
|
fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
|
|
|
|
case FORE200E_STATE_INIT_CMDQ:
|
|
fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
|
|
|
|
case FORE200E_STATE_INITIALIZE:
|
|
/* nothing to do for that state */
|
|
|
|
case FORE200E_STATE_START_FW:
|
|
/* nothing to do for that state */
|
|
|
|
case FORE200E_STATE_LOAD_FW:
|
|
/* nothing to do for that state */
|
|
|
|
case FORE200E_STATE_RESET:
|
|
/* nothing to do for that state */
|
|
|
|
case FORE200E_STATE_MAP:
|
|
fore200e->bus->unmap(fore200e);
|
|
|
|
case FORE200E_STATE_CONFIGURE:
|
|
/* nothing to do for that state */
|
|
|
|
case FORE200E_STATE_REGISTER:
|
|
/* XXX shouldn't we *start* by deregistering the device? */
|
|
atm_dev_deregister(fore200e->atm_dev);
|
|
|
|
case FORE200E_STATE_BLANK:
|
|
/* nothing to do for that state */
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_ATM_FORE200E_PCA
|
|
|
|
static u32 fore200e_pca_read(volatile u32 __iomem *addr)
|
|
{
|
|
/* on big-endian hosts, the board is configured to convert
|
|
the endianess of slave RAM accesses */
|
|
return le32_to_cpu(readl(addr));
|
|
}
|
|
|
|
|
|
static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
|
|
{
|
|
/* on big-endian hosts, the board is configured to convert
|
|
the endianess of slave RAM accesses */
|
|
writel(cpu_to_le32(val), addr);
|
|
}
|
|
|
|
|
|
static u32
|
|
fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
|
|
{
|
|
u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
|
|
|
|
DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n",
|
|
virt_addr, size, direction, dma_addr);
|
|
|
|
return dma_addr;
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
|
|
{
|
|
DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
|
|
dma_addr, size, direction);
|
|
|
|
pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
|
|
{
|
|
DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
|
|
|
|
pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
|
|
}
|
|
|
|
static void
|
|
fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
|
|
{
|
|
DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
|
|
|
|
pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
|
|
}
|
|
|
|
|
|
/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
|
|
(to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
|
|
|
|
static int
|
|
fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
|
|
int size, int nbr, int alignment)
|
|
{
|
|
/* returned chunks are page-aligned */
|
|
chunk->alloc_size = size * nbr;
|
|
chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
|
|
chunk->alloc_size,
|
|
&chunk->dma_addr);
|
|
|
|
if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
|
|
return -ENOMEM;
|
|
|
|
chunk->align_addr = chunk->alloc_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* free a DMA consistent chunk of memory */
|
|
|
|
static void
|
|
fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
|
|
{
|
|
pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
|
|
chunk->alloc_size,
|
|
chunk->alloc_addr,
|
|
chunk->dma_addr);
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_pca_irq_check(struct fore200e* fore200e)
|
|
{
|
|
/* this is a 1 bit register */
|
|
int irq_posted = readl(fore200e->regs.pca.psr);
|
|
|
|
#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
|
|
if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
|
|
DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
|
|
}
|
|
#endif
|
|
|
|
return irq_posted;
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_pca_irq_ack(struct fore200e* fore200e)
|
|
{
|
|
writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_pca_reset(struct fore200e* fore200e)
|
|
{
|
|
writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
|
|
fore200e_spin(10);
|
|
writel(0, fore200e->regs.pca.hcr);
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_pca_map(struct fore200e* fore200e)
|
|
{
|
|
DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
|
|
|
|
fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
|
|
|
|
if (fore200e->virt_base == NULL) {
|
|
printk(FORE200E "can't map device %s\n", fore200e->name);
|
|
return -EFAULT;
|
|
}
|
|
|
|
DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
|
|
|
|
/* gain access to the PCA specific registers */
|
|
fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
|
|
fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
|
|
fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
|
|
|
|
fore200e->state = FORE200E_STATE_MAP;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_pca_unmap(struct fore200e* fore200e)
|
|
{
|
|
DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
|
|
|
|
if (fore200e->virt_base != NULL)
|
|
iounmap(fore200e->virt_base);
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_pca_configure(struct fore200e* fore200e)
|
|
{
|
|
struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
|
|
u8 master_ctrl, latency;
|
|
|
|
DPRINTK(2, "device %s being configured\n", fore200e->name);
|
|
|
|
if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
|
|
printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
|
|
return -EIO;
|
|
}
|
|
|
|
pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
|
|
|
|
master_ctrl = master_ctrl
|
|
#if defined(__BIG_ENDIAN)
|
|
/* request the PCA board to convert the endianess of slave RAM accesses */
|
|
| PCA200E_CTRL_CONVERT_ENDIAN
|
|
#endif
|
|
#if 0
|
|
| PCA200E_CTRL_DIS_CACHE_RD
|
|
| PCA200E_CTRL_DIS_WRT_INVAL
|
|
| PCA200E_CTRL_ENA_CONT_REQ_MODE
|
|
| PCA200E_CTRL_2_CACHE_WRT_INVAL
|
|
#endif
|
|
| PCA200E_CTRL_LARGE_PCI_BURSTS;
|
|
|
|
pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
|
|
|
|
/* raise latency from 32 (default) to 192, as this seems to prevent NIC
|
|
lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
|
|
this may impact the performances of other PCI devices on the same bus, though */
|
|
latency = 192;
|
|
pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
|
|
|
|
fore200e->state = FORE200E_STATE_CONFIGURE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __init
|
|
fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
|
|
{
|
|
struct host_cmdq* cmdq = &fore200e->host_cmdq;
|
|
struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
|
|
struct prom_opcode opcode;
|
|
int ok;
|
|
u32 prom_dma;
|
|
|
|
FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
|
|
|
|
opcode.opcode = OPCODE_GET_PROM;
|
|
opcode.pad = 0;
|
|
|
|
prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
|
|
|
|
fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
|
|
|
|
*entry->status = STATUS_PENDING;
|
|
|
|
fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
|
|
|
|
ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
|
|
|
|
*entry->status = STATUS_FREE;
|
|
|
|
fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
|
|
|
|
if (ok == 0) {
|
|
printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
|
|
return -EIO;
|
|
}
|
|
|
|
#if defined(__BIG_ENDIAN)
|
|
|
|
#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
|
|
|
|
/* MAC address is stored as little-endian */
|
|
swap_here(&prom->mac_addr[0]);
|
|
swap_here(&prom->mac_addr[4]);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
|
|
{
|
|
struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
|
|
|
|
return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
|
|
pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
|
|
}
|
|
|
|
#endif /* CONFIG_ATM_FORE200E_PCA */
|
|
|
|
|
|
#ifdef CONFIG_ATM_FORE200E_SBA
|
|
|
|
static u32
|
|
fore200e_sba_read(volatile u32 __iomem *addr)
|
|
{
|
|
return sbus_readl(addr);
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
|
|
{
|
|
sbus_writel(val, addr);
|
|
}
|
|
|
|
|
|
static u32
|
|
fore200e_sba_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
|
|
{
|
|
u32 dma_addr = sbus_map_single((struct sbus_dev*)fore200e->bus_dev, virt_addr, size, direction);
|
|
|
|
DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
|
|
virt_addr, size, direction, dma_addr);
|
|
|
|
return dma_addr;
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_sba_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
|
|
{
|
|
DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
|
|
dma_addr, size, direction);
|
|
|
|
sbus_unmap_single((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction);
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_sba_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
|
|
{
|
|
DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
|
|
|
|
sbus_dma_sync_single_for_cpu((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction);
|
|
}
|
|
|
|
static void
|
|
fore200e_sba_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
|
|
{
|
|
DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
|
|
|
|
sbus_dma_sync_single_for_device((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction);
|
|
}
|
|
|
|
|
|
/* allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
|
|
(to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
|
|
|
|
static int
|
|
fore200e_sba_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
|
|
int size, int nbr, int alignment)
|
|
{
|
|
chunk->alloc_size = chunk->align_size = size * nbr;
|
|
|
|
/* returned chunks are page-aligned */
|
|
chunk->alloc_addr = sbus_alloc_consistent((struct sbus_dev*)fore200e->bus_dev,
|
|
chunk->alloc_size,
|
|
&chunk->dma_addr);
|
|
|
|
if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
|
|
return -ENOMEM;
|
|
|
|
chunk->align_addr = chunk->alloc_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* free a DVMA consistent chunk of memory */
|
|
|
|
static void
|
|
fore200e_sba_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
|
|
{
|
|
sbus_free_consistent((struct sbus_dev*)fore200e->bus_dev,
|
|
chunk->alloc_size,
|
|
chunk->alloc_addr,
|
|
chunk->dma_addr);
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_sba_irq_enable(struct fore200e* fore200e)
|
|
{
|
|
u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
|
|
fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_sba_irq_check(struct fore200e* fore200e)
|
|
{
|
|
return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_sba_irq_ack(struct fore200e* fore200e)
|
|
{
|
|
u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
|
|
fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_sba_reset(struct fore200e* fore200e)
|
|
{
|
|
fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
|
|
fore200e_spin(10);
|
|
fore200e->bus->write(0, fore200e->regs.sba.hcr);
|
|
}
|
|
|
|
|
|
static int __init
|
|
fore200e_sba_map(struct fore200e* fore200e)
|
|
{
|
|
struct sbus_dev* sbus_dev = (struct sbus_dev*)fore200e->bus_dev;
|
|
unsigned int bursts;
|
|
|
|
/* gain access to the SBA specific registers */
|
|
fore200e->regs.sba.hcr = sbus_ioremap(&sbus_dev->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
|
|
fore200e->regs.sba.bsr = sbus_ioremap(&sbus_dev->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
|
|
fore200e->regs.sba.isr = sbus_ioremap(&sbus_dev->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
|
|
fore200e->virt_base = sbus_ioremap(&sbus_dev->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
|
|
|
|
if (fore200e->virt_base == NULL) {
|
|
printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
|
|
return -EFAULT;
|
|
}
|
|
|
|
DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
|
|
|
|
fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
|
|
|
|
/* get the supported DVMA burst sizes */
|
|
bursts = prom_getintdefault(sbus_dev->bus->prom_node, "burst-sizes", 0x00);
|
|
|
|
if (sbus_can_dma_64bit(sbus_dev))
|
|
sbus_set_sbus64(sbus_dev, bursts);
|
|
|
|
fore200e->state = FORE200E_STATE_MAP;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_sba_unmap(struct fore200e* fore200e)
|
|
{
|
|
sbus_iounmap(fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
|
|
sbus_iounmap(fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
|
|
sbus_iounmap(fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
|
|
sbus_iounmap(fore200e->virt_base, SBA200E_RAM_LENGTH);
|
|
}
|
|
|
|
|
|
static int __init
|
|
fore200e_sba_configure(struct fore200e* fore200e)
|
|
{
|
|
fore200e->state = FORE200E_STATE_CONFIGURE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct fore200e* __init
|
|
fore200e_sba_detect(const struct fore200e_bus* bus, int index)
|
|
{
|
|
struct fore200e* fore200e;
|
|
struct sbus_bus* sbus_bus;
|
|
struct sbus_dev* sbus_dev = NULL;
|
|
|
|
unsigned int count = 0;
|
|
|
|
for_each_sbus (sbus_bus) {
|
|
for_each_sbusdev (sbus_dev, sbus_bus) {
|
|
if (strcmp(sbus_dev->prom_name, SBA200E_PROM_NAME) == 0) {
|
|
if (count >= index)
|
|
goto found;
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
|
|
found:
|
|
if (sbus_dev->num_registers != 4) {
|
|
printk(FORE200E "this %s device has %d instead of 4 registers\n",
|
|
bus->model_name, sbus_dev->num_registers);
|
|
return NULL;
|
|
}
|
|
|
|
fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
|
|
if (fore200e == NULL)
|
|
return NULL;
|
|
|
|
fore200e->bus = bus;
|
|
fore200e->bus_dev = sbus_dev;
|
|
fore200e->irq = sbus_dev->irqs[ 0 ];
|
|
|
|
fore200e->phys_base = (unsigned long)sbus_dev;
|
|
|
|
sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
|
|
|
|
return fore200e;
|
|
}
|
|
|
|
|
|
static int __init
|
|
fore200e_sba_prom_read(struct fore200e* fore200e, struct prom_data* prom)
|
|
{
|
|
struct sbus_dev* sbus_dev = (struct sbus_dev*) fore200e->bus_dev;
|
|
int len;
|
|
|
|
len = prom_getproperty(sbus_dev->prom_node, "macaddrlo2", &prom->mac_addr[ 4 ], 4);
|
|
if (len < 0)
|
|
return -EBUSY;
|
|
|
|
len = prom_getproperty(sbus_dev->prom_node, "macaddrhi4", &prom->mac_addr[ 2 ], 4);
|
|
if (len < 0)
|
|
return -EBUSY;
|
|
|
|
prom_getproperty(sbus_dev->prom_node, "serialnumber",
|
|
(char*)&prom->serial_number, sizeof(prom->serial_number));
|
|
|
|
prom_getproperty(sbus_dev->prom_node, "promversion",
|
|
(char*)&prom->hw_revision, sizeof(prom->hw_revision));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_sba_proc_read(struct fore200e* fore200e, char *page)
|
|
{
|
|
struct sbus_dev* sbus_dev = (struct sbus_dev*)fore200e->bus_dev;
|
|
|
|
return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n", sbus_dev->slot, sbus_dev->prom_name);
|
|
}
|
|
#endif /* CONFIG_ATM_FORE200E_SBA */
|
|
|
|
|
|
static void
|
|
fore200e_tx_irq(struct fore200e* fore200e)
|
|
{
|
|
struct host_txq* txq = &fore200e->host_txq;
|
|
struct host_txq_entry* entry;
|
|
struct atm_vcc* vcc;
|
|
struct fore200e_vc_map* vc_map;
|
|
|
|
if (fore200e->host_txq.txing == 0)
|
|
return;
|
|
|
|
for (;;) {
|
|
|
|
entry = &txq->host_entry[ txq->tail ];
|
|
|
|
if ((*entry->status & STATUS_COMPLETE) == 0) {
|
|
break;
|
|
}
|
|
|
|
DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
|
|
entry, txq->tail, entry->vc_map, entry->skb);
|
|
|
|
/* free copy of misaligned data */
|
|
kfree(entry->data);
|
|
|
|
/* remove DMA mapping */
|
|
fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
|
|
DMA_TO_DEVICE);
|
|
|
|
vc_map = entry->vc_map;
|
|
|
|
/* vcc closed since the time the entry was submitted for tx? */
|
|
if ((vc_map->vcc == NULL) ||
|
|
(test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
|
|
|
|
DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
|
|
fore200e->atm_dev->number);
|
|
|
|
dev_kfree_skb_any(entry->skb);
|
|
}
|
|
else {
|
|
ASSERT(vc_map->vcc);
|
|
|
|
/* vcc closed then immediately re-opened? */
|
|
if (vc_map->incarn != entry->incarn) {
|
|
|
|
/* when a vcc is closed, some PDUs may be still pending in the tx queue.
|
|
if the same vcc is immediately re-opened, those pending PDUs must
|
|
not be popped after the completion of their emission, as they refer
|
|
to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
|
|
would be decremented by the size of the (unrelated) skb, possibly
|
|
leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
|
|
we thus bind the tx entry to the current incarnation of the vcc
|
|
when the entry is submitted for tx. When the tx later completes,
|
|
if the incarnation number of the tx entry does not match the one
|
|
of the vcc, then this implies that the vcc has been closed then re-opened.
|
|
we thus just drop the skb here. */
|
|
|
|
DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
|
|
fore200e->atm_dev->number);
|
|
|
|
dev_kfree_skb_any(entry->skb);
|
|
}
|
|
else {
|
|
vcc = vc_map->vcc;
|
|
ASSERT(vcc);
|
|
|
|
/* notify tx completion */
|
|
if (vcc->pop) {
|
|
vcc->pop(vcc, entry->skb);
|
|
}
|
|
else {
|
|
dev_kfree_skb_any(entry->skb);
|
|
}
|
|
#if 1
|
|
/* race fixed by the above incarnation mechanism, but... */
|
|
if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
|
|
atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
|
|
}
|
|
#endif
|
|
/* check error condition */
|
|
if (*entry->status & STATUS_ERROR)
|
|
atomic_inc(&vcc->stats->tx_err);
|
|
else
|
|
atomic_inc(&vcc->stats->tx);
|
|
}
|
|
}
|
|
|
|
*entry->status = STATUS_FREE;
|
|
|
|
fore200e->host_txq.txing--;
|
|
|
|
FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef FORE200E_BSQ_DEBUG
|
|
int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
|
|
{
|
|
struct buffer* buffer;
|
|
int count = 0;
|
|
|
|
buffer = bsq->freebuf;
|
|
while (buffer) {
|
|
|
|
if (buffer->supplied) {
|
|
printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
|
|
where, scheme, magn, buffer->index);
|
|
}
|
|
|
|
if (buffer->magn != magn) {
|
|
printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
|
|
where, scheme, magn, buffer->index, buffer->magn);
|
|
}
|
|
|
|
if (buffer->scheme != scheme) {
|
|
printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
|
|
where, scheme, magn, buffer->index, buffer->scheme);
|
|
}
|
|
|
|
if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
|
|
printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
|
|
where, scheme, magn, buffer->index);
|
|
}
|
|
|
|
count++;
|
|
buffer = buffer->next;
|
|
}
|
|
|
|
if (count != bsq->freebuf_count) {
|
|
printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
|
|
where, scheme, magn, count, bsq->freebuf_count);
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
static void
|
|
fore200e_supply(struct fore200e* fore200e)
|
|
{
|
|
int scheme, magn, i;
|
|
|
|
struct host_bsq* bsq;
|
|
struct host_bsq_entry* entry;
|
|
struct buffer* buffer;
|
|
|
|
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
|
|
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
|
|
|
|
bsq = &fore200e->host_bsq[ scheme ][ magn ];
|
|
|
|
#ifdef FORE200E_BSQ_DEBUG
|
|
bsq_audit(1, bsq, scheme, magn);
|
|
#endif
|
|
while (bsq->freebuf_count >= RBD_BLK_SIZE) {
|
|
|
|
DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
|
|
RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
|
|
|
|
entry = &bsq->host_entry[ bsq->head ];
|
|
|
|
for (i = 0; i < RBD_BLK_SIZE; i++) {
|
|
|
|
/* take the first buffer in the free buffer list */
|
|
buffer = bsq->freebuf;
|
|
if (!buffer) {
|
|
printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
|
|
scheme, magn, bsq->freebuf_count);
|
|
return;
|
|
}
|
|
bsq->freebuf = buffer->next;
|
|
|
|
#ifdef FORE200E_BSQ_DEBUG
|
|
if (buffer->supplied)
|
|
printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
|
|
scheme, magn, buffer->index);
|
|
buffer->supplied = 1;
|
|
#endif
|
|
entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
|
|
entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
|
|
}
|
|
|
|
FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
|
|
|
|
/* decrease accordingly the number of free rx buffers */
|
|
bsq->freebuf_count -= RBD_BLK_SIZE;
|
|
|
|
*entry->status = STATUS_PENDING;
|
|
fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
|
|
{
|
|
struct sk_buff* skb;
|
|
struct buffer* buffer;
|
|
struct fore200e_vcc* fore200e_vcc;
|
|
int i, pdu_len = 0;
|
|
#ifdef FORE200E_52BYTE_AAL0_SDU
|
|
u32 cell_header = 0;
|
|
#endif
|
|
|
|
ASSERT(vcc);
|
|
|
|
fore200e_vcc = FORE200E_VCC(vcc);
|
|
ASSERT(fore200e_vcc);
|
|
|
|
#ifdef FORE200E_52BYTE_AAL0_SDU
|
|
if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
|
|
|
|
cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
|
|
(rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
|
|
(rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
|
|
(rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
|
|
rpd->atm_header.clp;
|
|
pdu_len = 4;
|
|
}
|
|
#endif
|
|
|
|
/* compute total PDU length */
|
|
for (i = 0; i < rpd->nseg; i++)
|
|
pdu_len += rpd->rsd[ i ].length;
|
|
|
|
skb = alloc_skb(pdu_len, GFP_ATOMIC);
|
|
if (skb == NULL) {
|
|
DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
|
|
|
|
atomic_inc(&vcc->stats->rx_drop);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
__net_timestamp(skb);
|
|
|
|
#ifdef FORE200E_52BYTE_AAL0_SDU
|
|
if (cell_header) {
|
|
*((u32*)skb_put(skb, 4)) = cell_header;
|
|
}
|
|
#endif
|
|
|
|
/* reassemble segments */
|
|
for (i = 0; i < rpd->nseg; i++) {
|
|
|
|
/* rebuild rx buffer address from rsd handle */
|
|
buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
|
|
|
|
/* Make device DMA transfer visible to CPU. */
|
|
fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
|
|
|
|
memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
|
|
|
|
/* Now let the device get at it again. */
|
|
fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
|
|
|
|
if (pdu_len < fore200e_vcc->rx_min_pdu)
|
|
fore200e_vcc->rx_min_pdu = pdu_len;
|
|
if (pdu_len > fore200e_vcc->rx_max_pdu)
|
|
fore200e_vcc->rx_max_pdu = pdu_len;
|
|
fore200e_vcc->rx_pdu++;
|
|
|
|
/* push PDU */
|
|
if (atm_charge(vcc, skb->truesize) == 0) {
|
|
|
|
DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
|
|
vcc->itf, vcc->vpi, vcc->vci);
|
|
|
|
dev_kfree_skb_any(skb);
|
|
|
|
atomic_inc(&vcc->stats->rx_drop);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
|
|
|
|
vcc->push(vcc, skb);
|
|
atomic_inc(&vcc->stats->rx);
|
|
|
|
ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
|
|
{
|
|
struct host_bsq* bsq;
|
|
struct buffer* buffer;
|
|
int i;
|
|
|
|
for (i = 0; i < rpd->nseg; i++) {
|
|
|
|
/* rebuild rx buffer address from rsd handle */
|
|
buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
|
|
|
|
bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
|
|
|
|
#ifdef FORE200E_BSQ_DEBUG
|
|
bsq_audit(2, bsq, buffer->scheme, buffer->magn);
|
|
|
|
if (buffer->supplied == 0)
|
|
printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
|
|
buffer->scheme, buffer->magn, buffer->index);
|
|
buffer->supplied = 0;
|
|
#endif
|
|
|
|
/* re-insert the buffer into the free buffer list */
|
|
buffer->next = bsq->freebuf;
|
|
bsq->freebuf = buffer;
|
|
|
|
/* then increment the number of free rx buffers */
|
|
bsq->freebuf_count++;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_rx_irq(struct fore200e* fore200e)
|
|
{
|
|
struct host_rxq* rxq = &fore200e->host_rxq;
|
|
struct host_rxq_entry* entry;
|
|
struct atm_vcc* vcc;
|
|
struct fore200e_vc_map* vc_map;
|
|
|
|
for (;;) {
|
|
|
|
entry = &rxq->host_entry[ rxq->head ];
|
|
|
|
/* no more received PDUs */
|
|
if ((*entry->status & STATUS_COMPLETE) == 0)
|
|
break;
|
|
|
|
vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
|
|
|
|
if ((vc_map->vcc == NULL) ||
|
|
(test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
|
|
|
|
DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
|
|
fore200e->atm_dev->number,
|
|
entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
|
|
}
|
|
else {
|
|
vcc = vc_map->vcc;
|
|
ASSERT(vcc);
|
|
|
|
if ((*entry->status & STATUS_ERROR) == 0) {
|
|
|
|
fore200e_push_rpd(fore200e, vcc, entry->rpd);
|
|
}
|
|
else {
|
|
DPRINTK(2, "damaged PDU on %d.%d.%d\n",
|
|
fore200e->atm_dev->number,
|
|
entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
|
|
atomic_inc(&vcc->stats->rx_err);
|
|
}
|
|
}
|
|
|
|
FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
|
|
|
|
fore200e_collect_rpd(fore200e, entry->rpd);
|
|
|
|
/* rewrite the rpd address to ack the received PDU */
|
|
fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
|
|
*entry->status = STATUS_FREE;
|
|
|
|
fore200e_supply(fore200e);
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef FORE200E_USE_TASKLET
|
|
static void
|
|
fore200e_irq(struct fore200e* fore200e)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&fore200e->q_lock, flags);
|
|
fore200e_rx_irq(fore200e);
|
|
spin_unlock_irqrestore(&fore200e->q_lock, flags);
|
|
|
|
spin_lock_irqsave(&fore200e->q_lock, flags);
|
|
fore200e_tx_irq(fore200e);
|
|
spin_unlock_irqrestore(&fore200e->q_lock, flags);
|
|
}
|
|
#endif
|
|
|
|
|
|
static irqreturn_t
|
|
fore200e_interrupt(int irq, void* dev)
|
|
{
|
|
struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
|
|
|
|
if (fore200e->bus->irq_check(fore200e) == 0) {
|
|
|
|
DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
|
|
return IRQ_NONE;
|
|
}
|
|
DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
|
|
|
|
#ifdef FORE200E_USE_TASKLET
|
|
tasklet_schedule(&fore200e->tx_tasklet);
|
|
tasklet_schedule(&fore200e->rx_tasklet);
|
|
#else
|
|
fore200e_irq(fore200e);
|
|
#endif
|
|
|
|
fore200e->bus->irq_ack(fore200e);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
#ifdef FORE200E_USE_TASKLET
|
|
static void
|
|
fore200e_tx_tasklet(unsigned long data)
|
|
{
|
|
struct fore200e* fore200e = (struct fore200e*) data;
|
|
unsigned long flags;
|
|
|
|
DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
|
|
|
|
spin_lock_irqsave(&fore200e->q_lock, flags);
|
|
fore200e_tx_irq(fore200e);
|
|
spin_unlock_irqrestore(&fore200e->q_lock, flags);
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_rx_tasklet(unsigned long data)
|
|
{
|
|
struct fore200e* fore200e = (struct fore200e*) data;
|
|
unsigned long flags;
|
|
|
|
DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
|
|
|
|
spin_lock_irqsave(&fore200e->q_lock, flags);
|
|
fore200e_rx_irq((struct fore200e*) data);
|
|
spin_unlock_irqrestore(&fore200e->q_lock, flags);
|
|
}
|
|
#endif
|
|
|
|
|
|
static int
|
|
fore200e_select_scheme(struct atm_vcc* vcc)
|
|
{
|
|
/* fairly balance the VCs over (identical) buffer schemes */
|
|
int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
|
|
|
|
DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
|
|
vcc->itf, vcc->vpi, vcc->vci, scheme);
|
|
|
|
return scheme;
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
|
|
{
|
|
struct host_cmdq* cmdq = &fore200e->host_cmdq;
|
|
struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
|
|
struct activate_opcode activ_opcode;
|
|
struct deactivate_opcode deactiv_opcode;
|
|
struct vpvc vpvc;
|
|
int ok;
|
|
enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
|
|
|
|
FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
|
|
|
|
if (activate) {
|
|
FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
|
|
|
|
activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
|
|
activ_opcode.aal = aal;
|
|
activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
|
|
activ_opcode.pad = 0;
|
|
}
|
|
else {
|
|
deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
|
|
deactiv_opcode.pad = 0;
|
|
}
|
|
|
|
vpvc.vci = vcc->vci;
|
|
vpvc.vpi = vcc->vpi;
|
|
|
|
*entry->status = STATUS_PENDING;
|
|
|
|
if (activate) {
|
|
|
|
#ifdef FORE200E_52BYTE_AAL0_SDU
|
|
mtu = 48;
|
|
#endif
|
|
/* the MTU is not used by the cp, except in the case of AAL0 */
|
|
fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
|
|
fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
|
|
fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
|
|
}
|
|
else {
|
|
fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
|
|
fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
|
|
}
|
|
|
|
ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
|
|
|
|
*entry->status = STATUS_FREE;
|
|
|
|
if (ok == 0) {
|
|
printk(FORE200E "unable to %s VC %d.%d.%d\n",
|
|
activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
|
|
return -EIO;
|
|
}
|
|
|
|
DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
|
|
activate ? "open" : "clos");
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
|
|
|
|
static void
|
|
fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
|
|
{
|
|
if (qos->txtp.max_pcr < ATM_OC3_PCR) {
|
|
|
|
/* compute the data cells to idle cells ratio from the tx PCR */
|
|
rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
|
|
rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
|
|
}
|
|
else {
|
|
/* disable rate control */
|
|
rate->data_cells = rate->idle_cells = 0;
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_open(struct atm_vcc *vcc)
|
|
{
|
|
struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
|
|
struct fore200e_vcc* fore200e_vcc;
|
|
struct fore200e_vc_map* vc_map;
|
|
unsigned long flags;
|
|
int vci = vcc->vci;
|
|
short vpi = vcc->vpi;
|
|
|
|
ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
|
|
ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
|
|
|
|
spin_lock_irqsave(&fore200e->q_lock, flags);
|
|
|
|
vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
|
|
if (vc_map->vcc) {
|
|
|
|
spin_unlock_irqrestore(&fore200e->q_lock, flags);
|
|
|
|
printk(FORE200E "VC %d.%d.%d already in use\n",
|
|
fore200e->atm_dev->number, vpi, vci);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
vc_map->vcc = vcc;
|
|
|
|
spin_unlock_irqrestore(&fore200e->q_lock, flags);
|
|
|
|
fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
|
|
if (fore200e_vcc == NULL) {
|
|
vc_map->vcc = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
|
|
"rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
|
|
vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
|
|
fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
|
|
vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
|
|
fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
|
|
vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
|
|
|
|
/* pseudo-CBR bandwidth requested? */
|
|
if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
|
|
|
|
mutex_lock(&fore200e->rate_mtx);
|
|
if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
|
|
mutex_unlock(&fore200e->rate_mtx);
|
|
|
|
kfree(fore200e_vcc);
|
|
vc_map->vcc = NULL;
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* reserve bandwidth */
|
|
fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
|
|
mutex_unlock(&fore200e->rate_mtx);
|
|
}
|
|
|
|
vcc->itf = vcc->dev->number;
|
|
|
|
set_bit(ATM_VF_PARTIAL,&vcc->flags);
|
|
set_bit(ATM_VF_ADDR, &vcc->flags);
|
|
|
|
vcc->dev_data = fore200e_vcc;
|
|
|
|
if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
|
|
|
|
vc_map->vcc = NULL;
|
|
|
|
clear_bit(ATM_VF_ADDR, &vcc->flags);
|
|
clear_bit(ATM_VF_PARTIAL,&vcc->flags);
|
|
|
|
vcc->dev_data = NULL;
|
|
|
|
fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
|
|
|
|
kfree(fore200e_vcc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* compute rate control parameters */
|
|
if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
|
|
|
|
fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
|
|
set_bit(ATM_VF_HASQOS, &vcc->flags);
|
|
|
|
DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
|
|
vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
|
|
vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
|
|
fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
|
|
}
|
|
|
|
fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
|
|
fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
|
|
fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
|
|
|
|
/* new incarnation of the vcc */
|
|
vc_map->incarn = ++fore200e->incarn_count;
|
|
|
|
/* VC unusable before this flag is set */
|
|
set_bit(ATM_VF_READY, &vcc->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
fore200e_close(struct atm_vcc* vcc)
|
|
{
|
|
struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
|
|
struct fore200e_vcc* fore200e_vcc;
|
|
struct fore200e_vc_map* vc_map;
|
|
unsigned long flags;
|
|
|
|
ASSERT(vcc);
|
|
ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
|
|
ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
|
|
|
|
DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
|
|
|
|
clear_bit(ATM_VF_READY, &vcc->flags);
|
|
|
|
fore200e_activate_vcin(fore200e, 0, vcc, 0);
|
|
|
|
spin_lock_irqsave(&fore200e->q_lock, flags);
|
|
|
|
vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
|
|
|
|
/* the vc is no longer considered as "in use" by fore200e_open() */
|
|
vc_map->vcc = NULL;
|
|
|
|
vcc->itf = vcc->vci = vcc->vpi = 0;
|
|
|
|
fore200e_vcc = FORE200E_VCC(vcc);
|
|
vcc->dev_data = NULL;
|
|
|
|
spin_unlock_irqrestore(&fore200e->q_lock, flags);
|
|
|
|
/* release reserved bandwidth, if any */
|
|
if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
|
|
|
|
mutex_lock(&fore200e->rate_mtx);
|
|
fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
|
|
mutex_unlock(&fore200e->rate_mtx);
|
|
|
|
clear_bit(ATM_VF_HASQOS, &vcc->flags);
|
|
}
|
|
|
|
clear_bit(ATM_VF_ADDR, &vcc->flags);
|
|
clear_bit(ATM_VF_PARTIAL,&vcc->flags);
|
|
|
|
ASSERT(fore200e_vcc);
|
|
kfree(fore200e_vcc);
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
|
|
{
|
|
struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
|
|
struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
|
|
struct fore200e_vc_map* vc_map;
|
|
struct host_txq* txq = &fore200e->host_txq;
|
|
struct host_txq_entry* entry;
|
|
struct tpd* tpd;
|
|
struct tpd_haddr tpd_haddr;
|
|
int retry = CONFIG_ATM_FORE200E_TX_RETRY;
|
|
int tx_copy = 0;
|
|
int tx_len = skb->len;
|
|
u32* cell_header = NULL;
|
|
unsigned char* skb_data;
|
|
int skb_len;
|
|
unsigned char* data;
|
|
unsigned long flags;
|
|
|
|
ASSERT(vcc);
|
|
ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
|
|
ASSERT(fore200e);
|
|
ASSERT(fore200e_vcc);
|
|
|
|
if (!test_bit(ATM_VF_READY, &vcc->flags)) {
|
|
DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
|
|
dev_kfree_skb_any(skb);
|
|
return -EINVAL;
|
|
}
|
|
|
|
#ifdef FORE200E_52BYTE_AAL0_SDU
|
|
if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
|
|
cell_header = (u32*) skb->data;
|
|
skb_data = skb->data + 4; /* skip 4-byte cell header */
|
|
skb_len = tx_len = skb->len - 4;
|
|
|
|
DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
skb_data = skb->data;
|
|
skb_len = skb->len;
|
|
}
|
|
|
|
if (((unsigned long)skb_data) & 0x3) {
|
|
|
|
DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
|
|
tx_copy = 1;
|
|
tx_len = skb_len;
|
|
}
|
|
|
|
if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
|
|
|
|
/* this simply NUKES the PCA board */
|
|
DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
|
|
tx_copy = 1;
|
|
tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
|
|
}
|
|
|
|
if (tx_copy) {
|
|
data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
|
|
if (data == NULL) {
|
|
if (vcc->pop) {
|
|
vcc->pop(vcc, skb);
|
|
}
|
|
else {
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(data, skb_data, skb_len);
|
|
if (skb_len < tx_len)
|
|
memset(data + skb_len, 0x00, tx_len - skb_len);
|
|
}
|
|
else {
|
|
data = skb_data;
|
|
}
|
|
|
|
vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
|
|
ASSERT(vc_map->vcc == vcc);
|
|
|
|
retry_here:
|
|
|
|
spin_lock_irqsave(&fore200e->q_lock, flags);
|
|
|
|
entry = &txq->host_entry[ txq->head ];
|
|
|
|
if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
|
|
|
|
/* try to free completed tx queue entries */
|
|
fore200e_tx_irq(fore200e);
|
|
|
|
if (*entry->status != STATUS_FREE) {
|
|
|
|
spin_unlock_irqrestore(&fore200e->q_lock, flags);
|
|
|
|
/* retry once again? */
|
|
if (--retry > 0) {
|
|
udelay(50);
|
|
goto retry_here;
|
|
}
|
|
|
|
atomic_inc(&vcc->stats->tx_err);
|
|
|
|
fore200e->tx_sat++;
|
|
DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
|
|
fore200e->name, fore200e->cp_queues->heartbeat);
|
|
if (vcc->pop) {
|
|
vcc->pop(vcc, skb);
|
|
}
|
|
else {
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
if (tx_copy)
|
|
kfree(data);
|
|
|
|
return -ENOBUFS;
|
|
}
|
|
}
|
|
|
|
entry->incarn = vc_map->incarn;
|
|
entry->vc_map = vc_map;
|
|
entry->skb = skb;
|
|
entry->data = tx_copy ? data : NULL;
|
|
|
|
tpd = entry->tpd;
|
|
tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
|
|
tpd->tsd[ 0 ].length = tx_len;
|
|
|
|
FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
|
|
txq->txing++;
|
|
|
|
/* The dma_map call above implies a dma_sync so the device can use it,
|
|
* thus no explicit dma_sync call is necessary here.
|
|
*/
|
|
|
|
DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
|
|
vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
|
|
tpd->tsd[0].length, skb_len);
|
|
|
|
if (skb_len < fore200e_vcc->tx_min_pdu)
|
|
fore200e_vcc->tx_min_pdu = skb_len;
|
|
if (skb_len > fore200e_vcc->tx_max_pdu)
|
|
fore200e_vcc->tx_max_pdu = skb_len;
|
|
fore200e_vcc->tx_pdu++;
|
|
|
|
/* set tx rate control information */
|
|
tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
|
|
tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
|
|
|
|
if (cell_header) {
|
|
tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
|
|
tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
|
|
tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
|
|
tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
|
|
tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
|
|
}
|
|
else {
|
|
/* set the ATM header, common to all cells conveying the PDU */
|
|
tpd->atm_header.clp = 0;
|
|
tpd->atm_header.plt = 0;
|
|
tpd->atm_header.vci = vcc->vci;
|
|
tpd->atm_header.vpi = vcc->vpi;
|
|
tpd->atm_header.gfc = 0;
|
|
}
|
|
|
|
tpd->spec.length = tx_len;
|
|
tpd->spec.nseg = 1;
|
|
tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
|
|
tpd->spec.intr = 1;
|
|
|
|
tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
|
|
tpd_haddr.pad = 0;
|
|
tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
|
|
|
|
*entry->status = STATUS_PENDING;
|
|
fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
|
|
|
|
spin_unlock_irqrestore(&fore200e->q_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_getstats(struct fore200e* fore200e)
|
|
{
|
|
struct host_cmdq* cmdq = &fore200e->host_cmdq;
|
|
struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
|
|
struct stats_opcode opcode;
|
|
int ok;
|
|
u32 stats_dma_addr;
|
|
|
|
if (fore200e->stats == NULL) {
|
|
fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
|
|
if (fore200e->stats == NULL)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
|
|
sizeof(struct stats), DMA_FROM_DEVICE);
|
|
|
|
FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
|
|
|
|
opcode.opcode = OPCODE_GET_STATS;
|
|
opcode.pad = 0;
|
|
|
|
fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
|
|
|
|
*entry->status = STATUS_PENDING;
|
|
|
|
fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
|
|
|
|
ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
|
|
|
|
*entry->status = STATUS_FREE;
|
|
|
|
fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
|
|
|
|
if (ok == 0) {
|
|
printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
|
|
{
|
|
/* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
|
|
|
|
DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
|
|
vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
|
|
{
|
|
/* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
|
|
|
|
DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
|
|
vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
#if 0 /* currently unused */
|
|
static int
|
|
fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
|
|
{
|
|
struct host_cmdq* cmdq = &fore200e->host_cmdq;
|
|
struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
|
|
struct oc3_opcode opcode;
|
|
int ok;
|
|
u32 oc3_regs_dma_addr;
|
|
|
|
oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
|
|
|
|
FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
|
|
|
|
opcode.opcode = OPCODE_GET_OC3;
|
|
opcode.reg = 0;
|
|
opcode.value = 0;
|
|
opcode.mask = 0;
|
|
|
|
fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
|
|
|
|
*entry->status = STATUS_PENDING;
|
|
|
|
fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
|
|
|
|
ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
|
|
|
|
*entry->status = STATUS_FREE;
|
|
|
|
fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
|
|
|
|
if (ok == 0) {
|
|
printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
static int
|
|
fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
|
|
{
|
|
struct host_cmdq* cmdq = &fore200e->host_cmdq;
|
|
struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
|
|
struct oc3_opcode opcode;
|
|
int ok;
|
|
|
|
DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
|
|
|
|
FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
|
|
|
|
opcode.opcode = OPCODE_SET_OC3;
|
|
opcode.reg = reg;
|
|
opcode.value = value;
|
|
opcode.mask = mask;
|
|
|
|
fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
|
|
|
|
*entry->status = STATUS_PENDING;
|
|
|
|
fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
|
|
|
|
ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
|
|
|
|
*entry->status = STATUS_FREE;
|
|
|
|
if (ok == 0) {
|
|
printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_setloop(struct fore200e* fore200e, int loop_mode)
|
|
{
|
|
u32 mct_value, mct_mask;
|
|
int error;
|
|
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
|
|
switch (loop_mode) {
|
|
|
|
case ATM_LM_NONE:
|
|
mct_value = 0;
|
|
mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
|
|
break;
|
|
|
|
case ATM_LM_LOC_PHY:
|
|
mct_value = mct_mask = SUNI_MCT_DLE;
|
|
break;
|
|
|
|
case ATM_LM_RMT_PHY:
|
|
mct_value = mct_mask = SUNI_MCT_LLE;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
|
|
if (error == 0)
|
|
fore200e->loop_mode = loop_mode;
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
|
|
{
|
|
struct sonet_stats tmp;
|
|
|
|
if (fore200e_getstats(fore200e) < 0)
|
|
return -EIO;
|
|
|
|
tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
|
|
tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
|
|
tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
|
|
tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
|
|
tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
|
|
tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
|
|
tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
|
|
tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
|
|
be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
|
|
be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
|
|
tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
|
|
be32_to_cpu(fore200e->stats->aal34.cells_received) +
|
|
be32_to_cpu(fore200e->stats->aal5.cells_received);
|
|
|
|
if (arg)
|
|
return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
|
|
{
|
|
struct fore200e* fore200e = FORE200E_DEV(dev);
|
|
|
|
DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
|
|
|
|
switch (cmd) {
|
|
|
|
case SONET_GETSTAT:
|
|
return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
|
|
|
|
case SONET_GETDIAG:
|
|
return put_user(0, (int __user *)arg) ? -EFAULT : 0;
|
|
|
|
case ATM_SETLOOP:
|
|
return fore200e_setloop(fore200e, (int)(unsigned long)arg);
|
|
|
|
case ATM_GETLOOP:
|
|
return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
|
|
|
|
case ATM_QUERYLOOP:
|
|
return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
|
|
}
|
|
|
|
return -ENOSYS; /* not implemented */
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
|
|
{
|
|
struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
|
|
struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
|
|
|
|
if (!test_bit(ATM_VF_READY, &vcc->flags)) {
|
|
DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
|
|
return -EINVAL;
|
|
}
|
|
|
|
DPRINTK(2, "change_qos %d.%d.%d, "
|
|
"(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
|
|
"rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
|
|
"available_cell_rate = %u",
|
|
vcc->itf, vcc->vpi, vcc->vci,
|
|
fore200e_traffic_class[ qos->txtp.traffic_class ],
|
|
qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
|
|
fore200e_traffic_class[ qos->rxtp.traffic_class ],
|
|
qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
|
|
flags, fore200e->available_cell_rate);
|
|
|
|
if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
|
|
|
|
mutex_lock(&fore200e->rate_mtx);
|
|
if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
|
|
mutex_unlock(&fore200e->rate_mtx);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
|
|
fore200e->available_cell_rate -= qos->txtp.max_pcr;
|
|
|
|
mutex_unlock(&fore200e->rate_mtx);
|
|
|
|
memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
|
|
|
|
/* update rate control parameters */
|
|
fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
|
|
|
|
set_bit(ATM_VF_HASQOS, &vcc->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_irq_request(struct fore200e* fore200e)
|
|
{
|
|
if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
|
|
|
|
printk(FORE200E "unable to reserve IRQ %s for device %s\n",
|
|
fore200e_irq_itoa(fore200e->irq), fore200e->name);
|
|
return -EBUSY;
|
|
}
|
|
|
|
printk(FORE200E "IRQ %s reserved for device %s\n",
|
|
fore200e_irq_itoa(fore200e->irq), fore200e->name);
|
|
|
|
#ifdef FORE200E_USE_TASKLET
|
|
tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
|
|
tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
|
|
#endif
|
|
|
|
fore200e->state = FORE200E_STATE_IRQ;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_get_esi(struct fore200e* fore200e)
|
|
{
|
|
struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
|
|
int ok, i;
|
|
|
|
if (!prom)
|
|
return -ENOMEM;
|
|
|
|
ok = fore200e->bus->prom_read(fore200e, prom);
|
|
if (ok < 0) {
|
|
kfree(prom);
|
|
return -EBUSY;
|
|
}
|
|
|
|
printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
fore200e->name,
|
|
(prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
|
|
prom->serial_number & 0xFFFF,
|
|
prom->mac_addr[ 2 ], prom->mac_addr[ 3 ], prom->mac_addr[ 4 ],
|
|
prom->mac_addr[ 5 ], prom->mac_addr[ 6 ], prom->mac_addr[ 7 ]);
|
|
|
|
for (i = 0; i < ESI_LEN; i++) {
|
|
fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
|
|
}
|
|
|
|
kfree(prom);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_alloc_rx_buf(struct fore200e* fore200e)
|
|
{
|
|
int scheme, magn, nbr, size, i;
|
|
|
|
struct host_bsq* bsq;
|
|
struct buffer* buffer;
|
|
|
|
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
|
|
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
|
|
|
|
bsq = &fore200e->host_bsq[ scheme ][ magn ];
|
|
|
|
nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
|
|
size = fore200e_rx_buf_size[ scheme ][ magn ];
|
|
|
|
DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
|
|
|
|
/* allocate the array of receive buffers */
|
|
buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
|
|
|
|
if (buffer == NULL)
|
|
return -ENOMEM;
|
|
|
|
bsq->freebuf = NULL;
|
|
|
|
for (i = 0; i < nbr; i++) {
|
|
|
|
buffer[ i ].scheme = scheme;
|
|
buffer[ i ].magn = magn;
|
|
#ifdef FORE200E_BSQ_DEBUG
|
|
buffer[ i ].index = i;
|
|
buffer[ i ].supplied = 0;
|
|
#endif
|
|
|
|
/* allocate the receive buffer body */
|
|
if (fore200e_chunk_alloc(fore200e,
|
|
&buffer[ i ].data, size, fore200e->bus->buffer_alignment,
|
|
DMA_FROM_DEVICE) < 0) {
|
|
|
|
while (i > 0)
|
|
fore200e_chunk_free(fore200e, &buffer[ --i ].data);
|
|
kfree(buffer);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* insert the buffer into the free buffer list */
|
|
buffer[ i ].next = bsq->freebuf;
|
|
bsq->freebuf = &buffer[ i ];
|
|
}
|
|
/* all the buffers are free, initially */
|
|
bsq->freebuf_count = nbr;
|
|
|
|
#ifdef FORE200E_BSQ_DEBUG
|
|
bsq_audit(3, bsq, scheme, magn);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
fore200e->state = FORE200E_STATE_ALLOC_BUF;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_init_bs_queue(struct fore200e* fore200e)
|
|
{
|
|
int scheme, magn, i;
|
|
|
|
struct host_bsq* bsq;
|
|
struct cp_bsq_entry __iomem * cp_entry;
|
|
|
|
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
|
|
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
|
|
|
|
DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
|
|
|
|
bsq = &fore200e->host_bsq[ scheme ][ magn ];
|
|
|
|
/* allocate and align the array of status words */
|
|
if (fore200e->bus->dma_chunk_alloc(fore200e,
|
|
&bsq->status,
|
|
sizeof(enum status),
|
|
QUEUE_SIZE_BS,
|
|
fore200e->bus->status_alignment) < 0) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* allocate and align the array of receive buffer descriptors */
|
|
if (fore200e->bus->dma_chunk_alloc(fore200e,
|
|
&bsq->rbd_block,
|
|
sizeof(struct rbd_block),
|
|
QUEUE_SIZE_BS,
|
|
fore200e->bus->descr_alignment) < 0) {
|
|
|
|
fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* get the base address of the cp resident buffer supply queue entries */
|
|
cp_entry = fore200e->virt_base +
|
|
fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
|
|
|
|
/* fill the host resident and cp resident buffer supply queue entries */
|
|
for (i = 0; i < QUEUE_SIZE_BS; i++) {
|
|
|
|
bsq->host_entry[ i ].status =
|
|
FORE200E_INDEX(bsq->status.align_addr, enum status, i);
|
|
bsq->host_entry[ i ].rbd_block =
|
|
FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
|
|
bsq->host_entry[ i ].rbd_block_dma =
|
|
FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
|
|
bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
|
|
|
|
*bsq->host_entry[ i ].status = STATUS_FREE;
|
|
|
|
fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
|
|
&cp_entry[ i ].status_haddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
fore200e->state = FORE200E_STATE_INIT_BSQ;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_init_rx_queue(struct fore200e* fore200e)
|
|
{
|
|
struct host_rxq* rxq = &fore200e->host_rxq;
|
|
struct cp_rxq_entry __iomem * cp_entry;
|
|
int i;
|
|
|
|
DPRINTK(2, "receive queue is being initialized\n");
|
|
|
|
/* allocate and align the array of status words */
|
|
if (fore200e->bus->dma_chunk_alloc(fore200e,
|
|
&rxq->status,
|
|
sizeof(enum status),
|
|
QUEUE_SIZE_RX,
|
|
fore200e->bus->status_alignment) < 0) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* allocate and align the array of receive PDU descriptors */
|
|
if (fore200e->bus->dma_chunk_alloc(fore200e,
|
|
&rxq->rpd,
|
|
sizeof(struct rpd),
|
|
QUEUE_SIZE_RX,
|
|
fore200e->bus->descr_alignment) < 0) {
|
|
|
|
fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* get the base address of the cp resident rx queue entries */
|
|
cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
|
|
|
|
/* fill the host resident and cp resident rx entries */
|
|
for (i=0; i < QUEUE_SIZE_RX; i++) {
|
|
|
|
rxq->host_entry[ i ].status =
|
|
FORE200E_INDEX(rxq->status.align_addr, enum status, i);
|
|
rxq->host_entry[ i ].rpd =
|
|
FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
|
|
rxq->host_entry[ i ].rpd_dma =
|
|
FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
|
|
rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
|
|
|
|
*rxq->host_entry[ i ].status = STATUS_FREE;
|
|
|
|
fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
|
|
&cp_entry[ i ].status_haddr);
|
|
|
|
fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
|
|
&cp_entry[ i ].rpd_haddr);
|
|
}
|
|
|
|
/* set the head entry of the queue */
|
|
rxq->head = 0;
|
|
|
|
fore200e->state = FORE200E_STATE_INIT_RXQ;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_init_tx_queue(struct fore200e* fore200e)
|
|
{
|
|
struct host_txq* txq = &fore200e->host_txq;
|
|
struct cp_txq_entry __iomem * cp_entry;
|
|
int i;
|
|
|
|
DPRINTK(2, "transmit queue is being initialized\n");
|
|
|
|
/* allocate and align the array of status words */
|
|
if (fore200e->bus->dma_chunk_alloc(fore200e,
|
|
&txq->status,
|
|
sizeof(enum status),
|
|
QUEUE_SIZE_TX,
|
|
fore200e->bus->status_alignment) < 0) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* allocate and align the array of transmit PDU descriptors */
|
|
if (fore200e->bus->dma_chunk_alloc(fore200e,
|
|
&txq->tpd,
|
|
sizeof(struct tpd),
|
|
QUEUE_SIZE_TX,
|
|
fore200e->bus->descr_alignment) < 0) {
|
|
|
|
fore200e->bus->dma_chunk_free(fore200e, &txq->status);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* get the base address of the cp resident tx queue entries */
|
|
cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
|
|
|
|
/* fill the host resident and cp resident tx entries */
|
|
for (i=0; i < QUEUE_SIZE_TX; i++) {
|
|
|
|
txq->host_entry[ i ].status =
|
|
FORE200E_INDEX(txq->status.align_addr, enum status, i);
|
|
txq->host_entry[ i ].tpd =
|
|
FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
|
|
txq->host_entry[ i ].tpd_dma =
|
|
FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
|
|
txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
|
|
|
|
*txq->host_entry[ i ].status = STATUS_FREE;
|
|
|
|
fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
|
|
&cp_entry[ i ].status_haddr);
|
|
|
|
/* although there is a one-to-one mapping of tx queue entries and tpds,
|
|
we do not write here the DMA (physical) base address of each tpd into
|
|
the related cp resident entry, because the cp relies on this write
|
|
operation to detect that a new pdu has been submitted for tx */
|
|
}
|
|
|
|
/* set the head and tail entries of the queue */
|
|
txq->head = 0;
|
|
txq->tail = 0;
|
|
|
|
fore200e->state = FORE200E_STATE_INIT_TXQ;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_init_cmd_queue(struct fore200e* fore200e)
|
|
{
|
|
struct host_cmdq* cmdq = &fore200e->host_cmdq;
|
|
struct cp_cmdq_entry __iomem * cp_entry;
|
|
int i;
|
|
|
|
DPRINTK(2, "command queue is being initialized\n");
|
|
|
|
/* allocate and align the array of status words */
|
|
if (fore200e->bus->dma_chunk_alloc(fore200e,
|
|
&cmdq->status,
|
|
sizeof(enum status),
|
|
QUEUE_SIZE_CMD,
|
|
fore200e->bus->status_alignment) < 0) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* get the base address of the cp resident cmd queue entries */
|
|
cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
|
|
|
|
/* fill the host resident and cp resident cmd entries */
|
|
for (i=0; i < QUEUE_SIZE_CMD; i++) {
|
|
|
|
cmdq->host_entry[ i ].status =
|
|
FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
|
|
cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
|
|
|
|
*cmdq->host_entry[ i ].status = STATUS_FREE;
|
|
|
|
fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
|
|
&cp_entry[ i ].status_haddr);
|
|
}
|
|
|
|
/* set the head entry of the queue */
|
|
cmdq->head = 0;
|
|
|
|
fore200e->state = FORE200E_STATE_INIT_CMDQ;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void __devinit
|
|
fore200e_param_bs_queue(struct fore200e* fore200e,
|
|
enum buffer_scheme scheme, enum buffer_magn magn,
|
|
int queue_length, int pool_size, int supply_blksize)
|
|
{
|
|
struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
|
|
|
|
fore200e->bus->write(queue_length, &bs_spec->queue_length);
|
|
fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
|
|
fore200e->bus->write(pool_size, &bs_spec->pool_size);
|
|
fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_initialize(struct fore200e* fore200e)
|
|
{
|
|
struct cp_queues __iomem * cpq;
|
|
int ok, scheme, magn;
|
|
|
|
DPRINTK(2, "device %s being initialized\n", fore200e->name);
|
|
|
|
mutex_init(&fore200e->rate_mtx);
|
|
spin_lock_init(&fore200e->q_lock);
|
|
|
|
cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
|
|
|
|
/* enable cp to host interrupts */
|
|
fore200e->bus->write(1, &cpq->imask);
|
|
|
|
if (fore200e->bus->irq_enable)
|
|
fore200e->bus->irq_enable(fore200e);
|
|
|
|
fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
|
|
|
|
fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
|
|
fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
|
|
fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
|
|
|
|
fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
|
|
fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
|
|
|
|
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
|
|
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
|
|
fore200e_param_bs_queue(fore200e, scheme, magn,
|
|
QUEUE_SIZE_BS,
|
|
fore200e_rx_buf_nbr[ scheme ][ magn ],
|
|
RBD_BLK_SIZE);
|
|
|
|
/* issue the initialize command */
|
|
fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
|
|
fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
|
|
|
|
ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
|
|
if (ok == 0) {
|
|
printk(FORE200E "device %s initialization failed\n", fore200e->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
printk(FORE200E "device %s initialized\n", fore200e->name);
|
|
|
|
fore200e->state = FORE200E_STATE_INITIALIZE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void __devinit
|
|
fore200e_monitor_putc(struct fore200e* fore200e, char c)
|
|
{
|
|
struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
|
|
|
|
#if 0
|
|
printk("%c", c);
|
|
#endif
|
|
fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_monitor_getc(struct fore200e* fore200e)
|
|
{
|
|
struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
|
|
unsigned long timeout = jiffies + msecs_to_jiffies(50);
|
|
int c;
|
|
|
|
while (time_before(jiffies, timeout)) {
|
|
|
|
c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
|
|
|
|
if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
|
|
|
|
fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
|
|
#if 0
|
|
printk("%c", c & 0xFF);
|
|
#endif
|
|
return c & 0xFF;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
static void __devinit
|
|
fore200e_monitor_puts(struct fore200e* fore200e, char* str)
|
|
{
|
|
while (*str) {
|
|
|
|
/* the i960 monitor doesn't accept any new character if it has something to say */
|
|
while (fore200e_monitor_getc(fore200e) >= 0);
|
|
|
|
fore200e_monitor_putc(fore200e, *str++);
|
|
}
|
|
|
|
while (fore200e_monitor_getc(fore200e) >= 0);
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_start_fw(struct fore200e* fore200e)
|
|
{
|
|
int ok;
|
|
char cmd[ 48 ];
|
|
struct fw_header* fw_header = (struct fw_header*) fore200e->bus->fw_data;
|
|
|
|
DPRINTK(2, "device %s firmware being started\n", fore200e->name);
|
|
|
|
#if defined(__sparc_v9__)
|
|
/* reported to be required by SBA cards on some sparc64 hosts */
|
|
fore200e_spin(100);
|
|
#endif
|
|
|
|
sprintf(cmd, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
|
|
|
|
fore200e_monitor_puts(fore200e, cmd);
|
|
|
|
ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000);
|
|
if (ok == 0) {
|
|
printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
printk(FORE200E "device %s firmware started\n", fore200e->name);
|
|
|
|
fore200e->state = FORE200E_STATE_START_FW;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_load_fw(struct fore200e* fore200e)
|
|
{
|
|
__le32* fw_data = (__le32*) fore200e->bus->fw_data;
|
|
u32 fw_size = (u32) *fore200e->bus->fw_size / sizeof(u32);
|
|
|
|
struct fw_header* fw_header = (struct fw_header*) fw_data;
|
|
|
|
u32 __iomem *load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
|
|
|
|
DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
|
|
fore200e->name, load_addr, fw_size);
|
|
|
|
if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
|
|
printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
for (; fw_size--; fw_data++, load_addr++)
|
|
fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
|
|
|
|
fore200e->state = FORE200E_STATE_LOAD_FW;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_register(struct fore200e* fore200e)
|
|
{
|
|
struct atm_dev* atm_dev;
|
|
|
|
DPRINTK(2, "device %s being registered\n", fore200e->name);
|
|
|
|
atm_dev = atm_dev_register(fore200e->bus->proc_name, &fore200e_ops, -1,
|
|
NULL);
|
|
if (atm_dev == NULL) {
|
|
printk(FORE200E "unable to register device %s\n", fore200e->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
atm_dev->dev_data = fore200e;
|
|
fore200e->atm_dev = atm_dev;
|
|
|
|
atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
|
|
atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
|
|
|
|
fore200e->available_cell_rate = ATM_OC3_PCR;
|
|
|
|
fore200e->state = FORE200E_STATE_REGISTER;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __devinit
|
|
fore200e_init(struct fore200e* fore200e)
|
|
{
|
|
if (fore200e_register(fore200e) < 0)
|
|
return -ENODEV;
|
|
|
|
if (fore200e->bus->configure(fore200e) < 0)
|
|
return -ENODEV;
|
|
|
|
if (fore200e->bus->map(fore200e) < 0)
|
|
return -ENODEV;
|
|
|
|
if (fore200e_reset(fore200e, 1) < 0)
|
|
return -ENODEV;
|
|
|
|
if (fore200e_load_fw(fore200e) < 0)
|
|
return -ENODEV;
|
|
|
|
if (fore200e_start_fw(fore200e) < 0)
|
|
return -ENODEV;
|
|
|
|
if (fore200e_initialize(fore200e) < 0)
|
|
return -ENODEV;
|
|
|
|
if (fore200e_init_cmd_queue(fore200e) < 0)
|
|
return -ENOMEM;
|
|
|
|
if (fore200e_init_tx_queue(fore200e) < 0)
|
|
return -ENOMEM;
|
|
|
|
if (fore200e_init_rx_queue(fore200e) < 0)
|
|
return -ENOMEM;
|
|
|
|
if (fore200e_init_bs_queue(fore200e) < 0)
|
|
return -ENOMEM;
|
|
|
|
if (fore200e_alloc_rx_buf(fore200e) < 0)
|
|
return -ENOMEM;
|
|
|
|
if (fore200e_get_esi(fore200e) < 0)
|
|
return -EIO;
|
|
|
|
if (fore200e_irq_request(fore200e) < 0)
|
|
return -EBUSY;
|
|
|
|
fore200e_supply(fore200e);
|
|
|
|
/* all done, board initialization is now complete */
|
|
fore200e->state = FORE200E_STATE_COMPLETE;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ATM_FORE200E_PCA
|
|
static int __devinit
|
|
fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
|
|
{
|
|
const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
|
|
struct fore200e* fore200e;
|
|
int err = 0;
|
|
static int index = 0;
|
|
|
|
if (pci_enable_device(pci_dev)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
|
|
if (fore200e == NULL) {
|
|
err = -ENOMEM;
|
|
goto out_disable;
|
|
}
|
|
|
|
fore200e->bus = bus;
|
|
fore200e->bus_dev = pci_dev;
|
|
fore200e->irq = pci_dev->irq;
|
|
fore200e->phys_base = pci_resource_start(pci_dev, 0);
|
|
|
|
sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
|
|
|
|
pci_set_master(pci_dev);
|
|
|
|
printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
|
|
fore200e->bus->model_name,
|
|
fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
|
|
|
|
sprintf(fore200e->name, "%s-%d", bus->model_name, index);
|
|
|
|
err = fore200e_init(fore200e);
|
|
if (err < 0) {
|
|
fore200e_shutdown(fore200e);
|
|
goto out_free;
|
|
}
|
|
|
|
++index;
|
|
pci_set_drvdata(pci_dev, fore200e);
|
|
|
|
out:
|
|
return err;
|
|
|
|
out_free:
|
|
kfree(fore200e);
|
|
out_disable:
|
|
pci_disable_device(pci_dev);
|
|
goto out;
|
|
}
|
|
|
|
|
|
static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev)
|
|
{
|
|
struct fore200e *fore200e;
|
|
|
|
fore200e = pci_get_drvdata(pci_dev);
|
|
|
|
fore200e_shutdown(fore200e);
|
|
kfree(fore200e);
|
|
pci_disable_device(pci_dev);
|
|
}
|
|
|
|
|
|
static struct pci_device_id fore200e_pca_tbl[] = {
|
|
{ PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
|
|
0, 0, (unsigned long) &fore200e_bus[0] },
|
|
{ 0, }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
|
|
|
|
static struct pci_driver fore200e_pca_driver = {
|
|
.name = "fore_200e",
|
|
.probe = fore200e_pca_detect,
|
|
.remove = __devexit_p(fore200e_pca_remove_one),
|
|
.id_table = fore200e_pca_tbl,
|
|
};
|
|
#endif
|
|
|
|
|
|
static int __init
|
|
fore200e_module_init(void)
|
|
{
|
|
const struct fore200e_bus* bus;
|
|
struct fore200e* fore200e;
|
|
int index;
|
|
|
|
printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
|
|
|
|
/* for each configured bus interface */
|
|
for (bus = fore200e_bus; bus->model_name; bus++) {
|
|
|
|
/* detect all boards present on that bus */
|
|
for (index = 0; bus->detect && (fore200e = bus->detect(bus, index)); index++) {
|
|
|
|
printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
|
|
fore200e->bus->model_name,
|
|
fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
|
|
|
|
sprintf(fore200e->name, "%s-%d", bus->model_name, index);
|
|
|
|
if (fore200e_init(fore200e) < 0) {
|
|
|
|
fore200e_shutdown(fore200e);
|
|
break;
|
|
}
|
|
|
|
list_add(&fore200e->entry, &fore200e_boards);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ATM_FORE200E_PCA
|
|
if (!pci_register_driver(&fore200e_pca_driver))
|
|
return 0;
|
|
#endif
|
|
|
|
if (!list_empty(&fore200e_boards))
|
|
return 0;
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
|
|
static void __exit
|
|
fore200e_module_cleanup(void)
|
|
{
|
|
struct fore200e *fore200e, *next;
|
|
|
|
#ifdef CONFIG_ATM_FORE200E_PCA
|
|
pci_unregister_driver(&fore200e_pca_driver);
|
|
#endif
|
|
|
|
list_for_each_entry_safe(fore200e, next, &fore200e_boards, entry) {
|
|
fore200e_shutdown(fore200e);
|
|
kfree(fore200e);
|
|
}
|
|
DPRINTK(1, "module being removed\n");
|
|
}
|
|
|
|
|
|
static int
|
|
fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
|
|
{
|
|
struct fore200e* fore200e = FORE200E_DEV(dev);
|
|
struct fore200e_vcc* fore200e_vcc;
|
|
struct atm_vcc* vcc;
|
|
int i, len, left = *pos;
|
|
unsigned long flags;
|
|
|
|
if (!left--) {
|
|
|
|
if (fore200e_getstats(fore200e) < 0)
|
|
return -EIO;
|
|
|
|
len = sprintf(page,"\n"
|
|
" device:\n"
|
|
" internal name:\t\t%s\n", fore200e->name);
|
|
|
|
/* print bus-specific information */
|
|
if (fore200e->bus->proc_read)
|
|
len += fore200e->bus->proc_read(fore200e, page + len);
|
|
|
|
len += sprintf(page + len,
|
|
" interrupt line:\t\t%s\n"
|
|
" physical base address:\t0x%p\n"
|
|
" virtual base address:\t0x%p\n"
|
|
" factory address (ESI):\t%02x:%02x:%02x:%02x:%02x:%02x\n"
|
|
" board serial number:\t\t%d\n\n",
|
|
fore200e_irq_itoa(fore200e->irq),
|
|
(void*)fore200e->phys_base,
|
|
fore200e->virt_base,
|
|
fore200e->esi[0], fore200e->esi[1], fore200e->esi[2],
|
|
fore200e->esi[3], fore200e->esi[4], fore200e->esi[5],
|
|
fore200e->esi[4] * 256 + fore200e->esi[5]);
|
|
|
|
return len;
|
|
}
|
|
|
|
if (!left--)
|
|
return sprintf(page,
|
|
" free small bufs, scheme 1:\t%d\n"
|
|
" free large bufs, scheme 1:\t%d\n"
|
|
" free small bufs, scheme 2:\t%d\n"
|
|
" free large bufs, scheme 2:\t%d\n",
|
|
fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
|
|
fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
|
|
fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
|
|
fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
|
|
|
|
if (!left--) {
|
|
u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
|
|
|
|
len = sprintf(page,"\n\n"
|
|
" cell processor:\n"
|
|
" heartbeat state:\t\t");
|
|
|
|
if (hb >> 16 != 0xDEAD)
|
|
len += sprintf(page + len, "0x%08x\n", hb);
|
|
else
|
|
len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
|
|
|
|
return len;
|
|
}
|
|
|
|
if (!left--) {
|
|
static const char* media_name[] = {
|
|
"unshielded twisted pair",
|
|
"multimode optical fiber ST",
|
|
"multimode optical fiber SC",
|
|
"single-mode optical fiber ST",
|
|
"single-mode optical fiber SC",
|
|
"unknown"
|
|
};
|
|
|
|
static const char* oc3_mode[] = {
|
|
"normal operation",
|
|
"diagnostic loopback",
|
|
"line loopback",
|
|
"unknown"
|
|
};
|
|
|
|
u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
|
|
u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
|
|
u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
|
|
u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
|
|
u32 oc3_index;
|
|
|
|
if ((media_index < 0) || (media_index > 4))
|
|
media_index = 5;
|
|
|
|
switch (fore200e->loop_mode) {
|
|
case ATM_LM_NONE: oc3_index = 0;
|
|
break;
|
|
case ATM_LM_LOC_PHY: oc3_index = 1;
|
|
break;
|
|
case ATM_LM_RMT_PHY: oc3_index = 2;
|
|
break;
|
|
default: oc3_index = 3;
|
|
}
|
|
|
|
return sprintf(page,
|
|
" firmware release:\t\t%d.%d.%d\n"
|
|
" monitor release:\t\t%d.%d\n"
|
|
" media type:\t\t\t%s\n"
|
|
" OC-3 revision:\t\t0x%x\n"
|
|
" OC-3 mode:\t\t\t%s",
|
|
fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
|
|
mon960_release >> 16, mon960_release << 16 >> 16,
|
|
media_name[ media_index ],
|
|
oc3_revision,
|
|
oc3_mode[ oc3_index ]);
|
|
}
|
|
|
|
if (!left--) {
|
|
struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
|
|
|
|
return sprintf(page,
|
|
"\n\n"
|
|
" monitor:\n"
|
|
" version number:\t\t%d\n"
|
|
" boot status word:\t\t0x%08x\n",
|
|
fore200e->bus->read(&cp_monitor->mon_version),
|
|
fore200e->bus->read(&cp_monitor->bstat));
|
|
}
|
|
|
|
if (!left--)
|
|
return sprintf(page,
|
|
"\n"
|
|
" device statistics:\n"
|
|
" 4b5b:\n"
|
|
" crc_header_errors:\t\t%10u\n"
|
|
" framing_errors:\t\t%10u\n",
|
|
be32_to_cpu(fore200e->stats->phy.crc_header_errors),
|
|
be32_to_cpu(fore200e->stats->phy.framing_errors));
|
|
|
|
if (!left--)
|
|
return sprintf(page, "\n"
|
|
" OC-3:\n"
|
|
" section_bip8_errors:\t%10u\n"
|
|
" path_bip8_errors:\t\t%10u\n"
|
|
" line_bip24_errors:\t\t%10u\n"
|
|
" line_febe_errors:\t\t%10u\n"
|
|
" path_febe_errors:\t\t%10u\n"
|
|
" corr_hcs_errors:\t\t%10u\n"
|
|
" ucorr_hcs_errors:\t\t%10u\n",
|
|
be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
|
|
be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
|
|
be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
|
|
be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
|
|
be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
|
|
be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
|
|
be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
|
|
|
|
if (!left--)
|
|
return sprintf(page,"\n"
|
|
" ATM:\t\t\t\t cells\n"
|
|
" TX:\t\t\t%10u\n"
|
|
" RX:\t\t\t%10u\n"
|
|
" vpi out of range:\t\t%10u\n"
|
|
" vpi no conn:\t\t%10u\n"
|
|
" vci out of range:\t\t%10u\n"
|
|
" vci no conn:\t\t%10u\n",
|
|
be32_to_cpu(fore200e->stats->atm.cells_transmitted),
|
|
be32_to_cpu(fore200e->stats->atm.cells_received),
|
|
be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
|
|
be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
|
|
be32_to_cpu(fore200e->stats->atm.vci_bad_range),
|
|
be32_to_cpu(fore200e->stats->atm.vci_no_conn));
|
|
|
|
if (!left--)
|
|
return sprintf(page,"\n"
|
|
" AAL0:\t\t\t cells\n"
|
|
" TX:\t\t\t%10u\n"
|
|
" RX:\t\t\t%10u\n"
|
|
" dropped:\t\t\t%10u\n",
|
|
be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
|
|
be32_to_cpu(fore200e->stats->aal0.cells_received),
|
|
be32_to_cpu(fore200e->stats->aal0.cells_dropped));
|
|
|
|
if (!left--)
|
|
return sprintf(page,"\n"
|
|
" AAL3/4:\n"
|
|
" SAR sublayer:\t\t cells\n"
|
|
" TX:\t\t\t%10u\n"
|
|
" RX:\t\t\t%10u\n"
|
|
" dropped:\t\t\t%10u\n"
|
|
" CRC errors:\t\t%10u\n"
|
|
" protocol errors:\t\t%10u\n\n"
|
|
" CS sublayer:\t\t PDUs\n"
|
|
" TX:\t\t\t%10u\n"
|
|
" RX:\t\t\t%10u\n"
|
|
" dropped:\t\t\t%10u\n"
|
|
" protocol errors:\t\t%10u\n",
|
|
be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
|
|
be32_to_cpu(fore200e->stats->aal34.cells_received),
|
|
be32_to_cpu(fore200e->stats->aal34.cells_dropped),
|
|
be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
|
|
be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
|
|
be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
|
|
be32_to_cpu(fore200e->stats->aal34.cspdus_received),
|
|
be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
|
|
be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
|
|
|
|
if (!left--)
|
|
return sprintf(page,"\n"
|
|
" AAL5:\n"
|
|
" SAR sublayer:\t\t cells\n"
|
|
" TX:\t\t\t%10u\n"
|
|
" RX:\t\t\t%10u\n"
|
|
" dropped:\t\t\t%10u\n"
|
|
" congestions:\t\t%10u\n\n"
|
|
" CS sublayer:\t\t PDUs\n"
|
|
" TX:\t\t\t%10u\n"
|
|
" RX:\t\t\t%10u\n"
|
|
" dropped:\t\t\t%10u\n"
|
|
" CRC errors:\t\t%10u\n"
|
|
" protocol errors:\t\t%10u\n",
|
|
be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
|
|
be32_to_cpu(fore200e->stats->aal5.cells_received),
|
|
be32_to_cpu(fore200e->stats->aal5.cells_dropped),
|
|
be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
|
|
be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
|
|
be32_to_cpu(fore200e->stats->aal5.cspdus_received),
|
|
be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
|
|
be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
|
|
be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
|
|
|
|
if (!left--)
|
|
return sprintf(page,"\n"
|
|
" AUX:\t\t allocation failures\n"
|
|
" small b1:\t\t\t%10u\n"
|
|
" large b1:\t\t\t%10u\n"
|
|
" small b2:\t\t\t%10u\n"
|
|
" large b2:\t\t\t%10u\n"
|
|
" RX PDUs:\t\t\t%10u\n"
|
|
" TX PDUs:\t\t\t%10lu\n",
|
|
be32_to_cpu(fore200e->stats->aux.small_b1_failed),
|
|
be32_to_cpu(fore200e->stats->aux.large_b1_failed),
|
|
be32_to_cpu(fore200e->stats->aux.small_b2_failed),
|
|
be32_to_cpu(fore200e->stats->aux.large_b2_failed),
|
|
be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
|
|
fore200e->tx_sat);
|
|
|
|
if (!left--)
|
|
return sprintf(page,"\n"
|
|
" receive carrier:\t\t\t%s\n",
|
|
fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
|
|
|
|
if (!left--) {
|
|
return sprintf(page,"\n"
|
|
" VCCs:\n address VPI VCI AAL "
|
|
"TX PDUs TX min/max size RX PDUs RX min/max size\n");
|
|
}
|
|
|
|
for (i = 0; i < NBR_CONNECT; i++) {
|
|
|
|
vcc = fore200e->vc_map[i].vcc;
|
|
|
|
if (vcc == NULL)
|
|
continue;
|
|
|
|
spin_lock_irqsave(&fore200e->q_lock, flags);
|
|
|
|
if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
|
|
|
|
fore200e_vcc = FORE200E_VCC(vcc);
|
|
ASSERT(fore200e_vcc);
|
|
|
|
len = sprintf(page,
|
|
" %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
|
|
(u32)(unsigned long)vcc,
|
|
vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
|
|
fore200e_vcc->tx_pdu,
|
|
fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
|
|
fore200e_vcc->tx_max_pdu,
|
|
fore200e_vcc->rx_pdu,
|
|
fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
|
|
fore200e_vcc->rx_max_pdu);
|
|
|
|
spin_unlock_irqrestore(&fore200e->q_lock, flags);
|
|
return len;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&fore200e->q_lock, flags);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_init(fore200e_module_init);
|
|
module_exit(fore200e_module_cleanup);
|
|
|
|
|
|
static const struct atmdev_ops fore200e_ops =
|
|
{
|
|
.open = fore200e_open,
|
|
.close = fore200e_close,
|
|
.ioctl = fore200e_ioctl,
|
|
.getsockopt = fore200e_getsockopt,
|
|
.setsockopt = fore200e_setsockopt,
|
|
.send = fore200e_send,
|
|
.change_qos = fore200e_change_qos,
|
|
.proc_read = fore200e_proc_read,
|
|
.owner = THIS_MODULE
|
|
};
|
|
|
|
|
|
#ifdef CONFIG_ATM_FORE200E_PCA
|
|
extern const unsigned char _fore200e_pca_fw_data[];
|
|
extern const unsigned int _fore200e_pca_fw_size;
|
|
#endif
|
|
#ifdef CONFIG_ATM_FORE200E_SBA
|
|
extern const unsigned char _fore200e_sba_fw_data[];
|
|
extern const unsigned int _fore200e_sba_fw_size;
|
|
#endif
|
|
|
|
static const struct fore200e_bus fore200e_bus[] = {
|
|
#ifdef CONFIG_ATM_FORE200E_PCA
|
|
{ "PCA-200E", "pca200e", 32, 4, 32,
|
|
_fore200e_pca_fw_data, &_fore200e_pca_fw_size,
|
|
fore200e_pca_read,
|
|
fore200e_pca_write,
|
|
fore200e_pca_dma_map,
|
|
fore200e_pca_dma_unmap,
|
|
fore200e_pca_dma_sync_for_cpu,
|
|
fore200e_pca_dma_sync_for_device,
|
|
fore200e_pca_dma_chunk_alloc,
|
|
fore200e_pca_dma_chunk_free,
|
|
NULL,
|
|
fore200e_pca_configure,
|
|
fore200e_pca_map,
|
|
fore200e_pca_reset,
|
|
fore200e_pca_prom_read,
|
|
fore200e_pca_unmap,
|
|
NULL,
|
|
fore200e_pca_irq_check,
|
|
fore200e_pca_irq_ack,
|
|
fore200e_pca_proc_read,
|
|
},
|
|
#endif
|
|
#ifdef CONFIG_ATM_FORE200E_SBA
|
|
{ "SBA-200E", "sba200e", 32, 64, 32,
|
|
_fore200e_sba_fw_data, &_fore200e_sba_fw_size,
|
|
fore200e_sba_read,
|
|
fore200e_sba_write,
|
|
fore200e_sba_dma_map,
|
|
fore200e_sba_dma_unmap,
|
|
fore200e_sba_dma_sync_for_cpu,
|
|
fore200e_sba_dma_sync_for_device,
|
|
fore200e_sba_dma_chunk_alloc,
|
|
fore200e_sba_dma_chunk_free,
|
|
fore200e_sba_detect,
|
|
fore200e_sba_configure,
|
|
fore200e_sba_map,
|
|
fore200e_sba_reset,
|
|
fore200e_sba_prom_read,
|
|
fore200e_sba_unmap,
|
|
fore200e_sba_irq_enable,
|
|
fore200e_sba_irq_check,
|
|
fore200e_sba_irq_ack,
|
|
fore200e_sba_proc_read,
|
|
},
|
|
#endif
|
|
{}
|
|
};
|
|
|
|
#ifdef MODULE_LICENSE
|
|
MODULE_LICENSE("GPL");
|
|
#endif
|