mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-10 07:00:48 +00:00
1139e241ec
Minimize padding in sw_flow_key and move 'tp' top the main struct. These changes simplify code when accessing the transport port numbers and the tcp flags, and makes the sw_flow_key 8 bytes smaller on 64-bit systems (128->120 bytes). These changes also make the keys for IPv4 packets to fit in one cache line. There is a valid concern for safety of packing the struct ovs_key_ipv4_tunnel, as it would be possible to take the address of the tun_id member as a __be64 * which could result in unaligned access in some systems. However: - sw_flow_key itself is 64-bit aligned, so the tun_id within is always 64-bit aligned. - We never make arrays of ovs_key_ipv4_tunnel (which would force every second tun_key to be misaligned). - We never take the address of the tun_id in to a __be64 *. - Whereever we use struct ovs_key_ipv4_tunnel outside the sw_flow_key, it is in stack (on tunnel input functions), where compiler has full control of the alignment. Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com> Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
1577 lines
42 KiB
C
1577 lines
42 KiB
C
/*
|
|
* Copyright (c) 2007-2013 Nicira, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include "flow.h"
|
|
#include "datapath.h"
|
|
#include <linux/uaccess.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/llc_pdu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/llc.h>
|
|
#include <linux/module.h>
|
|
#include <linux/in.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/sctp.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/icmp.h>
|
|
#include <linux/icmpv6.h>
|
|
#include <linux/rculist.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/ndisc.h>
|
|
|
|
#include "flow_netlink.h"
|
|
|
|
static void update_range__(struct sw_flow_match *match,
|
|
size_t offset, size_t size, bool is_mask)
|
|
{
|
|
struct sw_flow_key_range *range = NULL;
|
|
size_t start = rounddown(offset, sizeof(long));
|
|
size_t end = roundup(offset + size, sizeof(long));
|
|
|
|
if (!is_mask)
|
|
range = &match->range;
|
|
else if (match->mask)
|
|
range = &match->mask->range;
|
|
|
|
if (!range)
|
|
return;
|
|
|
|
if (range->start == range->end) {
|
|
range->start = start;
|
|
range->end = end;
|
|
return;
|
|
}
|
|
|
|
if (range->start > start)
|
|
range->start = start;
|
|
|
|
if (range->end < end)
|
|
range->end = end;
|
|
}
|
|
|
|
#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
|
|
do { \
|
|
update_range__(match, offsetof(struct sw_flow_key, field), \
|
|
sizeof((match)->key->field), is_mask); \
|
|
if (is_mask) { \
|
|
if ((match)->mask) \
|
|
(match)->mask->key.field = value; \
|
|
} else { \
|
|
(match)->key->field = value; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
|
|
do { \
|
|
update_range__(match, offsetof(struct sw_flow_key, field), \
|
|
len, is_mask); \
|
|
if (is_mask) { \
|
|
if ((match)->mask) \
|
|
memcpy(&(match)->mask->key.field, value_p, len);\
|
|
} else { \
|
|
memcpy(&(match)->key->field, value_p, len); \
|
|
} \
|
|
} while (0)
|
|
|
|
static u16 range_n_bytes(const struct sw_flow_key_range *range)
|
|
{
|
|
return range->end - range->start;
|
|
}
|
|
|
|
static bool match_validate(const struct sw_flow_match *match,
|
|
u64 key_attrs, u64 mask_attrs)
|
|
{
|
|
u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
|
|
u64 mask_allowed = key_attrs; /* At most allow all key attributes */
|
|
|
|
/* The following mask attributes allowed only if they
|
|
* pass the validation tests. */
|
|
mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
|
|
| (1 << OVS_KEY_ATTR_IPV6)
|
|
| (1 << OVS_KEY_ATTR_TCP)
|
|
| (1 << OVS_KEY_ATTR_TCP_FLAGS)
|
|
| (1 << OVS_KEY_ATTR_UDP)
|
|
| (1 << OVS_KEY_ATTR_SCTP)
|
|
| (1 << OVS_KEY_ATTR_ICMP)
|
|
| (1 << OVS_KEY_ATTR_ICMPV6)
|
|
| (1 << OVS_KEY_ATTR_ARP)
|
|
| (1 << OVS_KEY_ATTR_ND));
|
|
|
|
/* Always allowed mask fields. */
|
|
mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
|
|
| (1 << OVS_KEY_ATTR_IN_PORT)
|
|
| (1 << OVS_KEY_ATTR_ETHERTYPE));
|
|
|
|
/* Check key attributes. */
|
|
if (match->key->eth.type == htons(ETH_P_ARP)
|
|
|| match->key->eth.type == htons(ETH_P_RARP)) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_ARP;
|
|
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
|
|
}
|
|
|
|
if (match->key->eth.type == htons(ETH_P_IP)) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_IPV4;
|
|
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
|
|
|
|
if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
|
|
if (match->key->ip.proto == IPPROTO_UDP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_UDP;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_SCTP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_SCTP;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_TCP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_TCP;
|
|
key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff)) {
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
|
|
}
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_ICMP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_ICMP;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (match->key->eth.type == htons(ETH_P_IPV6)) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_IPV6;
|
|
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
|
|
|
|
if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
|
|
if (match->key->ip.proto == IPPROTO_UDP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_UDP;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_SCTP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_SCTP;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_TCP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_TCP;
|
|
key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff)) {
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
|
|
}
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_ICMPV6) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
|
|
|
|
if (match->key->tp.src ==
|
|
htons(NDISC_NEIGHBOUR_SOLICITATION) ||
|
|
match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_ND;
|
|
if (match->mask && (match->mask->key.tp.src == htons(0xffff)))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_ND;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((key_attrs & key_expected) != key_expected) {
|
|
/* Key attributes check failed. */
|
|
OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
|
|
(unsigned long long)key_attrs, (unsigned long long)key_expected);
|
|
return false;
|
|
}
|
|
|
|
if ((mask_attrs & mask_allowed) != mask_attrs) {
|
|
/* Mask attributes check failed. */
|
|
OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
|
|
(unsigned long long)mask_attrs, (unsigned long long)mask_allowed);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
|
|
static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
|
|
[OVS_KEY_ATTR_ENCAP] = -1,
|
|
[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
|
|
[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
|
|
[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
|
|
[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
|
|
[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
|
|
[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
|
|
[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
|
|
[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
|
|
[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
|
|
[OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
|
|
[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
|
|
[OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
|
|
[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
|
|
[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
|
|
[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
|
|
[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
|
|
[OVS_KEY_ATTR_TUNNEL] = -1,
|
|
};
|
|
|
|
static bool is_all_zero(const u8 *fp, size_t size)
|
|
{
|
|
int i;
|
|
|
|
if (!fp)
|
|
return false;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if (fp[i])
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int __parse_flow_nlattrs(const struct nlattr *attr,
|
|
const struct nlattr *a[],
|
|
u64 *attrsp, bool nz)
|
|
{
|
|
const struct nlattr *nla;
|
|
u64 attrs;
|
|
int rem;
|
|
|
|
attrs = *attrsp;
|
|
nla_for_each_nested(nla, attr, rem) {
|
|
u16 type = nla_type(nla);
|
|
int expected_len;
|
|
|
|
if (type > OVS_KEY_ATTR_MAX) {
|
|
OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
|
|
type, OVS_KEY_ATTR_MAX);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (attrs & (1 << type)) {
|
|
OVS_NLERR("Duplicate key attribute (type %d).\n", type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
expected_len = ovs_key_lens[type];
|
|
if (nla_len(nla) != expected_len && expected_len != -1) {
|
|
OVS_NLERR("Key attribute has unexpected length (type=%d"
|
|
", length=%d, expected=%d).\n", type,
|
|
nla_len(nla), expected_len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
|
|
attrs |= 1 << type;
|
|
a[type] = nla;
|
|
}
|
|
}
|
|
if (rem) {
|
|
OVS_NLERR("Message has %d unknown bytes.\n", rem);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*attrsp = attrs;
|
|
return 0;
|
|
}
|
|
|
|
static int parse_flow_mask_nlattrs(const struct nlattr *attr,
|
|
const struct nlattr *a[], u64 *attrsp)
|
|
{
|
|
return __parse_flow_nlattrs(attr, a, attrsp, true);
|
|
}
|
|
|
|
static int parse_flow_nlattrs(const struct nlattr *attr,
|
|
const struct nlattr *a[], u64 *attrsp)
|
|
{
|
|
return __parse_flow_nlattrs(attr, a, attrsp, false);
|
|
}
|
|
|
|
static int ipv4_tun_from_nlattr(const struct nlattr *attr,
|
|
struct sw_flow_match *match, bool is_mask)
|
|
{
|
|
struct nlattr *a;
|
|
int rem;
|
|
bool ttl = false;
|
|
__be16 tun_flags = 0;
|
|
|
|
nla_for_each_nested(a, attr, rem) {
|
|
int type = nla_type(a);
|
|
static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
|
|
[OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
|
|
[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
|
|
[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
|
|
[OVS_TUNNEL_KEY_ATTR_TOS] = 1,
|
|
[OVS_TUNNEL_KEY_ATTR_TTL] = 1,
|
|
[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
|
|
[OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
|
|
};
|
|
|
|
if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
|
|
OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
|
|
type, OVS_TUNNEL_KEY_ATTR_MAX);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ovs_tunnel_key_lens[type] != nla_len(a)) {
|
|
OVS_NLERR("IPv4 tunnel attribute type has unexpected "
|
|
" length (type=%d, length=%d, expected=%d).\n",
|
|
type, nla_len(a), ovs_tunnel_key_lens[type]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (type) {
|
|
case OVS_TUNNEL_KEY_ATTR_ID:
|
|
SW_FLOW_KEY_PUT(match, tun_key.tun_id,
|
|
nla_get_be64(a), is_mask);
|
|
tun_flags |= TUNNEL_KEY;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
|
|
SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
|
|
nla_get_be32(a), is_mask);
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
|
|
SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
|
|
nla_get_be32(a), is_mask);
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_TOS:
|
|
SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
|
|
nla_get_u8(a), is_mask);
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_TTL:
|
|
SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
|
|
nla_get_u8(a), is_mask);
|
|
ttl = true;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
|
|
tun_flags |= TUNNEL_DONT_FRAGMENT;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_CSUM:
|
|
tun_flags |= TUNNEL_CSUM;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
|
|
|
|
if (rem > 0) {
|
|
OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!is_mask) {
|
|
if (!match->key->tun_key.ipv4_dst) {
|
|
OVS_NLERR("IPv4 tunnel destination address is zero.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ttl) {
|
|
OVS_NLERR("IPv4 tunnel TTL not specified.\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ipv4_tun_to_nlattr(struct sk_buff *skb,
|
|
const struct ovs_key_ipv4_tunnel *tun_key,
|
|
const struct ovs_key_ipv4_tunnel *output)
|
|
{
|
|
struct nlattr *nla;
|
|
|
|
nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
|
|
if (!nla)
|
|
return -EMSGSIZE;
|
|
|
|
if (output->tun_flags & TUNNEL_KEY &&
|
|
nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
|
|
return -EMSGSIZE;
|
|
if (output->ipv4_src &&
|
|
nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
|
|
return -EMSGSIZE;
|
|
if (output->ipv4_dst &&
|
|
nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
|
|
return -EMSGSIZE;
|
|
if (output->ipv4_tos &&
|
|
nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
|
|
return -EMSGSIZE;
|
|
if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
|
|
return -EMSGSIZE;
|
|
if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
|
|
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
|
|
return -EMSGSIZE;
|
|
if ((output->tun_flags & TUNNEL_CSUM) &&
|
|
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
|
|
return -EMSGSIZE;
|
|
|
|
nla_nest_end(skb, nla);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs,
|
|
const struct nlattr **a, bool is_mask)
|
|
{
|
|
if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
|
|
SW_FLOW_KEY_PUT(match, phy.priority,
|
|
nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
|
|
}
|
|
|
|
if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
|
|
u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
|
|
|
|
if (is_mask)
|
|
in_port = 0xffffffff; /* Always exact match in_port. */
|
|
else if (in_port >= DP_MAX_PORTS)
|
|
return -EINVAL;
|
|
|
|
SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
|
|
} else if (!is_mask) {
|
|
SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
|
|
}
|
|
|
|
if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
|
|
uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
|
|
|
|
SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
|
|
}
|
|
if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
|
|
if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
|
|
is_mask))
|
|
return -EINVAL;
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
|
|
const struct nlattr **a, bool is_mask)
|
|
{
|
|
int err;
|
|
u64 orig_attrs = attrs;
|
|
|
|
err = metadata_from_nlattrs(match, &attrs, a, is_mask);
|
|
if (err)
|
|
return err;
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
|
|
const struct ovs_key_ethernet *eth_key;
|
|
|
|
eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
|
|
SW_FLOW_KEY_MEMCPY(match, eth.src,
|
|
eth_key->eth_src, ETH_ALEN, is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, eth.dst,
|
|
eth_key->eth_dst, ETH_ALEN, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
|
|
__be16 tci;
|
|
|
|
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
|
|
if (!(tci & htons(VLAN_TAG_PRESENT))) {
|
|
if (is_mask)
|
|
OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
|
|
else
|
|
OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
|
|
} else if (!is_mask)
|
|
SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
|
|
__be16 eth_type;
|
|
|
|
eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
|
|
if (is_mask) {
|
|
/* Always exact match EtherType. */
|
|
eth_type = htons(0xffff);
|
|
} else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
|
|
OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
|
|
ntohs(eth_type), ETH_P_802_3_MIN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
|
|
} else if (!is_mask) {
|
|
SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
|
|
const struct ovs_key_ipv4 *ipv4_key;
|
|
|
|
ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
|
|
if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
|
|
OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
|
|
ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
|
|
return -EINVAL;
|
|
}
|
|
SW_FLOW_KEY_PUT(match, ip.proto,
|
|
ipv4_key->ipv4_proto, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.tos,
|
|
ipv4_key->ipv4_tos, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.ttl,
|
|
ipv4_key->ipv4_ttl, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.frag,
|
|
ipv4_key->ipv4_frag, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ipv4.addr.src,
|
|
ipv4_key->ipv4_src, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
|
|
ipv4_key->ipv4_dst, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
|
|
const struct ovs_key_ipv6 *ipv6_key;
|
|
|
|
ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
|
|
if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
|
|
OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
|
|
ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
|
|
return -EINVAL;
|
|
}
|
|
SW_FLOW_KEY_PUT(match, ipv6.label,
|
|
ipv6_key->ipv6_label, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.proto,
|
|
ipv6_key->ipv6_proto, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.tos,
|
|
ipv6_key->ipv6_tclass, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.ttl,
|
|
ipv6_key->ipv6_hlimit, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.frag,
|
|
ipv6_key->ipv6_frag, is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
|
|
ipv6_key->ipv6_src,
|
|
sizeof(match->key->ipv6.addr.src),
|
|
is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
|
|
ipv6_key->ipv6_dst,
|
|
sizeof(match->key->ipv6.addr.dst),
|
|
is_mask);
|
|
|
|
attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
|
|
const struct ovs_key_arp *arp_key;
|
|
|
|
arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
|
|
if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
|
|
OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
|
|
arp_key->arp_op);
|
|
return -EINVAL;
|
|
}
|
|
|
|
SW_FLOW_KEY_PUT(match, ipv4.addr.src,
|
|
arp_key->arp_sip, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
|
|
arp_key->arp_tip, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.proto,
|
|
ntohs(arp_key->arp_op), is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
|
|
arp_key->arp_sha, ETH_ALEN, is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
|
|
arp_key->arp_tha, ETH_ALEN, is_mask);
|
|
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ARP);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
|
|
const struct ovs_key_tcp *tcp_key;
|
|
|
|
tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
|
|
SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
|
|
SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_TCP);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
|
|
if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
|
|
SW_FLOW_KEY_PUT(match, tp.flags,
|
|
nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
|
|
is_mask);
|
|
} else {
|
|
SW_FLOW_KEY_PUT(match, tp.flags,
|
|
nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
|
|
is_mask);
|
|
}
|
|
attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
|
|
const struct ovs_key_udp *udp_key;
|
|
|
|
udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
|
|
SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
|
|
SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_UDP);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
|
|
const struct ovs_key_sctp *sctp_key;
|
|
|
|
sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
|
|
SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
|
|
SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
|
|
const struct ovs_key_icmp *icmp_key;
|
|
|
|
icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
|
|
SW_FLOW_KEY_PUT(match, tp.src,
|
|
htons(icmp_key->icmp_type), is_mask);
|
|
SW_FLOW_KEY_PUT(match, tp.dst,
|
|
htons(icmp_key->icmp_code), is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
|
|
const struct ovs_key_icmpv6 *icmpv6_key;
|
|
|
|
icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
|
|
SW_FLOW_KEY_PUT(match, tp.src,
|
|
htons(icmpv6_key->icmpv6_type), is_mask);
|
|
SW_FLOW_KEY_PUT(match, tp.dst,
|
|
htons(icmpv6_key->icmpv6_code), is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ND)) {
|
|
const struct ovs_key_nd *nd_key;
|
|
|
|
nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
|
|
nd_key->nd_target,
|
|
sizeof(match->key->ipv6.nd.target),
|
|
is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
|
|
nd_key->nd_sll, ETH_ALEN, is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
|
|
nd_key->nd_tll, ETH_ALEN, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ND);
|
|
}
|
|
|
|
if (attrs != 0)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sw_flow_mask_set(struct sw_flow_mask *mask,
|
|
struct sw_flow_key_range *range, u8 val)
|
|
{
|
|
u8 *m = (u8 *)&mask->key + range->start;
|
|
|
|
mask->range = *range;
|
|
memset(m, val, range_n_bytes(range));
|
|
}
|
|
|
|
/**
|
|
* ovs_nla_get_match - parses Netlink attributes into a flow key and
|
|
* mask. In case the 'mask' is NULL, the flow is treated as exact match
|
|
* flow. Otherwise, it is treated as a wildcarded flow, except the mask
|
|
* does not include any don't care bit.
|
|
* @match: receives the extracted flow match information.
|
|
* @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
|
|
* sequence. The fields should of the packet that triggered the creation
|
|
* of this flow.
|
|
* @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
|
|
* attribute specifies the mask field of the wildcarded flow.
|
|
*/
|
|
int ovs_nla_get_match(struct sw_flow_match *match,
|
|
const struct nlattr *key,
|
|
const struct nlattr *mask)
|
|
{
|
|
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
|
|
const struct nlattr *encap;
|
|
u64 key_attrs = 0;
|
|
u64 mask_attrs = 0;
|
|
bool encap_valid = false;
|
|
int err;
|
|
|
|
err = parse_flow_nlattrs(key, a, &key_attrs);
|
|
if (err)
|
|
return err;
|
|
|
|
if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
|
|
(key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
|
|
(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
|
|
__be16 tci;
|
|
|
|
if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
|
|
(key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
|
|
OVS_NLERR("Invalid Vlan frame.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
|
|
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
|
|
encap = a[OVS_KEY_ATTR_ENCAP];
|
|
key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
|
|
encap_valid = true;
|
|
|
|
if (tci & htons(VLAN_TAG_PRESENT)) {
|
|
err = parse_flow_nlattrs(encap, a, &key_attrs);
|
|
if (err)
|
|
return err;
|
|
} else if (!tci) {
|
|
/* Corner case for truncated 802.1Q header. */
|
|
if (nla_len(encap)) {
|
|
OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
err = ovs_key_from_nlattrs(match, key_attrs, a, false);
|
|
if (err)
|
|
return err;
|
|
|
|
if (mask) {
|
|
err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
|
|
if (err)
|
|
return err;
|
|
|
|
if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
|
|
__be16 eth_type = 0;
|
|
__be16 tci = 0;
|
|
|
|
if (!encap_valid) {
|
|
OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
|
|
if (a[OVS_KEY_ATTR_ETHERTYPE])
|
|
eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
|
|
|
|
if (eth_type == htons(0xffff)) {
|
|
mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
|
|
encap = a[OVS_KEY_ATTR_ENCAP];
|
|
err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
|
|
} else {
|
|
OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
|
|
ntohs(eth_type));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (a[OVS_KEY_ATTR_VLAN])
|
|
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
|
|
|
|
if (!(tci & htons(VLAN_TAG_PRESENT))) {
|
|
OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
err = ovs_key_from_nlattrs(match, mask_attrs, a, true);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
/* Populate exact match flow's key mask. */
|
|
if (match->mask)
|
|
sw_flow_mask_set(match->mask, &match->range, 0xff);
|
|
}
|
|
|
|
if (!match_validate(match, key_attrs, mask_attrs))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
|
|
* @flow: Receives extracted in_port, priority, tun_key and skb_mark.
|
|
* @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
|
|
* sequence.
|
|
*
|
|
* This parses a series of Netlink attributes that form a flow key, which must
|
|
* take the same form accepted by flow_from_nlattrs(), but only enough of it to
|
|
* get the metadata, that is, the parts of the flow key that cannot be
|
|
* extracted from the packet itself.
|
|
*/
|
|
|
|
int ovs_nla_get_flow_metadata(struct sw_flow *flow,
|
|
const struct nlattr *attr)
|
|
{
|
|
struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
|
|
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
|
|
u64 attrs = 0;
|
|
int err;
|
|
struct sw_flow_match match;
|
|
|
|
flow->key.phy.in_port = DP_MAX_PORTS;
|
|
flow->key.phy.priority = 0;
|
|
flow->key.phy.skb_mark = 0;
|
|
memset(tun_key, 0, sizeof(flow->key.tun_key));
|
|
|
|
err = parse_flow_nlattrs(attr, a, &attrs);
|
|
if (err)
|
|
return -EINVAL;
|
|
|
|
memset(&match, 0, sizeof(match));
|
|
match.key = &flow->key;
|
|
|
|
err = metadata_from_nlattrs(&match, &attrs, a, false);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ovs_nla_put_flow(const struct sw_flow_key *swkey,
|
|
const struct sw_flow_key *output, struct sk_buff *skb)
|
|
{
|
|
struct ovs_key_ethernet *eth_key;
|
|
struct nlattr *nla, *encap;
|
|
bool is_mask = (swkey != output);
|
|
|
|
if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
|
|
goto nla_put_failure;
|
|
|
|
if ((swkey->tun_key.ipv4_dst || is_mask) &&
|
|
ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
|
|
goto nla_put_failure;
|
|
|
|
if (swkey->phy.in_port == DP_MAX_PORTS) {
|
|
if (is_mask && (output->phy.in_port == 0xffff))
|
|
if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
|
|
goto nla_put_failure;
|
|
} else {
|
|
u16 upper_u16;
|
|
upper_u16 = !is_mask ? 0 : 0xffff;
|
|
|
|
if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
|
|
(upper_u16 << 16) | output->phy.in_port))
|
|
goto nla_put_failure;
|
|
}
|
|
|
|
if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
|
|
goto nla_put_failure;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
|
|
eth_key = nla_data(nla);
|
|
ether_addr_copy(eth_key->eth_src, output->eth.src);
|
|
ether_addr_copy(eth_key->eth_dst, output->eth.dst);
|
|
|
|
if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
|
|
__be16 eth_type;
|
|
eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
|
|
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
|
|
nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
|
|
goto nla_put_failure;
|
|
encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
|
|
if (!swkey->eth.tci)
|
|
goto unencap;
|
|
} else
|
|
encap = NULL;
|
|
|
|
if (swkey->eth.type == htons(ETH_P_802_2)) {
|
|
/*
|
|
* Ethertype 802.2 is represented in the netlink with omitted
|
|
* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
|
|
* 0xffff in the mask attribute. Ethertype can also
|
|
* be wildcarded.
|
|
*/
|
|
if (is_mask && output->eth.type)
|
|
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
|
|
output->eth.type))
|
|
goto nla_put_failure;
|
|
goto unencap;
|
|
}
|
|
|
|
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
|
|
goto nla_put_failure;
|
|
|
|
if (swkey->eth.type == htons(ETH_P_IP)) {
|
|
struct ovs_key_ipv4 *ipv4_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
ipv4_key = nla_data(nla);
|
|
ipv4_key->ipv4_src = output->ipv4.addr.src;
|
|
ipv4_key->ipv4_dst = output->ipv4.addr.dst;
|
|
ipv4_key->ipv4_proto = output->ip.proto;
|
|
ipv4_key->ipv4_tos = output->ip.tos;
|
|
ipv4_key->ipv4_ttl = output->ip.ttl;
|
|
ipv4_key->ipv4_frag = output->ip.frag;
|
|
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
|
|
struct ovs_key_ipv6 *ipv6_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
ipv6_key = nla_data(nla);
|
|
memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
|
|
sizeof(ipv6_key->ipv6_src));
|
|
memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
|
|
sizeof(ipv6_key->ipv6_dst));
|
|
ipv6_key->ipv6_label = output->ipv6.label;
|
|
ipv6_key->ipv6_proto = output->ip.proto;
|
|
ipv6_key->ipv6_tclass = output->ip.tos;
|
|
ipv6_key->ipv6_hlimit = output->ip.ttl;
|
|
ipv6_key->ipv6_frag = output->ip.frag;
|
|
} else if (swkey->eth.type == htons(ETH_P_ARP) ||
|
|
swkey->eth.type == htons(ETH_P_RARP)) {
|
|
struct ovs_key_arp *arp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
arp_key = nla_data(nla);
|
|
memset(arp_key, 0, sizeof(struct ovs_key_arp));
|
|
arp_key->arp_sip = output->ipv4.addr.src;
|
|
arp_key->arp_tip = output->ipv4.addr.dst;
|
|
arp_key->arp_op = htons(output->ip.proto);
|
|
ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
|
|
ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
|
|
}
|
|
|
|
if ((swkey->eth.type == htons(ETH_P_IP) ||
|
|
swkey->eth.type == htons(ETH_P_IPV6)) &&
|
|
swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
|
|
|
|
if (swkey->ip.proto == IPPROTO_TCP) {
|
|
struct ovs_key_tcp *tcp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
tcp_key = nla_data(nla);
|
|
tcp_key->tcp_src = output->tp.src;
|
|
tcp_key->tcp_dst = output->tp.dst;
|
|
if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
|
|
output->tp.flags))
|
|
goto nla_put_failure;
|
|
} else if (swkey->ip.proto == IPPROTO_UDP) {
|
|
struct ovs_key_udp *udp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
udp_key = nla_data(nla);
|
|
udp_key->udp_src = output->tp.src;
|
|
udp_key->udp_dst = output->tp.dst;
|
|
} else if (swkey->ip.proto == IPPROTO_SCTP) {
|
|
struct ovs_key_sctp *sctp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
sctp_key = nla_data(nla);
|
|
sctp_key->sctp_src = output->tp.src;
|
|
sctp_key->sctp_dst = output->tp.dst;
|
|
} else if (swkey->eth.type == htons(ETH_P_IP) &&
|
|
swkey->ip.proto == IPPROTO_ICMP) {
|
|
struct ovs_key_icmp *icmp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
icmp_key = nla_data(nla);
|
|
icmp_key->icmp_type = ntohs(output->tp.src);
|
|
icmp_key->icmp_code = ntohs(output->tp.dst);
|
|
} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
|
|
swkey->ip.proto == IPPROTO_ICMPV6) {
|
|
struct ovs_key_icmpv6 *icmpv6_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
|
|
sizeof(*icmpv6_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
icmpv6_key = nla_data(nla);
|
|
icmpv6_key->icmpv6_type = ntohs(output->tp.src);
|
|
icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
|
|
|
|
if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
|
|
icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
|
|
struct ovs_key_nd *nd_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
nd_key = nla_data(nla);
|
|
memcpy(nd_key->nd_target, &output->ipv6.nd.target,
|
|
sizeof(nd_key->nd_target));
|
|
ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
|
|
ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
|
|
}
|
|
}
|
|
}
|
|
|
|
unencap:
|
|
if (encap)
|
|
nla_nest_end(skb, encap);
|
|
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
#define MAX_ACTIONS_BUFSIZE (32 * 1024)
|
|
|
|
struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size)
|
|
{
|
|
struct sw_flow_actions *sfa;
|
|
|
|
if (size > MAX_ACTIONS_BUFSIZE)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
|
|
if (!sfa)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
sfa->actions_len = 0;
|
|
return sfa;
|
|
}
|
|
|
|
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
|
|
* The caller must hold rcu_read_lock for this to be sensible. */
|
|
void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
|
|
{
|
|
kfree_rcu(sf_acts, rcu);
|
|
}
|
|
|
|
static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
|
|
int attr_len)
|
|
{
|
|
|
|
struct sw_flow_actions *acts;
|
|
int new_acts_size;
|
|
int req_size = NLA_ALIGN(attr_len);
|
|
int next_offset = offsetof(struct sw_flow_actions, actions) +
|
|
(*sfa)->actions_len;
|
|
|
|
if (req_size <= (ksize(*sfa) - next_offset))
|
|
goto out;
|
|
|
|
new_acts_size = ksize(*sfa) * 2;
|
|
|
|
if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
|
|
if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
|
|
return ERR_PTR(-EMSGSIZE);
|
|
new_acts_size = MAX_ACTIONS_BUFSIZE;
|
|
}
|
|
|
|
acts = ovs_nla_alloc_flow_actions(new_acts_size);
|
|
if (IS_ERR(acts))
|
|
return (void *)acts;
|
|
|
|
memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
|
|
acts->actions_len = (*sfa)->actions_len;
|
|
kfree(*sfa);
|
|
*sfa = acts;
|
|
|
|
out:
|
|
(*sfa)->actions_len += req_size;
|
|
return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
|
|
}
|
|
|
|
static int add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len)
|
|
{
|
|
struct nlattr *a;
|
|
|
|
a = reserve_sfa_size(sfa, nla_attr_size(len));
|
|
if (IS_ERR(a))
|
|
return PTR_ERR(a);
|
|
|
|
a->nla_type = attrtype;
|
|
a->nla_len = nla_attr_size(len);
|
|
|
|
if (data)
|
|
memcpy(nla_data(a), data, len);
|
|
memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int add_nested_action_start(struct sw_flow_actions **sfa,
|
|
int attrtype)
|
|
{
|
|
int used = (*sfa)->actions_len;
|
|
int err;
|
|
|
|
err = add_action(sfa, attrtype, NULL, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
return used;
|
|
}
|
|
|
|
static inline void add_nested_action_end(struct sw_flow_actions *sfa,
|
|
int st_offset)
|
|
{
|
|
struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
|
|
st_offset);
|
|
|
|
a->nla_len = sfa->actions_len - st_offset;
|
|
}
|
|
|
|
static int validate_and_copy_sample(const struct nlattr *attr,
|
|
const struct sw_flow_key *key, int depth,
|
|
struct sw_flow_actions **sfa)
|
|
{
|
|
const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
|
|
const struct nlattr *probability, *actions;
|
|
const struct nlattr *a;
|
|
int rem, start, err, st_acts;
|
|
|
|
memset(attrs, 0, sizeof(attrs));
|
|
nla_for_each_nested(a, attr, rem) {
|
|
int type = nla_type(a);
|
|
if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
|
|
return -EINVAL;
|
|
attrs[type] = a;
|
|
}
|
|
if (rem)
|
|
return -EINVAL;
|
|
|
|
probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
|
|
if (!probability || nla_len(probability) != sizeof(u32))
|
|
return -EINVAL;
|
|
|
|
actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
|
|
if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
|
|
return -EINVAL;
|
|
|
|
/* validation done, copy sample action. */
|
|
start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE);
|
|
if (start < 0)
|
|
return start;
|
|
err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
|
|
nla_data(probability), sizeof(u32));
|
|
if (err)
|
|
return err;
|
|
st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS);
|
|
if (st_acts < 0)
|
|
return st_acts;
|
|
|
|
err = ovs_nla_copy_actions(actions, key, depth + 1, sfa);
|
|
if (err)
|
|
return err;
|
|
|
|
add_nested_action_end(*sfa, st_acts);
|
|
add_nested_action_end(*sfa, start);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int validate_tp_port(const struct sw_flow_key *flow_key)
|
|
{
|
|
if ((flow_key->eth.type == htons(ETH_P_IP) ||
|
|
flow_key->eth.type == htons(ETH_P_IPV6)) &&
|
|
(flow_key->tp.src || flow_key->tp.dst))
|
|
return 0;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
void ovs_match_init(struct sw_flow_match *match,
|
|
struct sw_flow_key *key,
|
|
struct sw_flow_mask *mask)
|
|
{
|
|
memset(match, 0, sizeof(*match));
|
|
match->key = key;
|
|
match->mask = mask;
|
|
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
if (mask) {
|
|
memset(&mask->key, 0, sizeof(mask->key));
|
|
mask->range.start = mask->range.end = 0;
|
|
}
|
|
}
|
|
|
|
static int validate_and_copy_set_tun(const struct nlattr *attr,
|
|
struct sw_flow_actions **sfa)
|
|
{
|
|
struct sw_flow_match match;
|
|
struct sw_flow_key key;
|
|
int err, start;
|
|
|
|
ovs_match_init(&match, &key, NULL);
|
|
err = ipv4_tun_from_nlattr(nla_data(attr), &match, false);
|
|
if (err)
|
|
return err;
|
|
|
|
start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET);
|
|
if (start < 0)
|
|
return start;
|
|
|
|
err = add_action(sfa, OVS_KEY_ATTR_IPV4_TUNNEL, &match.key->tun_key,
|
|
sizeof(match.key->tun_key));
|
|
add_nested_action_end(*sfa, start);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int validate_set(const struct nlattr *a,
|
|
const struct sw_flow_key *flow_key,
|
|
struct sw_flow_actions **sfa,
|
|
bool *set_tun)
|
|
{
|
|
const struct nlattr *ovs_key = nla_data(a);
|
|
int key_type = nla_type(ovs_key);
|
|
|
|
/* There can be only one key in a action */
|
|
if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
|
|
return -EINVAL;
|
|
|
|
if (key_type > OVS_KEY_ATTR_MAX ||
|
|
(ovs_key_lens[key_type] != nla_len(ovs_key) &&
|
|
ovs_key_lens[key_type] != -1))
|
|
return -EINVAL;
|
|
|
|
switch (key_type) {
|
|
const struct ovs_key_ipv4 *ipv4_key;
|
|
const struct ovs_key_ipv6 *ipv6_key;
|
|
int err;
|
|
|
|
case OVS_KEY_ATTR_PRIORITY:
|
|
case OVS_KEY_ATTR_SKB_MARK:
|
|
case OVS_KEY_ATTR_ETHERNET:
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_TUNNEL:
|
|
*set_tun = true;
|
|
err = validate_and_copy_set_tun(a, sfa);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_IPV4:
|
|
if (flow_key->eth.type != htons(ETH_P_IP))
|
|
return -EINVAL;
|
|
|
|
if (!flow_key->ip.proto)
|
|
return -EINVAL;
|
|
|
|
ipv4_key = nla_data(ovs_key);
|
|
if (ipv4_key->ipv4_proto != flow_key->ip.proto)
|
|
return -EINVAL;
|
|
|
|
if (ipv4_key->ipv4_frag != flow_key->ip.frag)
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_IPV6:
|
|
if (flow_key->eth.type != htons(ETH_P_IPV6))
|
|
return -EINVAL;
|
|
|
|
if (!flow_key->ip.proto)
|
|
return -EINVAL;
|
|
|
|
ipv6_key = nla_data(ovs_key);
|
|
if (ipv6_key->ipv6_proto != flow_key->ip.proto)
|
|
return -EINVAL;
|
|
|
|
if (ipv6_key->ipv6_frag != flow_key->ip.frag)
|
|
return -EINVAL;
|
|
|
|
if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_TCP:
|
|
if (flow_key->ip.proto != IPPROTO_TCP)
|
|
return -EINVAL;
|
|
|
|
return validate_tp_port(flow_key);
|
|
|
|
case OVS_KEY_ATTR_UDP:
|
|
if (flow_key->ip.proto != IPPROTO_UDP)
|
|
return -EINVAL;
|
|
|
|
return validate_tp_port(flow_key);
|
|
|
|
case OVS_KEY_ATTR_SCTP:
|
|
if (flow_key->ip.proto != IPPROTO_SCTP)
|
|
return -EINVAL;
|
|
|
|
return validate_tp_port(flow_key);
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int validate_userspace(const struct nlattr *attr)
|
|
{
|
|
static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
|
|
[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
|
|
[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
|
|
};
|
|
struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
|
|
int error;
|
|
|
|
error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
|
|
attr, userspace_policy);
|
|
if (error)
|
|
return error;
|
|
|
|
if (!a[OVS_USERSPACE_ATTR_PID] ||
|
|
!nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_action(const struct nlattr *from,
|
|
struct sw_flow_actions **sfa)
|
|
{
|
|
int totlen = NLA_ALIGN(from->nla_len);
|
|
struct nlattr *to;
|
|
|
|
to = reserve_sfa_size(sfa, from->nla_len);
|
|
if (IS_ERR(to))
|
|
return PTR_ERR(to);
|
|
|
|
memcpy(to, from, totlen);
|
|
return 0;
|
|
}
|
|
|
|
int ovs_nla_copy_actions(const struct nlattr *attr,
|
|
const struct sw_flow_key *key,
|
|
int depth,
|
|
struct sw_flow_actions **sfa)
|
|
{
|
|
const struct nlattr *a;
|
|
int rem, err;
|
|
|
|
if (depth >= SAMPLE_ACTION_DEPTH)
|
|
return -EOVERFLOW;
|
|
|
|
nla_for_each_nested(a, attr, rem) {
|
|
/* Expected argument lengths, (u32)-1 for variable length. */
|
|
static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
|
|
[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
|
|
[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
|
|
[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
|
|
[OVS_ACTION_ATTR_POP_VLAN] = 0,
|
|
[OVS_ACTION_ATTR_SET] = (u32)-1,
|
|
[OVS_ACTION_ATTR_SAMPLE] = (u32)-1
|
|
};
|
|
const struct ovs_action_push_vlan *vlan;
|
|
int type = nla_type(a);
|
|
bool skip_copy;
|
|
|
|
if (type > OVS_ACTION_ATTR_MAX ||
|
|
(action_lens[type] != nla_len(a) &&
|
|
action_lens[type] != (u32)-1))
|
|
return -EINVAL;
|
|
|
|
skip_copy = false;
|
|
switch (type) {
|
|
case OVS_ACTION_ATTR_UNSPEC:
|
|
return -EINVAL;
|
|
|
|
case OVS_ACTION_ATTR_USERSPACE:
|
|
err = validate_userspace(a);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_OUTPUT:
|
|
if (nla_get_u32(a) >= DP_MAX_PORTS)
|
|
return -EINVAL;
|
|
break;
|
|
|
|
|
|
case OVS_ACTION_ATTR_POP_VLAN:
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_VLAN:
|
|
vlan = nla_data(a);
|
|
if (vlan->vlan_tpid != htons(ETH_P_8021Q))
|
|
return -EINVAL;
|
|
if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
|
|
return -EINVAL;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SET:
|
|
err = validate_set(a, key, sfa, &skip_copy);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SAMPLE:
|
|
err = validate_and_copy_sample(a, key, depth, sfa);
|
|
if (err)
|
|
return err;
|
|
skip_copy = true;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (!skip_copy) {
|
|
err = copy_action(a, sfa);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (rem > 0)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
|
|
{
|
|
const struct nlattr *a;
|
|
struct nlattr *start;
|
|
int err = 0, rem;
|
|
|
|
start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
|
|
if (!start)
|
|
return -EMSGSIZE;
|
|
|
|
nla_for_each_nested(a, attr, rem) {
|
|
int type = nla_type(a);
|
|
struct nlattr *st_sample;
|
|
|
|
switch (type) {
|
|
case OVS_SAMPLE_ATTR_PROBABILITY:
|
|
if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
|
|
sizeof(u32), nla_data(a)))
|
|
return -EMSGSIZE;
|
|
break;
|
|
case OVS_SAMPLE_ATTR_ACTIONS:
|
|
st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
|
|
if (!st_sample)
|
|
return -EMSGSIZE;
|
|
err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
|
|
if (err)
|
|
return err;
|
|
nla_nest_end(skb, st_sample);
|
|
break;
|
|
}
|
|
}
|
|
|
|
nla_nest_end(skb, start);
|
|
return err;
|
|
}
|
|
|
|
static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
|
|
{
|
|
const struct nlattr *ovs_key = nla_data(a);
|
|
int key_type = nla_type(ovs_key);
|
|
struct nlattr *start;
|
|
int err;
|
|
|
|
switch (key_type) {
|
|
case OVS_KEY_ATTR_IPV4_TUNNEL:
|
|
start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
|
|
if (!start)
|
|
return -EMSGSIZE;
|
|
|
|
err = ipv4_tun_to_nlattr(skb, nla_data(ovs_key),
|
|
nla_data(ovs_key));
|
|
if (err)
|
|
return err;
|
|
nla_nest_end(skb, start);
|
|
break;
|
|
default:
|
|
if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
|
|
return -EMSGSIZE;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
|
|
{
|
|
const struct nlattr *a;
|
|
int rem, err;
|
|
|
|
nla_for_each_attr(a, attr, len, rem) {
|
|
int type = nla_type(a);
|
|
|
|
switch (type) {
|
|
case OVS_ACTION_ATTR_SET:
|
|
err = set_action_to_attr(a, skb);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SAMPLE:
|
|
err = sample_action_to_attr(a, skb);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
default:
|
|
if (nla_put(skb, type, nla_len(a), nla_data(a)))
|
|
return -EMSGSIZE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|