mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-08 14:13:53 +00:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
1023 lines
25 KiB
C
1023 lines
25 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
*
|
|
* Further, this software is distributed without any warranty that it is
|
|
* free of the rightful claim of any third person regarding infringement
|
|
* or the like. Any license provided herein, whether implied or
|
|
* otherwise, applies only to this software file. Patent licenses, if
|
|
* any, provided herein do not apply to combinations of this program with
|
|
* other software, or any other product whatsoever.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write the Free Software Foundation, Inc., 59
|
|
* Temple Place - Suite 330, Boston MA 02111-1307, USA.
|
|
*
|
|
* Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
|
|
* Mountain View, CA 94043, or:
|
|
*
|
|
* http://www.sgi.com
|
|
*
|
|
* For further information regarding this notice, see:
|
|
*
|
|
* http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
|
|
*/
|
|
|
|
#include "xfs.h"
|
|
|
|
#include "xfs_macros.h"
|
|
#include "xfs_types.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_dir.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_dmapi.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_attr_sf.h"
|
|
#include "xfs_dir_sf.h"
|
|
#include "xfs_dir2_sf.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_utils.h"
|
|
#include "xfs_bit.h"
|
|
|
|
/*
|
|
* Initialize the inode hash table for the newly mounted file system.
|
|
* Choose an initial table size based on user specified value, else
|
|
* use a simple algorithm using the maximum number of inodes as an
|
|
* indicator for table size, and clamp it between one and some large
|
|
* number of pages.
|
|
*/
|
|
void
|
|
xfs_ihash_init(xfs_mount_t *mp)
|
|
{
|
|
__uint64_t icount;
|
|
uint i, flags = KM_SLEEP | KM_MAYFAIL;
|
|
|
|
if (!mp->m_ihsize) {
|
|
icount = mp->m_maxicount ? mp->m_maxicount :
|
|
(mp->m_sb.sb_dblocks << mp->m_sb.sb_inopblog);
|
|
mp->m_ihsize = 1 << max_t(uint, 8,
|
|
(xfs_highbit64(icount) + 1) / 2);
|
|
mp->m_ihsize = min_t(uint, mp->m_ihsize,
|
|
(64 * NBPP) / sizeof(xfs_ihash_t));
|
|
}
|
|
|
|
while (!(mp->m_ihash = (xfs_ihash_t *)kmem_zalloc(mp->m_ihsize *
|
|
sizeof(xfs_ihash_t), flags))) {
|
|
if ((mp->m_ihsize >>= 1) <= NBPP)
|
|
flags = KM_SLEEP;
|
|
}
|
|
for (i = 0; i < mp->m_ihsize; i++) {
|
|
rwlock_init(&(mp->m_ihash[i].ih_lock));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free up structures allocated by xfs_ihash_init, at unmount time.
|
|
*/
|
|
void
|
|
xfs_ihash_free(xfs_mount_t *mp)
|
|
{
|
|
kmem_free(mp->m_ihash, mp->m_ihsize*sizeof(xfs_ihash_t));
|
|
mp->m_ihash = NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize the inode cluster hash table for the newly mounted file system.
|
|
* Its size is derived from the ihash table size.
|
|
*/
|
|
void
|
|
xfs_chash_init(xfs_mount_t *mp)
|
|
{
|
|
uint i;
|
|
|
|
mp->m_chsize = max_t(uint, 1, mp->m_ihsize /
|
|
(XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog));
|
|
mp->m_chsize = min_t(uint, mp->m_chsize, mp->m_ihsize);
|
|
mp->m_chash = (xfs_chash_t *)kmem_zalloc(mp->m_chsize
|
|
* sizeof(xfs_chash_t),
|
|
KM_SLEEP);
|
|
for (i = 0; i < mp->m_chsize; i++) {
|
|
spinlock_init(&mp->m_chash[i].ch_lock,"xfshash");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free up structures allocated by xfs_chash_init, at unmount time.
|
|
*/
|
|
void
|
|
xfs_chash_free(xfs_mount_t *mp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < mp->m_chsize; i++) {
|
|
spinlock_destroy(&mp->m_chash[i].ch_lock);
|
|
}
|
|
|
|
kmem_free(mp->m_chash, mp->m_chsize*sizeof(xfs_chash_t));
|
|
mp->m_chash = NULL;
|
|
}
|
|
|
|
/*
|
|
* Look up an inode by number in the given file system.
|
|
* The inode is looked up in the hash table for the file system
|
|
* represented by the mount point parameter mp. Each bucket of
|
|
* the hash table is guarded by an individual semaphore.
|
|
*
|
|
* If the inode is found in the hash table, its corresponding vnode
|
|
* is obtained with a call to vn_get(). This call takes care of
|
|
* coordination with the reclamation of the inode and vnode. Note
|
|
* that the vmap structure is filled in while holding the hash lock.
|
|
* This gives us the state of the inode/vnode when we found it and
|
|
* is used for coordination in vn_get().
|
|
*
|
|
* If it is not in core, read it in from the file system's device and
|
|
* add the inode into the hash table.
|
|
*
|
|
* The inode is locked according to the value of the lock_flags parameter.
|
|
* This flag parameter indicates how and if the inode's IO lock and inode lock
|
|
* should be taken.
|
|
*
|
|
* mp -- the mount point structure for the current file system. It points
|
|
* to the inode hash table.
|
|
* tp -- a pointer to the current transaction if there is one. This is
|
|
* simply passed through to the xfs_iread() call.
|
|
* ino -- the number of the inode desired. This is the unique identifier
|
|
* within the file system for the inode being requested.
|
|
* lock_flags -- flags indicating how to lock the inode. See the comment
|
|
* for xfs_ilock() for a list of valid values.
|
|
* bno -- the block number starting the buffer containing the inode,
|
|
* if known (as by bulkstat), else 0.
|
|
*/
|
|
STATIC int
|
|
xfs_iget_core(
|
|
vnode_t *vp,
|
|
xfs_mount_t *mp,
|
|
xfs_trans_t *tp,
|
|
xfs_ino_t ino,
|
|
uint flags,
|
|
uint lock_flags,
|
|
xfs_inode_t **ipp,
|
|
xfs_daddr_t bno)
|
|
{
|
|
xfs_ihash_t *ih;
|
|
xfs_inode_t *ip;
|
|
xfs_inode_t *iq;
|
|
vnode_t *inode_vp;
|
|
ulong version;
|
|
int error;
|
|
/* REFERENCED */
|
|
xfs_chash_t *ch;
|
|
xfs_chashlist_t *chl, *chlnew;
|
|
SPLDECL(s);
|
|
|
|
|
|
ih = XFS_IHASH(mp, ino);
|
|
|
|
again:
|
|
read_lock(&ih->ih_lock);
|
|
|
|
for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
|
|
if (ip->i_ino == ino) {
|
|
/*
|
|
* If INEW is set this inode is being set up
|
|
* we need to pause and try again.
|
|
*/
|
|
if (ip->i_flags & XFS_INEW) {
|
|
read_unlock(&ih->ih_lock);
|
|
delay(1);
|
|
XFS_STATS_INC(xs_ig_frecycle);
|
|
|
|
goto again;
|
|
}
|
|
|
|
inode_vp = XFS_ITOV_NULL(ip);
|
|
if (inode_vp == NULL) {
|
|
/*
|
|
* If IRECLAIM is set this inode is
|
|
* on its way out of the system,
|
|
* we need to pause and try again.
|
|
*/
|
|
if (ip->i_flags & XFS_IRECLAIM) {
|
|
read_unlock(&ih->ih_lock);
|
|
delay(1);
|
|
XFS_STATS_INC(xs_ig_frecycle);
|
|
|
|
goto again;
|
|
}
|
|
|
|
vn_trace_exit(vp, "xfs_iget.alloc",
|
|
(inst_t *)__return_address);
|
|
|
|
XFS_STATS_INC(xs_ig_found);
|
|
|
|
ip->i_flags &= ~XFS_IRECLAIMABLE;
|
|
read_unlock(&ih->ih_lock);
|
|
|
|
XFS_MOUNT_ILOCK(mp);
|
|
list_del_init(&ip->i_reclaim);
|
|
XFS_MOUNT_IUNLOCK(mp);
|
|
|
|
goto finish_inode;
|
|
|
|
} else if (vp != inode_vp) {
|
|
struct inode *inode = LINVFS_GET_IP(inode_vp);
|
|
|
|
/* The inode is being torn down, pause and
|
|
* try again.
|
|
*/
|
|
if (inode->i_state & (I_FREEING | I_CLEAR)) {
|
|
read_unlock(&ih->ih_lock);
|
|
delay(1);
|
|
XFS_STATS_INC(xs_ig_frecycle);
|
|
|
|
goto again;
|
|
}
|
|
/* Chances are the other vnode (the one in the inode) is being torn
|
|
* down right now, and we landed on top of it. Question is, what do
|
|
* we do? Unhook the old inode and hook up the new one?
|
|
*/
|
|
cmn_err(CE_PANIC,
|
|
"xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
|
|
inode_vp, vp);
|
|
}
|
|
|
|
read_unlock(&ih->ih_lock);
|
|
|
|
XFS_STATS_INC(xs_ig_found);
|
|
|
|
finish_inode:
|
|
if (ip->i_d.di_mode == 0) {
|
|
if (!(flags & IGET_CREATE))
|
|
return ENOENT;
|
|
xfs_iocore_inode_reinit(ip);
|
|
}
|
|
|
|
if (lock_flags != 0)
|
|
xfs_ilock(ip, lock_flags);
|
|
|
|
ip->i_flags &= ~XFS_ISTALE;
|
|
|
|
vn_trace_exit(vp, "xfs_iget.found",
|
|
(inst_t *)__return_address);
|
|
goto return_ip;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Inode cache miss: save the hash chain version stamp and unlock
|
|
* the chain, so we don't deadlock in vn_alloc.
|
|
*/
|
|
XFS_STATS_INC(xs_ig_missed);
|
|
|
|
version = ih->ih_version;
|
|
|
|
read_unlock(&ih->ih_lock);
|
|
|
|
/*
|
|
* Read the disk inode attributes into a new inode structure and get
|
|
* a new vnode for it. This should also initialize i_ino and i_mount.
|
|
*/
|
|
error = xfs_iread(mp, tp, ino, &ip, bno);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address);
|
|
|
|
xfs_inode_lock_init(ip, vp);
|
|
xfs_iocore_inode_init(ip);
|
|
|
|
if (lock_flags != 0) {
|
|
xfs_ilock(ip, lock_flags);
|
|
}
|
|
|
|
if ((ip->i_d.di_mode == 0) && !(flags & IGET_CREATE)) {
|
|
xfs_idestroy(ip);
|
|
return ENOENT;
|
|
}
|
|
|
|
/*
|
|
* Put ip on its hash chain, unless someone else hashed a duplicate
|
|
* after we released the hash lock.
|
|
*/
|
|
write_lock(&ih->ih_lock);
|
|
|
|
if (ih->ih_version != version) {
|
|
for (iq = ih->ih_next; iq != NULL; iq = iq->i_next) {
|
|
if (iq->i_ino == ino) {
|
|
write_unlock(&ih->ih_lock);
|
|
xfs_idestroy(ip);
|
|
|
|
XFS_STATS_INC(xs_ig_dup);
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* These values _must_ be set before releasing ihlock!
|
|
*/
|
|
ip->i_hash = ih;
|
|
if ((iq = ih->ih_next)) {
|
|
iq->i_prevp = &ip->i_next;
|
|
}
|
|
ip->i_next = iq;
|
|
ip->i_prevp = &ih->ih_next;
|
|
ih->ih_next = ip;
|
|
ip->i_udquot = ip->i_gdquot = NULL;
|
|
ih->ih_version++;
|
|
ip->i_flags |= XFS_INEW;
|
|
|
|
write_unlock(&ih->ih_lock);
|
|
|
|
/*
|
|
* put ip on its cluster's hash chain
|
|
*/
|
|
ASSERT(ip->i_chash == NULL && ip->i_cprev == NULL &&
|
|
ip->i_cnext == NULL);
|
|
|
|
chlnew = NULL;
|
|
ch = XFS_CHASH(mp, ip->i_blkno);
|
|
chlredo:
|
|
s = mutex_spinlock(&ch->ch_lock);
|
|
for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
|
|
if (chl->chl_blkno == ip->i_blkno) {
|
|
|
|
/* insert this inode into the doubly-linked list
|
|
* where chl points */
|
|
if ((iq = chl->chl_ip)) {
|
|
ip->i_cprev = iq->i_cprev;
|
|
iq->i_cprev->i_cnext = ip;
|
|
iq->i_cprev = ip;
|
|
ip->i_cnext = iq;
|
|
} else {
|
|
ip->i_cnext = ip;
|
|
ip->i_cprev = ip;
|
|
}
|
|
chl->chl_ip = ip;
|
|
ip->i_chash = chl;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* no hash list found for this block; add a new hash list */
|
|
if (chl == NULL) {
|
|
if (chlnew == NULL) {
|
|
mutex_spinunlock(&ch->ch_lock, s);
|
|
ASSERT(xfs_chashlist_zone != NULL);
|
|
chlnew = (xfs_chashlist_t *)
|
|
kmem_zone_alloc(xfs_chashlist_zone,
|
|
KM_SLEEP);
|
|
ASSERT(chlnew != NULL);
|
|
goto chlredo;
|
|
} else {
|
|
ip->i_cnext = ip;
|
|
ip->i_cprev = ip;
|
|
ip->i_chash = chlnew;
|
|
chlnew->chl_ip = ip;
|
|
chlnew->chl_blkno = ip->i_blkno;
|
|
chlnew->chl_next = ch->ch_list;
|
|
ch->ch_list = chlnew;
|
|
chlnew = NULL;
|
|
}
|
|
} else {
|
|
if (chlnew != NULL) {
|
|
kmem_zone_free(xfs_chashlist_zone, chlnew);
|
|
}
|
|
}
|
|
|
|
mutex_spinunlock(&ch->ch_lock, s);
|
|
|
|
|
|
/*
|
|
* Link ip to its mount and thread it on the mount's inode list.
|
|
*/
|
|
XFS_MOUNT_ILOCK(mp);
|
|
if ((iq = mp->m_inodes)) {
|
|
ASSERT(iq->i_mprev->i_mnext == iq);
|
|
ip->i_mprev = iq->i_mprev;
|
|
iq->i_mprev->i_mnext = ip;
|
|
iq->i_mprev = ip;
|
|
ip->i_mnext = iq;
|
|
} else {
|
|
ip->i_mnext = ip;
|
|
ip->i_mprev = ip;
|
|
}
|
|
mp->m_inodes = ip;
|
|
|
|
XFS_MOUNT_IUNLOCK(mp);
|
|
|
|
return_ip:
|
|
ASSERT(ip->i_df.if_ext_max ==
|
|
XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
|
|
|
|
ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) ==
|
|
((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0));
|
|
|
|
*ipp = ip;
|
|
|
|
/*
|
|
* If we have a real type for an on-disk inode, we can set ops(&unlock)
|
|
* now. If it's a new inode being created, xfs_ialloc will handle it.
|
|
*/
|
|
VFS_INIT_VNODE(XFS_MTOVFS(mp), vp, XFS_ITOBHV(ip), 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* The 'normal' internal xfs_iget, if needed it will
|
|
* 'allocate', or 'get', the vnode.
|
|
*/
|
|
int
|
|
xfs_iget(
|
|
xfs_mount_t *mp,
|
|
xfs_trans_t *tp,
|
|
xfs_ino_t ino,
|
|
uint flags,
|
|
uint lock_flags,
|
|
xfs_inode_t **ipp,
|
|
xfs_daddr_t bno)
|
|
{
|
|
struct inode *inode;
|
|
vnode_t *vp = NULL;
|
|
int error;
|
|
|
|
retry:
|
|
XFS_STATS_INC(xs_ig_attempts);
|
|
|
|
if ((inode = iget_locked(XFS_MTOVFS(mp)->vfs_super, ino))) {
|
|
bhv_desc_t *bdp;
|
|
xfs_inode_t *ip;
|
|
int newnode;
|
|
|
|
vp = LINVFS_GET_VP(inode);
|
|
if (inode->i_state & I_NEW) {
|
|
inode_allocate:
|
|
vn_initialize(inode);
|
|
error = xfs_iget_core(vp, mp, tp, ino, flags,
|
|
lock_flags, ipp, bno);
|
|
if (error) {
|
|
vn_mark_bad(vp);
|
|
if (inode->i_state & I_NEW)
|
|
unlock_new_inode(inode);
|
|
iput(inode);
|
|
}
|
|
} else {
|
|
/* These are true if the inode is in inactive or
|
|
* reclaim. The linux inode is about to go away,
|
|
* wait for that path to finish, and try again.
|
|
*/
|
|
if (vp->v_flag & (VINACT | VRECLM)) {
|
|
vn_wait(vp);
|
|
iput(inode);
|
|
goto retry;
|
|
}
|
|
|
|
if (is_bad_inode(inode)) {
|
|
iput(inode);
|
|
return EIO;
|
|
}
|
|
|
|
bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops);
|
|
if (bdp == NULL) {
|
|
XFS_STATS_INC(xs_ig_dup);
|
|
goto inode_allocate;
|
|
}
|
|
ip = XFS_BHVTOI(bdp);
|
|
if (lock_flags != 0)
|
|
xfs_ilock(ip, lock_flags);
|
|
newnode = (ip->i_d.di_mode == 0);
|
|
if (newnode)
|
|
xfs_iocore_inode_reinit(ip);
|
|
XFS_STATS_INC(xs_ig_found);
|
|
*ipp = ip;
|
|
error = 0;
|
|
}
|
|
} else
|
|
error = ENOMEM; /* If we got no inode we are out of memory */
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Do the setup for the various locks within the incore inode.
|
|
*/
|
|
void
|
|
xfs_inode_lock_init(
|
|
xfs_inode_t *ip,
|
|
vnode_t *vp)
|
|
{
|
|
mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
|
|
"xfsino", (long)vp->v_number);
|
|
mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number);
|
|
init_waitqueue_head(&ip->i_ipin_wait);
|
|
atomic_set(&ip->i_pincount, 0);
|
|
init_sema(&ip->i_flock, 1, "xfsfino", vp->v_number);
|
|
}
|
|
|
|
/*
|
|
* Look for the inode corresponding to the given ino in the hash table.
|
|
* If it is there and its i_transp pointer matches tp, return it.
|
|
* Otherwise, return NULL.
|
|
*/
|
|
xfs_inode_t *
|
|
xfs_inode_incore(xfs_mount_t *mp,
|
|
xfs_ino_t ino,
|
|
xfs_trans_t *tp)
|
|
{
|
|
xfs_ihash_t *ih;
|
|
xfs_inode_t *ip;
|
|
|
|
ih = XFS_IHASH(mp, ino);
|
|
read_lock(&ih->ih_lock);
|
|
for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
|
|
if (ip->i_ino == ino) {
|
|
/*
|
|
* If we find it and tp matches, return it.
|
|
* Otherwise break from the loop and return
|
|
* NULL.
|
|
*/
|
|
if (ip->i_transp == tp) {
|
|
read_unlock(&ih->ih_lock);
|
|
return (ip);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
read_unlock(&ih->ih_lock);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Decrement reference count of an inode structure and unlock it.
|
|
*
|
|
* ip -- the inode being released
|
|
* lock_flags -- this parameter indicates the inode's locks to be
|
|
* to be released. See the comment on xfs_iunlock() for a list
|
|
* of valid values.
|
|
*/
|
|
void
|
|
xfs_iput(xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
vnode_t *vp = XFS_ITOV(ip);
|
|
|
|
vn_trace_entry(vp, "xfs_iput", (inst_t *)__return_address);
|
|
|
|
xfs_iunlock(ip, lock_flags);
|
|
|
|
VN_RELE(vp);
|
|
}
|
|
|
|
/*
|
|
* Special iput for brand-new inodes that are still locked
|
|
*/
|
|
void
|
|
xfs_iput_new(xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
vnode_t *vp = XFS_ITOV(ip);
|
|
struct inode *inode = LINVFS_GET_IP(vp);
|
|
|
|
vn_trace_entry(vp, "xfs_iput_new", (inst_t *)__return_address);
|
|
|
|
if ((ip->i_d.di_mode == 0)) {
|
|
ASSERT(!(ip->i_flags & XFS_IRECLAIMABLE));
|
|
vn_mark_bad(vp);
|
|
}
|
|
if (inode->i_state & I_NEW)
|
|
unlock_new_inode(inode);
|
|
if (lock_flags)
|
|
xfs_iunlock(ip, lock_flags);
|
|
VN_RELE(vp);
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine embodies the part of the reclaim code that pulls
|
|
* the inode from the inode hash table and the mount structure's
|
|
* inode list.
|
|
* This should only be called from xfs_reclaim().
|
|
*/
|
|
void
|
|
xfs_ireclaim(xfs_inode_t *ip)
|
|
{
|
|
vnode_t *vp;
|
|
|
|
/*
|
|
* Remove from old hash list and mount list.
|
|
*/
|
|
XFS_STATS_INC(xs_ig_reclaims);
|
|
|
|
xfs_iextract(ip);
|
|
|
|
/*
|
|
* Here we do a spurious inode lock in order to coordinate with
|
|
* xfs_sync(). This is because xfs_sync() references the inodes
|
|
* in the mount list without taking references on the corresponding
|
|
* vnodes. We make that OK here by ensuring that we wait until
|
|
* the inode is unlocked in xfs_sync() before we go ahead and
|
|
* free it. We get both the regular lock and the io lock because
|
|
* the xfs_sync() code may need to drop the regular one but will
|
|
* still hold the io lock.
|
|
*/
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
|
|
|
|
/*
|
|
* Release dquots (and their references) if any. An inode may escape
|
|
* xfs_inactive and get here via vn_alloc->vn_reclaim path.
|
|
*/
|
|
XFS_QM_DQDETACH(ip->i_mount, ip);
|
|
|
|
/*
|
|
* Pull our behavior descriptor from the vnode chain.
|
|
*/
|
|
vp = XFS_ITOV_NULL(ip);
|
|
if (vp) {
|
|
vn_bhv_remove(VN_BHV_HEAD(vp), XFS_ITOBHV(ip));
|
|
}
|
|
|
|
/*
|
|
* Free all memory associated with the inode.
|
|
*/
|
|
xfs_idestroy(ip);
|
|
}
|
|
|
|
/*
|
|
* This routine removes an about-to-be-destroyed inode from
|
|
* all of the lists in which it is located with the exception
|
|
* of the behavior chain.
|
|
*/
|
|
void
|
|
xfs_iextract(
|
|
xfs_inode_t *ip)
|
|
{
|
|
xfs_ihash_t *ih;
|
|
xfs_inode_t *iq;
|
|
xfs_mount_t *mp;
|
|
xfs_chash_t *ch;
|
|
xfs_chashlist_t *chl, *chm;
|
|
SPLDECL(s);
|
|
|
|
ih = ip->i_hash;
|
|
write_lock(&ih->ih_lock);
|
|
if ((iq = ip->i_next)) {
|
|
iq->i_prevp = ip->i_prevp;
|
|
}
|
|
*ip->i_prevp = iq;
|
|
write_unlock(&ih->ih_lock);
|
|
|
|
/*
|
|
* Remove from cluster hash list
|
|
* 1) delete the chashlist if this is the last inode on the chashlist
|
|
* 2) unchain from list of inodes
|
|
* 3) point chashlist->chl_ip to 'chl_next' if to this inode.
|
|
*/
|
|
mp = ip->i_mount;
|
|
ch = XFS_CHASH(mp, ip->i_blkno);
|
|
s = mutex_spinlock(&ch->ch_lock);
|
|
|
|
if (ip->i_cnext == ip) {
|
|
/* Last inode on chashlist */
|
|
ASSERT(ip->i_cnext == ip && ip->i_cprev == ip);
|
|
ASSERT(ip->i_chash != NULL);
|
|
chm=NULL;
|
|
for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
|
|
if (chl->chl_blkno == ip->i_blkno) {
|
|
if (chm == NULL) {
|
|
/* first item on the list */
|
|
ch->ch_list = chl->chl_next;
|
|
} else {
|
|
chm->chl_next = chl->chl_next;
|
|
}
|
|
kmem_zone_free(xfs_chashlist_zone, chl);
|
|
break;
|
|
} else {
|
|
ASSERT(chl->chl_ip != ip);
|
|
chm = chl;
|
|
}
|
|
}
|
|
ASSERT_ALWAYS(chl != NULL);
|
|
} else {
|
|
/* delete one inode from a non-empty list */
|
|
iq = ip->i_cnext;
|
|
iq->i_cprev = ip->i_cprev;
|
|
ip->i_cprev->i_cnext = iq;
|
|
if (ip->i_chash->chl_ip == ip) {
|
|
ip->i_chash->chl_ip = iq;
|
|
}
|
|
ip->i_chash = __return_address;
|
|
ip->i_cprev = __return_address;
|
|
ip->i_cnext = __return_address;
|
|
}
|
|
mutex_spinunlock(&ch->ch_lock, s);
|
|
|
|
/*
|
|
* Remove from mount's inode list.
|
|
*/
|
|
XFS_MOUNT_ILOCK(mp);
|
|
ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL));
|
|
iq = ip->i_mnext;
|
|
iq->i_mprev = ip->i_mprev;
|
|
ip->i_mprev->i_mnext = iq;
|
|
|
|
/*
|
|
* Fix up the head pointer if it points to the inode being deleted.
|
|
*/
|
|
if (mp->m_inodes == ip) {
|
|
if (ip == iq) {
|
|
mp->m_inodes = NULL;
|
|
} else {
|
|
mp->m_inodes = iq;
|
|
}
|
|
}
|
|
|
|
/* Deal with the deleted inodes list */
|
|
list_del_init(&ip->i_reclaim);
|
|
|
|
mp->m_ireclaims++;
|
|
XFS_MOUNT_IUNLOCK(mp);
|
|
}
|
|
|
|
/*
|
|
* This is a wrapper routine around the xfs_ilock() routine
|
|
* used to centralize some grungy code. It is used in places
|
|
* that wish to lock the inode solely for reading the extents.
|
|
* The reason these places can't just call xfs_ilock(SHARED)
|
|
* is that the inode lock also guards to bringing in of the
|
|
* extents from disk for a file in b-tree format. If the inode
|
|
* is in b-tree format, then we need to lock the inode exclusively
|
|
* until the extents are read in. Locking it exclusively all
|
|
* the time would limit our parallelism unnecessarily, though.
|
|
* What we do instead is check to see if the extents have been
|
|
* read in yet, and only lock the inode exclusively if they
|
|
* have not.
|
|
*
|
|
* The function returns a value which should be given to the
|
|
* corresponding xfs_iunlock_map_shared(). This value is
|
|
* the mode in which the lock was actually taken.
|
|
*/
|
|
uint
|
|
xfs_ilock_map_shared(
|
|
xfs_inode_t *ip)
|
|
{
|
|
uint lock_mode;
|
|
|
|
if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
|
|
((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
|
|
lock_mode = XFS_ILOCK_EXCL;
|
|
} else {
|
|
lock_mode = XFS_ILOCK_SHARED;
|
|
}
|
|
|
|
xfs_ilock(ip, lock_mode);
|
|
|
|
return lock_mode;
|
|
}
|
|
|
|
/*
|
|
* This is simply the unlock routine to go with xfs_ilock_map_shared().
|
|
* All it does is call xfs_iunlock() with the given lock_mode.
|
|
*/
|
|
void
|
|
xfs_iunlock_map_shared(
|
|
xfs_inode_t *ip,
|
|
unsigned int lock_mode)
|
|
{
|
|
xfs_iunlock(ip, lock_mode);
|
|
}
|
|
|
|
/*
|
|
* The xfs inode contains 2 locks: a multi-reader lock called the
|
|
* i_iolock and a multi-reader lock called the i_lock. This routine
|
|
* allows either or both of the locks to be obtained.
|
|
*
|
|
* The 2 locks should always be ordered so that the IO lock is
|
|
* obtained first in order to prevent deadlock.
|
|
*
|
|
* ip -- the inode being locked
|
|
* lock_flags -- this parameter indicates the inode's locks
|
|
* to be locked. It can be:
|
|
* XFS_IOLOCK_SHARED,
|
|
* XFS_IOLOCK_EXCL,
|
|
* XFS_ILOCK_SHARED,
|
|
* XFS_ILOCK_EXCL,
|
|
* XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
|
|
* XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
|
|
* XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
|
|
* XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
|
|
*/
|
|
void
|
|
xfs_ilock(xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
/*
|
|
* You can't set both SHARED and EXCL for the same lock,
|
|
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
|
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
|
*/
|
|
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
|
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
|
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
|
|
|
|
if (lock_flags & XFS_IOLOCK_EXCL) {
|
|
mrupdate(&ip->i_iolock);
|
|
} else if (lock_flags & XFS_IOLOCK_SHARED) {
|
|
mraccess(&ip->i_iolock);
|
|
}
|
|
if (lock_flags & XFS_ILOCK_EXCL) {
|
|
mrupdate(&ip->i_lock);
|
|
} else if (lock_flags & XFS_ILOCK_SHARED) {
|
|
mraccess(&ip->i_lock);
|
|
}
|
|
xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
|
|
}
|
|
|
|
/*
|
|
* This is just like xfs_ilock(), except that the caller
|
|
* is guaranteed not to sleep. It returns 1 if it gets
|
|
* the requested locks and 0 otherwise. If the IO lock is
|
|
* obtained but the inode lock cannot be, then the IO lock
|
|
* is dropped before returning.
|
|
*
|
|
* ip -- the inode being locked
|
|
* lock_flags -- this parameter indicates the inode's locks to be
|
|
* to be locked. See the comment for xfs_ilock() for a list
|
|
* of valid values.
|
|
*
|
|
*/
|
|
int
|
|
xfs_ilock_nowait(xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
int iolocked;
|
|
int ilocked;
|
|
|
|
/*
|
|
* You can't set both SHARED and EXCL for the same lock,
|
|
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
|
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
|
*/
|
|
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
|
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
|
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
|
|
|
|
iolocked = 0;
|
|
if (lock_flags & XFS_IOLOCK_EXCL) {
|
|
iolocked = mrtryupdate(&ip->i_iolock);
|
|
if (!iolocked) {
|
|
return 0;
|
|
}
|
|
} else if (lock_flags & XFS_IOLOCK_SHARED) {
|
|
iolocked = mrtryaccess(&ip->i_iolock);
|
|
if (!iolocked) {
|
|
return 0;
|
|
}
|
|
}
|
|
if (lock_flags & XFS_ILOCK_EXCL) {
|
|
ilocked = mrtryupdate(&ip->i_lock);
|
|
if (!ilocked) {
|
|
if (iolocked) {
|
|
mrunlock(&ip->i_iolock);
|
|
}
|
|
return 0;
|
|
}
|
|
} else if (lock_flags & XFS_ILOCK_SHARED) {
|
|
ilocked = mrtryaccess(&ip->i_lock);
|
|
if (!ilocked) {
|
|
if (iolocked) {
|
|
mrunlock(&ip->i_iolock);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* xfs_iunlock() is used to drop the inode locks acquired with
|
|
* xfs_ilock() and xfs_ilock_nowait(). The caller must pass
|
|
* in the flags given to xfs_ilock() or xfs_ilock_nowait() so
|
|
* that we know which locks to drop.
|
|
*
|
|
* ip -- the inode being unlocked
|
|
* lock_flags -- this parameter indicates the inode's locks to be
|
|
* to be unlocked. See the comment for xfs_ilock() for a list
|
|
* of valid values for this parameter.
|
|
*
|
|
*/
|
|
void
|
|
xfs_iunlock(xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
/*
|
|
* You can't set both SHARED and EXCL for the same lock,
|
|
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
|
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
|
*/
|
|
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
|
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
|
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY)) == 0);
|
|
ASSERT(lock_flags != 0);
|
|
|
|
if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
|
|
ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) ||
|
|
(ismrlocked(&ip->i_iolock, MR_ACCESS)));
|
|
ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) ||
|
|
(ismrlocked(&ip->i_iolock, MR_UPDATE)));
|
|
mrunlock(&ip->i_iolock);
|
|
}
|
|
|
|
if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) {
|
|
ASSERT(!(lock_flags & XFS_ILOCK_SHARED) ||
|
|
(ismrlocked(&ip->i_lock, MR_ACCESS)));
|
|
ASSERT(!(lock_flags & XFS_ILOCK_EXCL) ||
|
|
(ismrlocked(&ip->i_lock, MR_UPDATE)));
|
|
mrunlock(&ip->i_lock);
|
|
|
|
/*
|
|
* Let the AIL know that this item has been unlocked in case
|
|
* it is in the AIL and anyone is waiting on it. Don't do
|
|
* this if the caller has asked us not to.
|
|
*/
|
|
if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) &&
|
|
ip->i_itemp != NULL) {
|
|
xfs_trans_unlocked_item(ip->i_mount,
|
|
(xfs_log_item_t*)(ip->i_itemp));
|
|
}
|
|
}
|
|
xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
|
|
}
|
|
|
|
/*
|
|
* give up write locks. the i/o lock cannot be held nested
|
|
* if it is being demoted.
|
|
*/
|
|
void
|
|
xfs_ilock_demote(xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL) {
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
|
|
mrdemote(&ip->i_lock);
|
|
}
|
|
if (lock_flags & XFS_IOLOCK_EXCL) {
|
|
ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
|
|
mrdemote(&ip->i_iolock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following three routines simply manage the i_flock
|
|
* semaphore embedded in the inode. This semaphore synchronizes
|
|
* processes attempting to flush the in-core inode back to disk.
|
|
*/
|
|
void
|
|
xfs_iflock(xfs_inode_t *ip)
|
|
{
|
|
psema(&(ip->i_flock), PINOD|PLTWAIT);
|
|
}
|
|
|
|
int
|
|
xfs_iflock_nowait(xfs_inode_t *ip)
|
|
{
|
|
return (cpsema(&(ip->i_flock)));
|
|
}
|
|
|
|
void
|
|
xfs_ifunlock(xfs_inode_t *ip)
|
|
{
|
|
ASSERT(valusema(&(ip->i_flock)) <= 0);
|
|
vsema(&(ip->i_flock));
|
|
}
|