mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-08 22:23:18 +00:00
930 lines
24 KiB
C
930 lines
24 KiB
C
/*
|
|
* sleep.c - ACPI sleep support.
|
|
*
|
|
* Copyright (c) 2005 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
|
|
* Copyright (c) 2004 David Shaohua Li <shaohua.li@intel.com>
|
|
* Copyright (c) 2000-2003 Patrick Mochel
|
|
* Copyright (c) 2003 Open Source Development Lab
|
|
*
|
|
* This file is released under the GPLv2.
|
|
*
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/device.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <acpi/acpi_bus.h>
|
|
#include <acpi/acpi_drivers.h>
|
|
|
|
#include "internal.h"
|
|
#include "sleep.h"
|
|
|
|
static u8 sleep_states[ACPI_S_STATE_COUNT];
|
|
|
|
static void acpi_sleep_tts_switch(u32 acpi_state)
|
|
{
|
|
union acpi_object in_arg = { ACPI_TYPE_INTEGER };
|
|
struct acpi_object_list arg_list = { 1, &in_arg };
|
|
acpi_status status = AE_OK;
|
|
|
|
in_arg.integer.value = acpi_state;
|
|
status = acpi_evaluate_object(NULL, "\\_TTS", &arg_list, NULL);
|
|
if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
|
|
/*
|
|
* OS can't evaluate the _TTS object correctly. Some warning
|
|
* message will be printed. But it won't break anything.
|
|
*/
|
|
printk(KERN_NOTICE "Failure in evaluating _TTS object\n");
|
|
}
|
|
}
|
|
|
|
static int tts_notify_reboot(struct notifier_block *this,
|
|
unsigned long code, void *x)
|
|
{
|
|
acpi_sleep_tts_switch(ACPI_STATE_S5);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block tts_notifier = {
|
|
.notifier_call = tts_notify_reboot,
|
|
.next = NULL,
|
|
.priority = 0,
|
|
};
|
|
|
|
static int acpi_sleep_prepare(u32 acpi_state)
|
|
{
|
|
#ifdef CONFIG_ACPI_SLEEP
|
|
/* do we have a wakeup address for S2 and S3? */
|
|
if (acpi_state == ACPI_STATE_S3) {
|
|
if (!acpi_wakeup_address)
|
|
return -EFAULT;
|
|
acpi_set_firmware_waking_vector(acpi_wakeup_address);
|
|
|
|
}
|
|
ACPI_FLUSH_CPU_CACHE();
|
|
#endif
|
|
printk(KERN_INFO PREFIX "Preparing to enter system sleep state S%d\n",
|
|
acpi_state);
|
|
acpi_enable_wakeup_devices(acpi_state);
|
|
acpi_enter_sleep_state_prep(acpi_state);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ACPI_SLEEP
|
|
static u32 acpi_target_sleep_state = ACPI_STATE_S0;
|
|
static bool pwr_btn_event_pending;
|
|
|
|
/*
|
|
* The ACPI specification wants us to save NVS memory regions during hibernation
|
|
* and to restore them during the subsequent resume. Windows does that also for
|
|
* suspend to RAM. However, it is known that this mechanism does not work on
|
|
* all machines, so we allow the user to disable it with the help of the
|
|
* 'acpi_sleep=nonvs' kernel command line option.
|
|
*/
|
|
static bool nvs_nosave;
|
|
|
|
void __init acpi_nvs_nosave(void)
|
|
{
|
|
nvs_nosave = true;
|
|
}
|
|
|
|
/*
|
|
* ACPI 1.0 wants us to execute _PTS before suspending devices, so we allow the
|
|
* user to request that behavior by using the 'acpi_old_suspend_ordering'
|
|
* kernel command line option that causes the following variable to be set.
|
|
*/
|
|
static bool old_suspend_ordering;
|
|
|
|
void __init acpi_old_suspend_ordering(void)
|
|
{
|
|
old_suspend_ordering = true;
|
|
}
|
|
|
|
/**
|
|
* acpi_pm_freeze - Disable the GPEs and suspend EC transactions.
|
|
*/
|
|
static int acpi_pm_freeze(void)
|
|
{
|
|
acpi_disable_all_gpes();
|
|
acpi_os_wait_events_complete();
|
|
acpi_ec_block_transactions();
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* acpi_pre_suspend - Enable wakeup devices, "freeze" EC and save NVS.
|
|
*/
|
|
static int acpi_pm_pre_suspend(void)
|
|
{
|
|
acpi_pm_freeze();
|
|
return suspend_nvs_save();
|
|
}
|
|
|
|
/**
|
|
* __acpi_pm_prepare - Prepare the platform to enter the target state.
|
|
*
|
|
* If necessary, set the firmware waking vector and do arch-specific
|
|
* nastiness to get the wakeup code to the waking vector.
|
|
*/
|
|
static int __acpi_pm_prepare(void)
|
|
{
|
|
int error = acpi_sleep_prepare(acpi_target_sleep_state);
|
|
if (error)
|
|
acpi_target_sleep_state = ACPI_STATE_S0;
|
|
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* acpi_pm_prepare - Prepare the platform to enter the target sleep
|
|
* state and disable the GPEs.
|
|
*/
|
|
static int acpi_pm_prepare(void)
|
|
{
|
|
int error = __acpi_pm_prepare();
|
|
if (!error)
|
|
error = acpi_pm_pre_suspend();
|
|
|
|
return error;
|
|
}
|
|
|
|
static int find_powerf_dev(struct device *dev, void *data)
|
|
{
|
|
struct acpi_device *device = to_acpi_device(dev);
|
|
const char *hid = acpi_device_hid(device);
|
|
|
|
return !strcmp(hid, ACPI_BUTTON_HID_POWERF);
|
|
}
|
|
|
|
/**
|
|
* acpi_pm_finish - Instruct the platform to leave a sleep state.
|
|
*
|
|
* This is called after we wake back up (or if entering the sleep state
|
|
* failed).
|
|
*/
|
|
static void acpi_pm_finish(void)
|
|
{
|
|
struct device *pwr_btn_dev;
|
|
u32 acpi_state = acpi_target_sleep_state;
|
|
|
|
acpi_ec_unblock_transactions();
|
|
suspend_nvs_free();
|
|
|
|
if (acpi_state == ACPI_STATE_S0)
|
|
return;
|
|
|
|
printk(KERN_INFO PREFIX "Waking up from system sleep state S%d\n",
|
|
acpi_state);
|
|
acpi_disable_wakeup_devices(acpi_state);
|
|
acpi_leave_sleep_state(acpi_state);
|
|
|
|
/* reset firmware waking vector */
|
|
acpi_set_firmware_waking_vector((acpi_physical_address) 0);
|
|
|
|
acpi_target_sleep_state = ACPI_STATE_S0;
|
|
|
|
/* If we were woken with the fixed power button, provide a small
|
|
* hint to userspace in the form of a wakeup event on the fixed power
|
|
* button device (if it can be found).
|
|
*
|
|
* We delay the event generation til now, as the PM layer requires
|
|
* timekeeping to be running before we generate events. */
|
|
if (!pwr_btn_event_pending)
|
|
return;
|
|
|
|
pwr_btn_event_pending = false;
|
|
pwr_btn_dev = bus_find_device(&acpi_bus_type, NULL, NULL,
|
|
find_powerf_dev);
|
|
if (pwr_btn_dev) {
|
|
pm_wakeup_event(pwr_btn_dev, 0);
|
|
put_device(pwr_btn_dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* acpi_pm_end - Finish up suspend sequence.
|
|
*/
|
|
static void acpi_pm_end(void)
|
|
{
|
|
/*
|
|
* This is necessary in case acpi_pm_finish() is not called during a
|
|
* failing transition to a sleep state.
|
|
*/
|
|
acpi_target_sleep_state = ACPI_STATE_S0;
|
|
acpi_sleep_tts_switch(acpi_target_sleep_state);
|
|
}
|
|
#else /* !CONFIG_ACPI_SLEEP */
|
|
#define acpi_target_sleep_state ACPI_STATE_S0
|
|
#endif /* CONFIG_ACPI_SLEEP */
|
|
|
|
#ifdef CONFIG_SUSPEND
|
|
static u32 acpi_suspend_states[] = {
|
|
[PM_SUSPEND_ON] = ACPI_STATE_S0,
|
|
[PM_SUSPEND_STANDBY] = ACPI_STATE_S1,
|
|
[PM_SUSPEND_MEM] = ACPI_STATE_S3,
|
|
[PM_SUSPEND_MAX] = ACPI_STATE_S5
|
|
};
|
|
|
|
/**
|
|
* acpi_suspend_begin - Set the target system sleep state to the state
|
|
* associated with given @pm_state, if supported.
|
|
*/
|
|
static int acpi_suspend_begin(suspend_state_t pm_state)
|
|
{
|
|
u32 acpi_state = acpi_suspend_states[pm_state];
|
|
int error = 0;
|
|
|
|
error = nvs_nosave ? 0 : suspend_nvs_alloc();
|
|
if (error)
|
|
return error;
|
|
|
|
if (sleep_states[acpi_state]) {
|
|
acpi_target_sleep_state = acpi_state;
|
|
acpi_sleep_tts_switch(acpi_target_sleep_state);
|
|
} else {
|
|
printk(KERN_ERR "ACPI does not support this state: %d\n",
|
|
pm_state);
|
|
error = -ENOSYS;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* acpi_suspend_enter - Actually enter a sleep state.
|
|
* @pm_state: ignored
|
|
*
|
|
* Flush caches and go to sleep. For STR we have to call arch-specific
|
|
* assembly, which in turn call acpi_enter_sleep_state().
|
|
* It's unfortunate, but it works. Please fix if you're feeling frisky.
|
|
*/
|
|
static int acpi_suspend_enter(suspend_state_t pm_state)
|
|
{
|
|
acpi_status status = AE_OK;
|
|
u32 acpi_state = acpi_target_sleep_state;
|
|
int error;
|
|
|
|
ACPI_FLUSH_CPU_CACHE();
|
|
|
|
switch (acpi_state) {
|
|
case ACPI_STATE_S1:
|
|
barrier();
|
|
status = acpi_enter_sleep_state(acpi_state);
|
|
break;
|
|
|
|
case ACPI_STATE_S3:
|
|
error = acpi_suspend_lowlevel();
|
|
if (error)
|
|
return error;
|
|
pr_info(PREFIX "Low-level resume complete\n");
|
|
break;
|
|
}
|
|
|
|
/* This violates the spec but is required for bug compatibility. */
|
|
acpi_write_bit_register(ACPI_BITREG_SCI_ENABLE, 1);
|
|
|
|
/* Reprogram control registers */
|
|
acpi_leave_sleep_state_prep(acpi_state);
|
|
|
|
/* ACPI 3.0 specs (P62) says that it's the responsibility
|
|
* of the OSPM to clear the status bit [ implying that the
|
|
* POWER_BUTTON event should not reach userspace ]
|
|
*
|
|
* However, we do generate a small hint for userspace in the form of
|
|
* a wakeup event. We flag this condition for now and generate the
|
|
* event later, as we're currently too early in resume to be able to
|
|
* generate wakeup events.
|
|
*/
|
|
if (ACPI_SUCCESS(status) && (acpi_state == ACPI_STATE_S3)) {
|
|
acpi_event_status pwr_btn_status;
|
|
|
|
acpi_get_event_status(ACPI_EVENT_POWER_BUTTON, &pwr_btn_status);
|
|
|
|
if (pwr_btn_status & ACPI_EVENT_FLAG_SET) {
|
|
acpi_clear_event(ACPI_EVENT_POWER_BUTTON);
|
|
/* Flag for later */
|
|
pwr_btn_event_pending = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disable and clear GPE status before interrupt is enabled. Some GPEs
|
|
* (like wakeup GPE) haven't handler, this can avoid such GPE misfire.
|
|
* acpi_leave_sleep_state will reenable specific GPEs later
|
|
*/
|
|
acpi_disable_all_gpes();
|
|
/* Allow EC transactions to happen. */
|
|
acpi_ec_unblock_transactions_early();
|
|
|
|
suspend_nvs_restore();
|
|
|
|
return ACPI_SUCCESS(status) ? 0 : -EFAULT;
|
|
}
|
|
|
|
static int acpi_suspend_state_valid(suspend_state_t pm_state)
|
|
{
|
|
u32 acpi_state;
|
|
|
|
switch (pm_state) {
|
|
case PM_SUSPEND_ON:
|
|
case PM_SUSPEND_STANDBY:
|
|
case PM_SUSPEND_MEM:
|
|
acpi_state = acpi_suspend_states[pm_state];
|
|
|
|
return sleep_states[acpi_state];
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static const struct platform_suspend_ops acpi_suspend_ops = {
|
|
.valid = acpi_suspend_state_valid,
|
|
.begin = acpi_suspend_begin,
|
|
.prepare_late = acpi_pm_prepare,
|
|
.enter = acpi_suspend_enter,
|
|
.wake = acpi_pm_finish,
|
|
.end = acpi_pm_end,
|
|
};
|
|
|
|
/**
|
|
* acpi_suspend_begin_old - Set the target system sleep state to the
|
|
* state associated with given @pm_state, if supported, and
|
|
* execute the _PTS control method. This function is used if the
|
|
* pre-ACPI 2.0 suspend ordering has been requested.
|
|
*/
|
|
static int acpi_suspend_begin_old(suspend_state_t pm_state)
|
|
{
|
|
int error = acpi_suspend_begin(pm_state);
|
|
if (!error)
|
|
error = __acpi_pm_prepare();
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
|
|
* been requested.
|
|
*/
|
|
static const struct platform_suspend_ops acpi_suspend_ops_old = {
|
|
.valid = acpi_suspend_state_valid,
|
|
.begin = acpi_suspend_begin_old,
|
|
.prepare_late = acpi_pm_pre_suspend,
|
|
.enter = acpi_suspend_enter,
|
|
.wake = acpi_pm_finish,
|
|
.end = acpi_pm_end,
|
|
.recover = acpi_pm_finish,
|
|
};
|
|
|
|
static int __init init_old_suspend_ordering(const struct dmi_system_id *d)
|
|
{
|
|
old_suspend_ordering = true;
|
|
return 0;
|
|
}
|
|
|
|
static int __init init_nvs_nosave(const struct dmi_system_id *d)
|
|
{
|
|
acpi_nvs_nosave();
|
|
return 0;
|
|
}
|
|
|
|
static struct dmi_system_id __initdata acpisleep_dmi_table[] = {
|
|
{
|
|
.callback = init_old_suspend_ordering,
|
|
.ident = "Abit KN9 (nForce4 variant)",
|
|
.matches = {
|
|
DMI_MATCH(DMI_BOARD_VENDOR, "http://www.abit.com.tw/"),
|
|
DMI_MATCH(DMI_BOARD_NAME, "KN9 Series(NF-CK804)"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_old_suspend_ordering,
|
|
.ident = "HP xw4600 Workstation",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "HP xw4600 Workstation"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_old_suspend_ordering,
|
|
.ident = "Asus Pundit P1-AH2 (M2N8L motherboard)",
|
|
.matches = {
|
|
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
|
|
DMI_MATCH(DMI_BOARD_NAME, "M2N8L"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_old_suspend_ordering,
|
|
.ident = "Panasonic CF51-2L",
|
|
.matches = {
|
|
DMI_MATCH(DMI_BOARD_VENDOR,
|
|
"Matsushita Electric Industrial Co.,Ltd."),
|
|
DMI_MATCH(DMI_BOARD_NAME, "CF51-2L"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Sony Vaio VGN-FW21E",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW21E"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Sony Vaio VPCEB17FX",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB17FX"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Sony Vaio VGN-SR11M",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR11M"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Everex StepNote Series",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Everex Systems, Inc."),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "Everex StepNote Series"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Sony Vaio VPCEB1Z1E",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB1Z1E"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Sony Vaio VGN-NW130D",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-NW130D"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Sony Vaio VPCCW29FX",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "VPCCW29FX"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Averatec AV1020-ED2",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "AVERATEC"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "1000 Series"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_old_suspend_ordering,
|
|
.ident = "Asus A8N-SLI DELUXE",
|
|
.matches = {
|
|
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
|
|
DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI DELUXE"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_old_suspend_ordering,
|
|
.ident = "Asus A8N-SLI Premium",
|
|
.matches = {
|
|
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
|
|
DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI Premium"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Sony Vaio VGN-SR26GN_P",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR26GN_P"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Sony Vaio VGN-FW520F",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW520F"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Asus K54C",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "K54C"),
|
|
},
|
|
},
|
|
{
|
|
.callback = init_nvs_nosave,
|
|
.ident = "Asus K54HR",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "K54HR"),
|
|
},
|
|
},
|
|
{},
|
|
};
|
|
#endif /* CONFIG_SUSPEND */
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
static unsigned long s4_hardware_signature;
|
|
static struct acpi_table_facs *facs;
|
|
static bool nosigcheck;
|
|
|
|
void __init acpi_no_s4_hw_signature(void)
|
|
{
|
|
nosigcheck = true;
|
|
}
|
|
|
|
static int acpi_hibernation_begin(void)
|
|
{
|
|
int error;
|
|
|
|
error = nvs_nosave ? 0 : suspend_nvs_alloc();
|
|
if (!error) {
|
|
acpi_target_sleep_state = ACPI_STATE_S4;
|
|
acpi_sleep_tts_switch(acpi_target_sleep_state);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static int acpi_hibernation_enter(void)
|
|
{
|
|
acpi_status status = AE_OK;
|
|
|
|
ACPI_FLUSH_CPU_CACHE();
|
|
|
|
/* This shouldn't return. If it returns, we have a problem */
|
|
status = acpi_enter_sleep_state(ACPI_STATE_S4);
|
|
/* Reprogram control registers */
|
|
acpi_leave_sleep_state_prep(ACPI_STATE_S4);
|
|
|
|
return ACPI_SUCCESS(status) ? 0 : -EFAULT;
|
|
}
|
|
|
|
static void acpi_hibernation_leave(void)
|
|
{
|
|
/*
|
|
* If ACPI is not enabled by the BIOS and the boot kernel, we need to
|
|
* enable it here.
|
|
*/
|
|
acpi_enable();
|
|
/* Reprogram control registers */
|
|
acpi_leave_sleep_state_prep(ACPI_STATE_S4);
|
|
/* Check the hardware signature */
|
|
if (facs && s4_hardware_signature != facs->hardware_signature) {
|
|
printk(KERN_EMERG "ACPI: Hardware changed while hibernated, "
|
|
"cannot resume!\n");
|
|
panic("ACPI S4 hardware signature mismatch");
|
|
}
|
|
/* Restore the NVS memory area */
|
|
suspend_nvs_restore();
|
|
/* Allow EC transactions to happen. */
|
|
acpi_ec_unblock_transactions_early();
|
|
}
|
|
|
|
static void acpi_pm_thaw(void)
|
|
{
|
|
acpi_ec_unblock_transactions();
|
|
acpi_enable_all_runtime_gpes();
|
|
}
|
|
|
|
static const struct platform_hibernation_ops acpi_hibernation_ops = {
|
|
.begin = acpi_hibernation_begin,
|
|
.end = acpi_pm_end,
|
|
.pre_snapshot = acpi_pm_prepare,
|
|
.finish = acpi_pm_finish,
|
|
.prepare = acpi_pm_prepare,
|
|
.enter = acpi_hibernation_enter,
|
|
.leave = acpi_hibernation_leave,
|
|
.pre_restore = acpi_pm_freeze,
|
|
.restore_cleanup = acpi_pm_thaw,
|
|
};
|
|
|
|
/**
|
|
* acpi_hibernation_begin_old - Set the target system sleep state to
|
|
* ACPI_STATE_S4 and execute the _PTS control method. This
|
|
* function is used if the pre-ACPI 2.0 suspend ordering has been
|
|
* requested.
|
|
*/
|
|
static int acpi_hibernation_begin_old(void)
|
|
{
|
|
int error;
|
|
/*
|
|
* The _TTS object should always be evaluated before the _PTS object.
|
|
* When the old_suspended_ordering is true, the _PTS object is
|
|
* evaluated in the acpi_sleep_prepare.
|
|
*/
|
|
acpi_sleep_tts_switch(ACPI_STATE_S4);
|
|
|
|
error = acpi_sleep_prepare(ACPI_STATE_S4);
|
|
|
|
if (!error) {
|
|
if (!nvs_nosave)
|
|
error = suspend_nvs_alloc();
|
|
if (!error)
|
|
acpi_target_sleep_state = ACPI_STATE_S4;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
|
|
* been requested.
|
|
*/
|
|
static const struct platform_hibernation_ops acpi_hibernation_ops_old = {
|
|
.begin = acpi_hibernation_begin_old,
|
|
.end = acpi_pm_end,
|
|
.pre_snapshot = acpi_pm_pre_suspend,
|
|
.prepare = acpi_pm_freeze,
|
|
.finish = acpi_pm_finish,
|
|
.enter = acpi_hibernation_enter,
|
|
.leave = acpi_hibernation_leave,
|
|
.pre_restore = acpi_pm_freeze,
|
|
.restore_cleanup = acpi_pm_thaw,
|
|
.recover = acpi_pm_finish,
|
|
};
|
|
#endif /* CONFIG_HIBERNATION */
|
|
|
|
int acpi_suspend(u32 acpi_state)
|
|
{
|
|
suspend_state_t states[] = {
|
|
[1] = PM_SUSPEND_STANDBY,
|
|
[3] = PM_SUSPEND_MEM,
|
|
[5] = PM_SUSPEND_MAX
|
|
};
|
|
|
|
if (acpi_state < 6 && states[acpi_state])
|
|
return pm_suspend(states[acpi_state]);
|
|
if (acpi_state == 4)
|
|
return hibernate();
|
|
return -EINVAL;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
/**
|
|
* acpi_pm_device_sleep_state - return preferred power state of ACPI device
|
|
* in the system sleep state given by %acpi_target_sleep_state
|
|
* @dev: device to examine; its driver model wakeup flags control
|
|
* whether it should be able to wake up the system
|
|
* @d_min_p: used to store the upper limit of allowed states range
|
|
* @d_max_in: specify the lowest allowed states
|
|
* Return value: preferred power state of the device on success, -ENODEV
|
|
* (ie. if there's no 'struct acpi_device' for @dev) or -EINVAL on failure
|
|
*
|
|
* Find the lowest power (highest number) ACPI device power state that
|
|
* device @dev can be in while the system is in the sleep state represented
|
|
* by %acpi_target_sleep_state. If @wake is nonzero, the device should be
|
|
* able to wake up the system from this sleep state. If @d_min_p is set,
|
|
* the highest power (lowest number) device power state of @dev allowed
|
|
* in this system sleep state is stored at the location pointed to by it.
|
|
*
|
|
* The caller must ensure that @dev is valid before using this function.
|
|
* The caller is also responsible for figuring out if the device is
|
|
* supposed to be able to wake up the system and passing this information
|
|
* via @wake.
|
|
*/
|
|
|
|
int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
|
|
{
|
|
acpi_handle handle = DEVICE_ACPI_HANDLE(dev);
|
|
struct acpi_device *adev;
|
|
char acpi_method[] = "_SxD";
|
|
unsigned long long d_min, d_max;
|
|
|
|
if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3)
|
|
return -EINVAL;
|
|
if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) {
|
|
printk(KERN_DEBUG "ACPI handle has no context!\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
acpi_method[2] = '0' + acpi_target_sleep_state;
|
|
/*
|
|
* If the sleep state is S0, the lowest limit from ACPI is D3,
|
|
* but if the device has _S0W, we will use the value from _S0W
|
|
* as the lowest limit from ACPI. Finally, we will constrain
|
|
* the lowest limit with the specified one.
|
|
*/
|
|
d_min = ACPI_STATE_D0;
|
|
d_max = ACPI_STATE_D3;
|
|
|
|
/*
|
|
* If present, _SxD methods return the minimum D-state (highest power
|
|
* state) we can use for the corresponding S-states. Otherwise, the
|
|
* minimum D-state is D0 (ACPI 3.x).
|
|
*
|
|
* NOTE: We rely on acpi_evaluate_integer() not clobbering the integer
|
|
* provided -- that's our fault recovery, we ignore retval.
|
|
*/
|
|
if (acpi_target_sleep_state > ACPI_STATE_S0)
|
|
acpi_evaluate_integer(handle, acpi_method, NULL, &d_min);
|
|
|
|
/*
|
|
* If _PRW says we can wake up the system from the target sleep state,
|
|
* the D-state returned by _SxD is sufficient for that (we assume a
|
|
* wakeup-aware driver if wake is set). Still, if _SxW exists
|
|
* (ACPI 3.x), it should return the maximum (lowest power) D-state that
|
|
* can wake the system. _S0W may be valid, too.
|
|
*/
|
|
if (acpi_target_sleep_state == ACPI_STATE_S0 ||
|
|
(device_may_wakeup(dev) && adev->wakeup.flags.valid &&
|
|
adev->wakeup.sleep_state >= acpi_target_sleep_state)) {
|
|
acpi_status status;
|
|
|
|
acpi_method[3] = 'W';
|
|
status = acpi_evaluate_integer(handle, acpi_method, NULL,
|
|
&d_max);
|
|
if (ACPI_FAILURE(status)) {
|
|
if (acpi_target_sleep_state != ACPI_STATE_S0 ||
|
|
status != AE_NOT_FOUND)
|
|
d_max = d_min;
|
|
} else if (d_max < d_min) {
|
|
/* Warn the user of the broken DSDT */
|
|
printk(KERN_WARNING "ACPI: Wrong value from %s\n",
|
|
acpi_method);
|
|
/* Sanitize it */
|
|
d_min = d_max;
|
|
}
|
|
}
|
|
|
|
if (d_max_in < d_min)
|
|
return -EINVAL;
|
|
if (d_min_p)
|
|
*d_min_p = d_min;
|
|
/* constrain d_max with specified lowest limit (max number) */
|
|
if (d_max > d_max_in) {
|
|
for (d_max = d_max_in; d_max > d_min; d_max--) {
|
|
if (adev->power.states[d_max].flags.valid)
|
|
break;
|
|
}
|
|
}
|
|
return d_max;
|
|
}
|
|
EXPORT_SYMBOL(acpi_pm_device_sleep_state);
|
|
#endif /* CONFIG_PM */
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
/**
|
|
* acpi_pm_device_run_wake - Enable/disable wake-up for given device.
|
|
* @phys_dev: Device to enable/disable the platform to wake-up the system for.
|
|
* @enable: Whether enable or disable the wake-up functionality.
|
|
*
|
|
* Find the ACPI device object corresponding to @pci_dev and try to
|
|
* enable/disable the GPE associated with it.
|
|
*/
|
|
int acpi_pm_device_run_wake(struct device *phys_dev, bool enable)
|
|
{
|
|
struct acpi_device *dev;
|
|
acpi_handle handle;
|
|
|
|
if (!device_run_wake(phys_dev))
|
|
return -EINVAL;
|
|
|
|
handle = DEVICE_ACPI_HANDLE(phys_dev);
|
|
if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &dev))) {
|
|
dev_dbg(phys_dev, "ACPI handle has no context in %s!\n",
|
|
__func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (enable) {
|
|
acpi_enable_wakeup_device_power(dev, ACPI_STATE_S0);
|
|
acpi_enable_gpe(dev->wakeup.gpe_device, dev->wakeup.gpe_number);
|
|
} else {
|
|
acpi_disable_gpe(dev->wakeup.gpe_device, dev->wakeup.gpe_number);
|
|
acpi_disable_wakeup_device_power(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(acpi_pm_device_run_wake);
|
|
|
|
/**
|
|
* acpi_pm_device_sleep_wake - enable or disable the system wake-up
|
|
* capability of given device
|
|
* @dev: device to handle
|
|
* @enable: 'true' - enable, 'false' - disable the wake-up capability
|
|
*/
|
|
int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
|
|
{
|
|
acpi_handle handle;
|
|
struct acpi_device *adev;
|
|
int error;
|
|
|
|
if (!device_can_wakeup(dev))
|
|
return -EINVAL;
|
|
|
|
handle = DEVICE_ACPI_HANDLE(dev);
|
|
if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) {
|
|
dev_dbg(dev, "ACPI handle has no context in %s!\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
error = enable ?
|
|
acpi_enable_wakeup_device_power(adev, acpi_target_sleep_state) :
|
|
acpi_disable_wakeup_device_power(adev);
|
|
if (!error)
|
|
dev_info(dev, "wake-up capability %s by ACPI\n",
|
|
enable ? "enabled" : "disabled");
|
|
|
|
return error;
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static void acpi_power_off_prepare(void)
|
|
{
|
|
/* Prepare to power off the system */
|
|
acpi_sleep_prepare(ACPI_STATE_S5);
|
|
acpi_disable_all_gpes();
|
|
}
|
|
|
|
static void acpi_power_off(void)
|
|
{
|
|
/* acpi_sleep_prepare(ACPI_STATE_S5) should have already been called */
|
|
printk(KERN_DEBUG "%s called\n", __func__);
|
|
local_irq_disable();
|
|
acpi_enter_sleep_state(ACPI_STATE_S5);
|
|
}
|
|
|
|
int __init acpi_sleep_init(void)
|
|
{
|
|
acpi_status status;
|
|
u8 type_a, type_b;
|
|
#ifdef CONFIG_SUSPEND
|
|
int i = 0;
|
|
|
|
dmi_check_system(acpisleep_dmi_table);
|
|
#endif
|
|
|
|
if (acpi_disabled)
|
|
return 0;
|
|
|
|
sleep_states[ACPI_STATE_S0] = 1;
|
|
printk(KERN_INFO PREFIX "(supports S0");
|
|
|
|
#ifdef CONFIG_SUSPEND
|
|
for (i = ACPI_STATE_S1; i < ACPI_STATE_S4; i++) {
|
|
status = acpi_get_sleep_type_data(i, &type_a, &type_b);
|
|
if (ACPI_SUCCESS(status)) {
|
|
sleep_states[i] = 1;
|
|
printk(KERN_CONT " S%d", i);
|
|
}
|
|
}
|
|
|
|
suspend_set_ops(old_suspend_ordering ?
|
|
&acpi_suspend_ops_old : &acpi_suspend_ops);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
status = acpi_get_sleep_type_data(ACPI_STATE_S4, &type_a, &type_b);
|
|
if (ACPI_SUCCESS(status)) {
|
|
hibernation_set_ops(old_suspend_ordering ?
|
|
&acpi_hibernation_ops_old : &acpi_hibernation_ops);
|
|
sleep_states[ACPI_STATE_S4] = 1;
|
|
printk(KERN_CONT " S4");
|
|
if (!nosigcheck) {
|
|
acpi_get_table(ACPI_SIG_FACS, 1,
|
|
(struct acpi_table_header **)&facs);
|
|
if (facs)
|
|
s4_hardware_signature =
|
|
facs->hardware_signature;
|
|
}
|
|
}
|
|
#endif
|
|
status = acpi_get_sleep_type_data(ACPI_STATE_S5, &type_a, &type_b);
|
|
if (ACPI_SUCCESS(status)) {
|
|
sleep_states[ACPI_STATE_S5] = 1;
|
|
printk(KERN_CONT " S5");
|
|
pm_power_off_prepare = acpi_power_off_prepare;
|
|
pm_power_off = acpi_power_off;
|
|
}
|
|
printk(KERN_CONT ")\n");
|
|
/*
|
|
* Register the tts_notifier to reboot notifier list so that the _TTS
|
|
* object can also be evaluated when the system enters S5.
|
|
*/
|
|
register_reboot_notifier(&tts_notifier);
|
|
return 0;
|
|
}
|