mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-09 22:50:41 +00:00
837f66c712
Allow the capacity of the kvm_mmu_memory_cache struct to be chosen at declaration time rather than being fixed for all declarations. This will be used in a follow-up commit to declare an cache in x86 with a capacity of 512+ objects without having to increase the capacity of all caches in KVM. This change requires each cache now specify its capacity at runtime, since the cache struct itself no longer has a fixed capacity known at compile time. To protect against someone accidentally defining a kvm_mmu_memory_cache struct directly (without the extra storage), this commit includes a WARN_ON() in kvm_mmu_topup_memory_cache(). In order to support different capacities, this commit changes the objects pointer array to be dynamically allocated the first time the cache is topped-up. While here, opportunistically clean up the stack-allocated kvm_mmu_memory_cache structs in riscv and arm64 to use designated initializers. No functional change intended. Reviewed-by: Marc Zyngier <maz@kernel.org> Signed-off-by: David Matlack <dmatlack@google.com> Message-Id: <20220516232138.1783324-22-dmatlack@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
784 lines
19 KiB
C
784 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Anup Patel <anup.patel@wdc.com>
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/module.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <asm/csr.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
#ifdef CONFIG_64BIT
|
|
static unsigned long gstage_mode = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT);
|
|
static unsigned long gstage_pgd_levels = 3;
|
|
#define gstage_index_bits 9
|
|
#else
|
|
static unsigned long gstage_mode = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT);
|
|
static unsigned long gstage_pgd_levels = 2;
|
|
#define gstage_index_bits 10
|
|
#endif
|
|
|
|
#define gstage_pgd_xbits 2
|
|
#define gstage_pgd_size (1UL << (HGATP_PAGE_SHIFT + gstage_pgd_xbits))
|
|
#define gstage_gpa_bits (HGATP_PAGE_SHIFT + \
|
|
(gstage_pgd_levels * gstage_index_bits) + \
|
|
gstage_pgd_xbits)
|
|
#define gstage_gpa_size ((gpa_t)(1ULL << gstage_gpa_bits))
|
|
|
|
#define gstage_pte_leaf(__ptep) \
|
|
(pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
|
|
|
|
static inline unsigned long gstage_pte_index(gpa_t addr, u32 level)
|
|
{
|
|
unsigned long mask;
|
|
unsigned long shift = HGATP_PAGE_SHIFT + (gstage_index_bits * level);
|
|
|
|
if (level == (gstage_pgd_levels - 1))
|
|
mask = (PTRS_PER_PTE * (1UL << gstage_pgd_xbits)) - 1;
|
|
else
|
|
mask = PTRS_PER_PTE - 1;
|
|
|
|
return (addr >> shift) & mask;
|
|
}
|
|
|
|
static inline unsigned long gstage_pte_page_vaddr(pte_t pte)
|
|
{
|
|
return (unsigned long)pfn_to_virt(pte_val(pte) >> _PAGE_PFN_SHIFT);
|
|
}
|
|
|
|
static int gstage_page_size_to_level(unsigned long page_size, u32 *out_level)
|
|
{
|
|
u32 i;
|
|
unsigned long psz = 1UL << 12;
|
|
|
|
for (i = 0; i < gstage_pgd_levels; i++) {
|
|
if (page_size == (psz << (i * gstage_index_bits))) {
|
|
*out_level = i;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int gstage_level_to_page_order(u32 level, unsigned long *out_pgorder)
|
|
{
|
|
if (gstage_pgd_levels < level)
|
|
return -EINVAL;
|
|
|
|
*out_pgorder = 12 + (level * gstage_index_bits);
|
|
return 0;
|
|
}
|
|
|
|
static int gstage_level_to_page_size(u32 level, unsigned long *out_pgsize)
|
|
{
|
|
int rc;
|
|
unsigned long page_order = PAGE_SHIFT;
|
|
|
|
rc = gstage_level_to_page_order(level, &page_order);
|
|
if (rc)
|
|
return rc;
|
|
|
|
*out_pgsize = BIT(page_order);
|
|
return 0;
|
|
}
|
|
|
|
static bool gstage_get_leaf_entry(struct kvm *kvm, gpa_t addr,
|
|
pte_t **ptepp, u32 *ptep_level)
|
|
{
|
|
pte_t *ptep;
|
|
u32 current_level = gstage_pgd_levels - 1;
|
|
|
|
*ptep_level = current_level;
|
|
ptep = (pte_t *)kvm->arch.pgd;
|
|
ptep = &ptep[gstage_pte_index(addr, current_level)];
|
|
while (ptep && pte_val(*ptep)) {
|
|
if (gstage_pte_leaf(ptep)) {
|
|
*ptep_level = current_level;
|
|
*ptepp = ptep;
|
|
return true;
|
|
}
|
|
|
|
if (current_level) {
|
|
current_level--;
|
|
*ptep_level = current_level;
|
|
ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
|
|
ptep = &ptep[gstage_pte_index(addr, current_level)];
|
|
} else {
|
|
ptep = NULL;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void gstage_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
|
|
{
|
|
unsigned long order = PAGE_SHIFT;
|
|
|
|
if (gstage_level_to_page_order(level, &order))
|
|
return;
|
|
addr &= ~(BIT(order) - 1);
|
|
|
|
kvm_riscv_hfence_gvma_vmid_gpa(kvm, -1UL, 0, addr, BIT(order), order);
|
|
}
|
|
|
|
static int gstage_set_pte(struct kvm *kvm, u32 level,
|
|
struct kvm_mmu_memory_cache *pcache,
|
|
gpa_t addr, const pte_t *new_pte)
|
|
{
|
|
u32 current_level = gstage_pgd_levels - 1;
|
|
pte_t *next_ptep = (pte_t *)kvm->arch.pgd;
|
|
pte_t *ptep = &next_ptep[gstage_pte_index(addr, current_level)];
|
|
|
|
if (current_level < level)
|
|
return -EINVAL;
|
|
|
|
while (current_level != level) {
|
|
if (gstage_pte_leaf(ptep))
|
|
return -EEXIST;
|
|
|
|
if (!pte_val(*ptep)) {
|
|
if (!pcache)
|
|
return -ENOMEM;
|
|
next_ptep = kvm_mmu_memory_cache_alloc(pcache);
|
|
if (!next_ptep)
|
|
return -ENOMEM;
|
|
*ptep = pfn_pte(PFN_DOWN(__pa(next_ptep)),
|
|
__pgprot(_PAGE_TABLE));
|
|
} else {
|
|
if (gstage_pte_leaf(ptep))
|
|
return -EEXIST;
|
|
next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
|
|
}
|
|
|
|
current_level--;
|
|
ptep = &next_ptep[gstage_pte_index(addr, current_level)];
|
|
}
|
|
|
|
*ptep = *new_pte;
|
|
if (gstage_pte_leaf(ptep))
|
|
gstage_remote_tlb_flush(kvm, current_level, addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gstage_map_page(struct kvm *kvm,
|
|
struct kvm_mmu_memory_cache *pcache,
|
|
gpa_t gpa, phys_addr_t hpa,
|
|
unsigned long page_size,
|
|
bool page_rdonly, bool page_exec)
|
|
{
|
|
int ret;
|
|
u32 level = 0;
|
|
pte_t new_pte;
|
|
pgprot_t prot;
|
|
|
|
ret = gstage_page_size_to_level(page_size, &level);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* A RISC-V implementation can choose to either:
|
|
* 1) Update 'A' and 'D' PTE bits in hardware
|
|
* 2) Generate page fault when 'A' and/or 'D' bits are not set
|
|
* PTE so that software can update these bits.
|
|
*
|
|
* We support both options mentioned above. To achieve this, we
|
|
* always set 'A' and 'D' PTE bits at time of creating G-stage
|
|
* mapping. To support KVM dirty page logging with both options
|
|
* mentioned above, we will write-protect G-stage PTEs to track
|
|
* dirty pages.
|
|
*/
|
|
|
|
if (page_exec) {
|
|
if (page_rdonly)
|
|
prot = PAGE_READ_EXEC;
|
|
else
|
|
prot = PAGE_WRITE_EXEC;
|
|
} else {
|
|
if (page_rdonly)
|
|
prot = PAGE_READ;
|
|
else
|
|
prot = PAGE_WRITE;
|
|
}
|
|
new_pte = pfn_pte(PFN_DOWN(hpa), prot);
|
|
new_pte = pte_mkdirty(new_pte);
|
|
|
|
return gstage_set_pte(kvm, level, pcache, gpa, &new_pte);
|
|
}
|
|
|
|
enum gstage_op {
|
|
GSTAGE_OP_NOP = 0, /* Nothing */
|
|
GSTAGE_OP_CLEAR, /* Clear/Unmap */
|
|
GSTAGE_OP_WP, /* Write-protect */
|
|
};
|
|
|
|
static void gstage_op_pte(struct kvm *kvm, gpa_t addr,
|
|
pte_t *ptep, u32 ptep_level, enum gstage_op op)
|
|
{
|
|
int i, ret;
|
|
pte_t *next_ptep;
|
|
u32 next_ptep_level;
|
|
unsigned long next_page_size, page_size;
|
|
|
|
ret = gstage_level_to_page_size(ptep_level, &page_size);
|
|
if (ret)
|
|
return;
|
|
|
|
BUG_ON(addr & (page_size - 1));
|
|
|
|
if (!pte_val(*ptep))
|
|
return;
|
|
|
|
if (ptep_level && !gstage_pte_leaf(ptep)) {
|
|
next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
|
|
next_ptep_level = ptep_level - 1;
|
|
ret = gstage_level_to_page_size(next_ptep_level,
|
|
&next_page_size);
|
|
if (ret)
|
|
return;
|
|
|
|
if (op == GSTAGE_OP_CLEAR)
|
|
set_pte(ptep, __pte(0));
|
|
for (i = 0; i < PTRS_PER_PTE; i++)
|
|
gstage_op_pte(kvm, addr + i * next_page_size,
|
|
&next_ptep[i], next_ptep_level, op);
|
|
if (op == GSTAGE_OP_CLEAR)
|
|
put_page(virt_to_page(next_ptep));
|
|
} else {
|
|
if (op == GSTAGE_OP_CLEAR)
|
|
set_pte(ptep, __pte(0));
|
|
else if (op == GSTAGE_OP_WP)
|
|
set_pte(ptep, __pte(pte_val(*ptep) & ~_PAGE_WRITE));
|
|
gstage_remote_tlb_flush(kvm, ptep_level, addr);
|
|
}
|
|
}
|
|
|
|
static void gstage_unmap_range(struct kvm *kvm, gpa_t start,
|
|
gpa_t size, bool may_block)
|
|
{
|
|
int ret;
|
|
pte_t *ptep;
|
|
u32 ptep_level;
|
|
bool found_leaf;
|
|
unsigned long page_size;
|
|
gpa_t addr = start, end = start + size;
|
|
|
|
while (addr < end) {
|
|
found_leaf = gstage_get_leaf_entry(kvm, addr,
|
|
&ptep, &ptep_level);
|
|
ret = gstage_level_to_page_size(ptep_level, &page_size);
|
|
if (ret)
|
|
break;
|
|
|
|
if (!found_leaf)
|
|
goto next;
|
|
|
|
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
|
|
gstage_op_pte(kvm, addr, ptep,
|
|
ptep_level, GSTAGE_OP_CLEAR);
|
|
|
|
next:
|
|
addr += page_size;
|
|
|
|
/*
|
|
* If the range is too large, release the kvm->mmu_lock
|
|
* to prevent starvation and lockup detector warnings.
|
|
*/
|
|
if (may_block && addr < end)
|
|
cond_resched_lock(&kvm->mmu_lock);
|
|
}
|
|
}
|
|
|
|
static void gstage_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
|
|
{
|
|
int ret;
|
|
pte_t *ptep;
|
|
u32 ptep_level;
|
|
bool found_leaf;
|
|
gpa_t addr = start;
|
|
unsigned long page_size;
|
|
|
|
while (addr < end) {
|
|
found_leaf = gstage_get_leaf_entry(kvm, addr,
|
|
&ptep, &ptep_level);
|
|
ret = gstage_level_to_page_size(ptep_level, &page_size);
|
|
if (ret)
|
|
break;
|
|
|
|
if (!found_leaf)
|
|
goto next;
|
|
|
|
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
|
|
gstage_op_pte(kvm, addr, ptep,
|
|
ptep_level, GSTAGE_OP_WP);
|
|
|
|
next:
|
|
addr += page_size;
|
|
}
|
|
}
|
|
|
|
static void gstage_wp_memory_region(struct kvm *kvm, int slot)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
|
|
phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
gstage_wp_range(kvm, start, end);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_flush_remote_tlbs(kvm);
|
|
}
|
|
|
|
static int gstage_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
|
|
unsigned long size, bool writable)
|
|
{
|
|
pte_t pte;
|
|
int ret = 0;
|
|
unsigned long pfn;
|
|
phys_addr_t addr, end;
|
|
struct kvm_mmu_memory_cache pcache = { .gfp_zero = __GFP_ZERO };
|
|
|
|
end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
|
|
pfn = __phys_to_pfn(hpa);
|
|
|
|
for (addr = gpa; addr < end; addr += PAGE_SIZE) {
|
|
pte = pfn_pte(pfn, PAGE_KERNEL);
|
|
|
|
if (!writable)
|
|
pte = pte_wrprotect(pte);
|
|
|
|
ret = kvm_mmu_topup_memory_cache(&pcache, gstage_pgd_levels);
|
|
if (ret)
|
|
goto out;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
ret = gstage_set_pte(kvm, 0, &pcache, addr, &pte);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pfn++;
|
|
}
|
|
|
|
out:
|
|
kvm_mmu_free_memory_cache(&pcache);
|
|
return ret;
|
|
}
|
|
|
|
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
gfn_t gfn_offset,
|
|
unsigned long mask)
|
|
{
|
|
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
|
|
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
|
|
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
|
|
|
|
gstage_wp_range(kvm, start, end);
|
|
}
|
|
|
|
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot)
|
|
{
|
|
kvm_flush_remote_tlbs(kvm);
|
|
}
|
|
|
|
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
|
{
|
|
kvm_riscv_gstage_free_pgd(kvm);
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot)
|
|
{
|
|
gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t size = slot->npages << PAGE_SHIFT;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
gstage_unmap_range(kvm, gpa, size, false);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *old,
|
|
const struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
/*
|
|
* At this point memslot has been committed and there is an
|
|
* allocated dirty_bitmap[], dirty pages will be tracked while
|
|
* the memory slot is write protected.
|
|
*/
|
|
if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
|
|
gstage_wp_memory_region(kvm, new->id);
|
|
}
|
|
|
|
int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
|
const struct kvm_memory_slot *old,
|
|
struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
hva_t hva, reg_end, size;
|
|
gpa_t base_gpa;
|
|
bool writable;
|
|
int ret = 0;
|
|
|
|
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
|
|
change != KVM_MR_FLAGS_ONLY)
|
|
return 0;
|
|
|
|
/*
|
|
* Prevent userspace from creating a memory region outside of the GPA
|
|
* space addressable by the KVM guest GPA space.
|
|
*/
|
|
if ((new->base_gfn + new->npages) >=
|
|
(gstage_gpa_size >> PAGE_SHIFT))
|
|
return -EFAULT;
|
|
|
|
hva = new->userspace_addr;
|
|
size = new->npages << PAGE_SHIFT;
|
|
reg_end = hva + size;
|
|
base_gpa = new->base_gfn << PAGE_SHIFT;
|
|
writable = !(new->flags & KVM_MEM_READONLY);
|
|
|
|
mmap_read_lock(current->mm);
|
|
|
|
/*
|
|
* A memory region could potentially cover multiple VMAs, and
|
|
* any holes between them, so iterate over all of them to find
|
|
* out if we can map any of them right now.
|
|
*
|
|
* +--------------------------------------------+
|
|
* +---------------+----------------+ +----------------+
|
|
* | : VMA 1 | VMA 2 | | VMA 3 : |
|
|
* +---------------+----------------+ +----------------+
|
|
* | memory region |
|
|
* +--------------------------------------------+
|
|
*/
|
|
do {
|
|
struct vm_area_struct *vma = find_vma(current->mm, hva);
|
|
hva_t vm_start, vm_end;
|
|
|
|
if (!vma || vma->vm_start >= reg_end)
|
|
break;
|
|
|
|
/*
|
|
* Mapping a read-only VMA is only allowed if the
|
|
* memory region is configured as read-only.
|
|
*/
|
|
if (writable && !(vma->vm_flags & VM_WRITE)) {
|
|
ret = -EPERM;
|
|
break;
|
|
}
|
|
|
|
/* Take the intersection of this VMA with the memory region */
|
|
vm_start = max(hva, vma->vm_start);
|
|
vm_end = min(reg_end, vma->vm_end);
|
|
|
|
if (vma->vm_flags & VM_PFNMAP) {
|
|
gpa_t gpa = base_gpa + (vm_start - hva);
|
|
phys_addr_t pa;
|
|
|
|
pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
|
|
pa += vm_start - vma->vm_start;
|
|
|
|
/* IO region dirty page logging not allowed */
|
|
if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = gstage_ioremap(kvm, gpa, pa,
|
|
vm_end - vm_start, writable);
|
|
if (ret)
|
|
break;
|
|
}
|
|
hva = vm_end;
|
|
} while (hva < reg_end);
|
|
|
|
if (change == KVM_MR_FLAGS_ONLY)
|
|
goto out;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (ret)
|
|
gstage_unmap_range(kvm, base_gpa, size, false);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
out:
|
|
mmap_read_unlock(current->mm);
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
if (!kvm->arch.pgd)
|
|
return false;
|
|
|
|
gstage_unmap_range(kvm, range->start << PAGE_SHIFT,
|
|
(range->end - range->start) << PAGE_SHIFT,
|
|
range->may_block);
|
|
return false;
|
|
}
|
|
|
|
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
int ret;
|
|
kvm_pfn_t pfn = pte_pfn(range->pte);
|
|
|
|
if (!kvm->arch.pgd)
|
|
return false;
|
|
|
|
WARN_ON(range->end - range->start != 1);
|
|
|
|
ret = gstage_map_page(kvm, NULL, range->start << PAGE_SHIFT,
|
|
__pfn_to_phys(pfn), PAGE_SIZE, true, true);
|
|
if (ret) {
|
|
kvm_debug("Failed to map G-stage page (error %d)\n", ret);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
pte_t *ptep;
|
|
u32 ptep_level = 0;
|
|
u64 size = (range->end - range->start) << PAGE_SHIFT;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return false;
|
|
|
|
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
|
|
|
|
if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
|
|
&ptep, &ptep_level))
|
|
return false;
|
|
|
|
return ptep_test_and_clear_young(NULL, 0, ptep);
|
|
}
|
|
|
|
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
pte_t *ptep;
|
|
u32 ptep_level = 0;
|
|
u64 size = (range->end - range->start) << PAGE_SHIFT;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return false;
|
|
|
|
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
|
|
|
|
if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
|
|
&ptep, &ptep_level))
|
|
return false;
|
|
|
|
return pte_young(*ptep);
|
|
}
|
|
|
|
int kvm_riscv_gstage_map(struct kvm_vcpu *vcpu,
|
|
struct kvm_memory_slot *memslot,
|
|
gpa_t gpa, unsigned long hva, bool is_write)
|
|
{
|
|
int ret;
|
|
kvm_pfn_t hfn;
|
|
bool writeable;
|
|
short vma_pageshift;
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
struct vm_area_struct *vma;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
|
|
bool logging = (memslot->dirty_bitmap &&
|
|
!(memslot->flags & KVM_MEM_READONLY)) ? true : false;
|
|
unsigned long vma_pagesize, mmu_seq;
|
|
|
|
mmap_read_lock(current->mm);
|
|
|
|
vma = find_vma_intersection(current->mm, hva, hva + 1);
|
|
if (unlikely(!vma)) {
|
|
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
|
|
mmap_read_unlock(current->mm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (is_vm_hugetlb_page(vma))
|
|
vma_pageshift = huge_page_shift(hstate_vma(vma));
|
|
else
|
|
vma_pageshift = PAGE_SHIFT;
|
|
vma_pagesize = 1ULL << vma_pageshift;
|
|
if (logging || (vma->vm_flags & VM_PFNMAP))
|
|
vma_pagesize = PAGE_SIZE;
|
|
|
|
if (vma_pagesize == PMD_SIZE || vma_pagesize == PGDIR_SIZE)
|
|
gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
|
|
|
|
mmap_read_unlock(current->mm);
|
|
|
|
if (vma_pagesize != PGDIR_SIZE &&
|
|
vma_pagesize != PMD_SIZE &&
|
|
vma_pagesize != PAGE_SIZE) {
|
|
kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* We need minimum second+third level pages */
|
|
ret = kvm_mmu_topup_memory_cache(pcache, gstage_pgd_levels);
|
|
if (ret) {
|
|
kvm_err("Failed to topup G-stage cache\n");
|
|
return ret;
|
|
}
|
|
|
|
mmu_seq = kvm->mmu_notifier_seq;
|
|
|
|
hfn = gfn_to_pfn_prot(kvm, gfn, is_write, &writeable);
|
|
if (hfn == KVM_PFN_ERR_HWPOISON) {
|
|
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
|
|
vma_pageshift, current);
|
|
return 0;
|
|
}
|
|
if (is_error_noslot_pfn(hfn))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* If logging is active then we allow writable pages only
|
|
* for write faults.
|
|
*/
|
|
if (logging && !is_write)
|
|
writeable = false;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
if (mmu_notifier_retry(kvm, mmu_seq))
|
|
goto out_unlock;
|
|
|
|
if (writeable) {
|
|
kvm_set_pfn_dirty(hfn);
|
|
mark_page_dirty(kvm, gfn);
|
|
ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
|
|
vma_pagesize, false, true);
|
|
} else {
|
|
ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
|
|
vma_pagesize, true, true);
|
|
}
|
|
|
|
if (ret)
|
|
kvm_err("Failed to map in G-stage\n");
|
|
|
|
out_unlock:
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_set_pfn_accessed(hfn);
|
|
kvm_release_pfn_clean(hfn);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_riscv_gstage_alloc_pgd(struct kvm *kvm)
|
|
{
|
|
struct page *pgd_page;
|
|
|
|
if (kvm->arch.pgd != NULL) {
|
|
kvm_err("kvm_arch already initialized?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
|
|
get_order(gstage_pgd_size));
|
|
if (!pgd_page)
|
|
return -ENOMEM;
|
|
kvm->arch.pgd = page_to_virt(pgd_page);
|
|
kvm->arch.pgd_phys = page_to_phys(pgd_page);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_riscv_gstage_free_pgd(struct kvm *kvm)
|
|
{
|
|
void *pgd = NULL;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (kvm->arch.pgd) {
|
|
gstage_unmap_range(kvm, 0UL, gstage_gpa_size, false);
|
|
pgd = READ_ONCE(kvm->arch.pgd);
|
|
kvm->arch.pgd = NULL;
|
|
kvm->arch.pgd_phys = 0;
|
|
}
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
if (pgd)
|
|
free_pages((unsigned long)pgd, get_order(gstage_pgd_size));
|
|
}
|
|
|
|
void kvm_riscv_gstage_update_hgatp(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long hgatp = gstage_mode;
|
|
struct kvm_arch *k = &vcpu->kvm->arch;
|
|
|
|
hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) &
|
|
HGATP_VMID_MASK;
|
|
hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
|
|
|
|
csr_write(CSR_HGATP, hgatp);
|
|
|
|
if (!kvm_riscv_gstage_vmid_bits())
|
|
kvm_riscv_local_hfence_gvma_all();
|
|
}
|
|
|
|
void kvm_riscv_gstage_mode_detect(void)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
/* Try Sv57x4 G-stage mode */
|
|
csr_write(CSR_HGATP, HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
|
|
if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV57X4) {
|
|
gstage_mode = (HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
|
|
gstage_pgd_levels = 5;
|
|
goto skip_sv48x4_test;
|
|
}
|
|
|
|
/* Try Sv48x4 G-stage mode */
|
|
csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
|
|
if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
|
|
gstage_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
|
|
gstage_pgd_levels = 4;
|
|
}
|
|
skip_sv48x4_test:
|
|
|
|
csr_write(CSR_HGATP, 0);
|
|
kvm_riscv_local_hfence_gvma_all();
|
|
#endif
|
|
}
|
|
|
|
unsigned long kvm_riscv_gstage_mode(void)
|
|
{
|
|
return gstage_mode >> HGATP_MODE_SHIFT;
|
|
}
|
|
|
|
int kvm_riscv_gstage_gpa_bits(void)
|
|
{
|
|
return gstage_gpa_bits;
|
|
}
|