Ian Rogers 6e24628d78 lib: Introduce generic min-heap
Supports push, pop and converting an array into a heap. If the sense of
the compare function is inverted then it can provide a max-heap.

Based-on-work-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ian Rogers <irogers@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200214075133.181299-3-irogers@google.com
2020-03-06 11:56:59 +01:00

135 lines
3.3 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MIN_HEAP_H
#define _LINUX_MIN_HEAP_H
#include <linux/bug.h>
#include <linux/string.h>
#include <linux/types.h>
/**
* struct min_heap - Data structure to hold a min-heap.
* @data: Start of array holding the heap elements.
* @nr: Number of elements currently in the heap.
* @size: Maximum number of elements that can be held in current storage.
*/
struct min_heap {
void *data;
int nr;
int size;
};
/**
* struct min_heap_callbacks - Data/functions to customise the min_heap.
* @elem_size: The nr of each element in bytes.
* @less: Partial order function for this heap.
* @swp: Swap elements function.
*/
struct min_heap_callbacks {
int elem_size;
bool (*less)(const void *lhs, const void *rhs);
void (*swp)(void *lhs, void *rhs);
};
/* Sift the element at pos down the heap. */
static __always_inline
void min_heapify(struct min_heap *heap, int pos,
const struct min_heap_callbacks *func)
{
void *left, *right, *parent, *smallest;
void *data = heap->data;
for (;;) {
if (pos * 2 + 1 >= heap->nr)
break;
left = data + ((pos * 2 + 1) * func->elem_size);
parent = data + (pos * func->elem_size);
smallest = parent;
if (func->less(left, smallest))
smallest = left;
if (pos * 2 + 2 < heap->nr) {
right = data + ((pos * 2 + 2) * func->elem_size);
if (func->less(right, smallest))
smallest = right;
}
if (smallest == parent)
break;
func->swp(smallest, parent);
if (smallest == left)
pos = (pos * 2) + 1;
else
pos = (pos * 2) + 2;
}
}
/* Floyd's approach to heapification that is O(nr). */
static __always_inline
void min_heapify_all(struct min_heap *heap,
const struct min_heap_callbacks *func)
{
int i;
for (i = heap->nr / 2; i >= 0; i--)
min_heapify(heap, i, func);
}
/* Remove minimum element from the heap, O(log2(nr)). */
static __always_inline
void min_heap_pop(struct min_heap *heap,
const struct min_heap_callbacks *func)
{
void *data = heap->data;
if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
return;
/* Place last element at the root (position 0) and then sift down. */
heap->nr--;
memcpy(data, data + (heap->nr * func->elem_size), func->elem_size);
min_heapify(heap, 0, func);
}
/*
* Remove the minimum element and then push the given element. The
* implementation performs 1 sift (O(log2(nr))) and is therefore more
* efficient than a pop followed by a push that does 2.
*/
static __always_inline
void min_heap_pop_push(struct min_heap *heap,
const void *element,
const struct min_heap_callbacks *func)
{
memcpy(heap->data, element, func->elem_size);
min_heapify(heap, 0, func);
}
/* Push an element on to the heap, O(log2(nr)). */
static __always_inline
void min_heap_push(struct min_heap *heap, const void *element,
const struct min_heap_callbacks *func)
{
void *data = heap->data;
void *child, *parent;
int pos;
if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap"))
return;
/* Place at the end of data. */
pos = heap->nr;
memcpy(data + (pos * func->elem_size), element, func->elem_size);
heap->nr++;
/* Sift child at pos up. */
for (; pos > 0; pos = (pos - 1) / 2) {
child = data + (pos * func->elem_size);
parent = data + ((pos - 1) / 2) * func->elem_size;
if (func->less(parent, child))
break;
func->swp(parent, child);
}
}
#endif /* _LINUX_MIN_HEAP_H */