linux-stable/fs/xfs/scrub/xfarray.c
Darrick J. Wong ee13fc6720 xfs: convert xfarray_pagesort to deal with large folios
Convert xfarray_pagesort to handle large folios by introducing a new
xfile_get_folio routine that can return a folio of arbitrary size, and
using heapsort on the full folio.  This also corrects an off-by-one bug
in the calculation of len in xfarray_pagesort that was papered over by
xfarray_want_pagesort.

Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-21 11:36:55 +05:30

1054 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2021-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/scrub.h"
#include "scrub/trace.h"
/*
* Large Arrays of Fixed-Size Records
* ==================================
*
* This memory array uses an xfile (which itself is a shmem file) to store
* large numbers of fixed-size records in memory that can be paged out. This
* puts less stress on the memory reclaim algorithms during an online repair
* because we don't have to pin so much memory. However, array access is less
* direct than would be in a regular memory array. Access to the array is
* performed via indexed load and store methods, and an append method is
* provided for convenience. Array elements can be unset, which sets them to
* all zeroes. Unset entries are skipped during iteration, though direct loads
* will return a zeroed buffer. Callers are responsible for concurrency
* control.
*/
/*
* Pointer to scratch space. Because we can't access the xfile data directly,
* we allocate a small amount of memory on the end of the xfarray structure to
* buffer array items when we need space to store values temporarily.
*/
static inline void *xfarray_scratch(struct xfarray *array)
{
return (array + 1);
}
/* Compute array index given an xfile offset. */
static xfarray_idx_t
xfarray_idx(
struct xfarray *array,
loff_t pos)
{
if (array->obj_size_log >= 0)
return (xfarray_idx_t)pos >> array->obj_size_log;
return div_u64((xfarray_idx_t)pos, array->obj_size);
}
/* Compute xfile offset of array element. */
static inline loff_t xfarray_pos(struct xfarray *array, xfarray_idx_t idx)
{
if (array->obj_size_log >= 0)
return idx << array->obj_size_log;
return idx * array->obj_size;
}
/*
* Initialize a big memory array. Array records cannot be larger than a
* page, and the array cannot span more bytes than the page cache supports.
* If @required_capacity is nonzero, the maximum array size will be set to this
* quantity and the array creation will fail if the underlying storage cannot
* support that many records.
*/
int
xfarray_create(
const char *description,
unsigned long long required_capacity,
size_t obj_size,
struct xfarray **arrayp)
{
struct xfarray *array;
struct xfile *xfile;
int error;
ASSERT(obj_size < PAGE_SIZE);
error = xfile_create(description, 0, &xfile);
if (error)
return error;
error = -ENOMEM;
array = kzalloc(sizeof(struct xfarray) + obj_size, XCHK_GFP_FLAGS);
if (!array)
goto out_xfile;
array->xfile = xfile;
array->obj_size = obj_size;
if (is_power_of_2(obj_size))
array->obj_size_log = ilog2(obj_size);
else
array->obj_size_log = -1;
array->max_nr = xfarray_idx(array, MAX_LFS_FILESIZE);
trace_xfarray_create(array, required_capacity);
if (required_capacity > 0) {
if (array->max_nr < required_capacity) {
error = -ENOMEM;
goto out_xfarray;
}
array->max_nr = required_capacity;
}
*arrayp = array;
return 0;
out_xfarray:
kfree(array);
out_xfile:
xfile_destroy(xfile);
return error;
}
/* Destroy the array. */
void
xfarray_destroy(
struct xfarray *array)
{
xfile_destroy(array->xfile);
kfree(array);
}
/* Load an element from the array. */
int
xfarray_load(
struct xfarray *array,
xfarray_idx_t idx,
void *ptr)
{
if (idx >= array->nr)
return -ENODATA;
return xfile_load(array->xfile, ptr, array->obj_size,
xfarray_pos(array, idx));
}
/* Is this array element potentially unset? */
static inline bool
xfarray_is_unset(
struct xfarray *array,
loff_t pos)
{
void *temp = xfarray_scratch(array);
int error;
if (array->unset_slots == 0)
return false;
error = xfile_load(array->xfile, temp, array->obj_size, pos);
if (!error && xfarray_element_is_null(array, temp))
return true;
return false;
}
/*
* Unset an array element. If @idx is the last element in the array, the
* array will be truncated. Otherwise, the entry will be zeroed.
*/
int
xfarray_unset(
struct xfarray *array,
xfarray_idx_t idx)
{
void *temp = xfarray_scratch(array);
loff_t pos = xfarray_pos(array, idx);
int error;
if (idx >= array->nr)
return -ENODATA;
if (idx == array->nr - 1) {
array->nr--;
return 0;
}
if (xfarray_is_unset(array, pos))
return 0;
memset(temp, 0, array->obj_size);
error = xfile_store(array->xfile, temp, array->obj_size, pos);
if (error)
return error;
array->unset_slots++;
return 0;
}
/*
* Store an element in the array. The element must not be completely zeroed,
* because those are considered unset sparse elements.
*/
int
xfarray_store(
struct xfarray *array,
xfarray_idx_t idx,
const void *ptr)
{
int ret;
if (idx >= array->max_nr)
return -EFBIG;
ASSERT(!xfarray_element_is_null(array, ptr));
ret = xfile_store(array->xfile, ptr, array->obj_size,
xfarray_pos(array, idx));
if (ret)
return ret;
array->nr = max(array->nr, idx + 1);
return 0;
}
/* Is this array element NULL? */
bool
xfarray_element_is_null(
struct xfarray *array,
const void *ptr)
{
return !memchr_inv(ptr, 0, array->obj_size);
}
/*
* Store an element anywhere in the array that is unset. If there are no
* unset slots, append the element to the array.
*/
int
xfarray_store_anywhere(
struct xfarray *array,
const void *ptr)
{
void *temp = xfarray_scratch(array);
loff_t endpos = xfarray_pos(array, array->nr);
loff_t pos;
int error;
/* Find an unset slot to put it in. */
for (pos = 0;
pos < endpos && array->unset_slots > 0;
pos += array->obj_size) {
error = xfile_load(array->xfile, temp, array->obj_size,
pos);
if (error || !xfarray_element_is_null(array, temp))
continue;
error = xfile_store(array->xfile, ptr, array->obj_size,
pos);
if (error)
return error;
array->unset_slots--;
return 0;
}
/* No unset slots found; attach it on the end. */
array->unset_slots = 0;
return xfarray_append(array, ptr);
}
/* Return length of array. */
uint64_t
xfarray_length(
struct xfarray *array)
{
return array->nr;
}
/*
* Decide which array item we're going to read as part of an _iter_get.
* @cur is the array index, and @pos is the file offset of that array index in
* the backing xfile. Returns ENODATA if we reach the end of the records.
*
* Reading from a hole in a sparse xfile causes page instantiation, so for
* iterating a (possibly sparse) array we need to figure out if the cursor is
* pointing at a totally uninitialized hole and move the cursor up if
* necessary.
*/
static inline int
xfarray_find_data(
struct xfarray *array,
xfarray_idx_t *cur,
loff_t *pos)
{
unsigned int pgoff = offset_in_page(*pos);
loff_t end_pos = *pos + array->obj_size - 1;
loff_t new_pos;
/*
* If the current array record is not adjacent to a page boundary, we
* are in the middle of the page. We do not need to move the cursor.
*/
if (pgoff != 0 && pgoff + array->obj_size - 1 < PAGE_SIZE)
return 0;
/*
* Call SEEK_DATA on the last byte in the record we're about to read.
* If the record ends at (or crosses) the end of a page then we know
* that the first byte of the record is backed by pages and don't need
* to query it. If instead the record begins at the start of the page
* then we know that querying the last byte is just as good as querying
* the first byte, since records cannot be larger than a page.
*
* If the call returns the same file offset, we know this record is
* backed by real pages. We do not need to move the cursor.
*/
new_pos = xfile_seek_data(array->xfile, end_pos);
if (new_pos == -ENXIO)
return -ENODATA;
if (new_pos < 0)
return new_pos;
if (new_pos == end_pos)
return 0;
/*
* Otherwise, SEEK_DATA told us how far up to move the file pointer to
* find more data. Move the array index to the first record past the
* byte offset we were given.
*/
new_pos = roundup_64(new_pos, array->obj_size);
*cur = xfarray_idx(array, new_pos);
*pos = xfarray_pos(array, *cur);
return 0;
}
/*
* Starting at *idx, fetch the next non-null array entry and advance the index
* to set up the next _load_next call. Returns ENODATA if we reach the end of
* the array. Callers must set @*idx to XFARRAY_CURSOR_INIT before the first
* call to this function.
*/
int
xfarray_load_next(
struct xfarray *array,
xfarray_idx_t *idx,
void *rec)
{
xfarray_idx_t cur = *idx;
loff_t pos = xfarray_pos(array, cur);
int error;
do {
if (cur >= array->nr)
return -ENODATA;
/*
* Ask the backing store for the location of next possible
* written record, then retrieve that record.
*/
error = xfarray_find_data(array, &cur, &pos);
if (error)
return error;
error = xfarray_load(array, cur, rec);
if (error)
return error;
cur++;
pos += array->obj_size;
} while (xfarray_element_is_null(array, rec));
*idx = cur;
return 0;
}
/* Sorting functions */
#ifdef DEBUG
# define xfarray_sort_bump_loads(si) do { (si)->loads++; } while (0)
# define xfarray_sort_bump_stores(si) do { (si)->stores++; } while (0)
# define xfarray_sort_bump_compares(si) do { (si)->compares++; } while (0)
# define xfarray_sort_bump_heapsorts(si) do { (si)->heapsorts++; } while (0)
#else
# define xfarray_sort_bump_loads(si)
# define xfarray_sort_bump_stores(si)
# define xfarray_sort_bump_compares(si)
# define xfarray_sort_bump_heapsorts(si)
#endif /* DEBUG */
/* Load an array element for sorting. */
static inline int
xfarray_sort_load(
struct xfarray_sortinfo *si,
xfarray_idx_t idx,
void *ptr)
{
xfarray_sort_bump_loads(si);
return xfarray_load(si->array, idx, ptr);
}
/* Store an array element for sorting. */
static inline int
xfarray_sort_store(
struct xfarray_sortinfo *si,
xfarray_idx_t idx,
void *ptr)
{
xfarray_sort_bump_stores(si);
return xfarray_store(si->array, idx, ptr);
}
/* Compare an array element for sorting. */
static inline int
xfarray_sort_cmp(
struct xfarray_sortinfo *si,
const void *a,
const void *b)
{
xfarray_sort_bump_compares(si);
return si->cmp_fn(a, b);
}
/* Return a pointer to the low index stack for quicksort partitioning. */
static inline xfarray_idx_t *xfarray_sortinfo_lo(struct xfarray_sortinfo *si)
{
return (xfarray_idx_t *)(si + 1);
}
/* Return a pointer to the high index stack for quicksort partitioning. */
static inline xfarray_idx_t *xfarray_sortinfo_hi(struct xfarray_sortinfo *si)
{
return xfarray_sortinfo_lo(si) + si->max_stack_depth;
}
/* Size of each element in the quicksort pivot array. */
static inline size_t
xfarray_pivot_rec_sz(
struct xfarray *array)
{
return round_up(array->obj_size, 8) + sizeof(xfarray_idx_t);
}
/* Allocate memory to handle the sort. */
static inline int
xfarray_sortinfo_alloc(
struct xfarray *array,
xfarray_cmp_fn cmp_fn,
unsigned int flags,
struct xfarray_sortinfo **infop)
{
struct xfarray_sortinfo *si;
size_t nr_bytes = sizeof(struct xfarray_sortinfo);
size_t pivot_rec_sz = xfarray_pivot_rec_sz(array);
int max_stack_depth;
/*
* The median-of-nine pivot algorithm doesn't work if a subset has
* fewer than 9 items. Make sure the in-memory sort will always take
* over for subsets where this wouldn't be the case.
*/
BUILD_BUG_ON(XFARRAY_QSORT_PIVOT_NR >= XFARRAY_ISORT_NR);
/*
* Tail-call recursion during the partitioning phase means that
* quicksort will never recurse more than log2(nr) times. We need one
* extra level of stack to hold the initial parameters. In-memory
* sort will always take care of the last few levels of recursion for
* us, so we can reduce the stack depth by that much.
*/
max_stack_depth = ilog2(array->nr) + 1 - (XFARRAY_ISORT_SHIFT - 1);
if (max_stack_depth < 1)
max_stack_depth = 1;
/* Each level of quicksort uses a lo and a hi index */
nr_bytes += max_stack_depth * sizeof(xfarray_idx_t) * 2;
/* Scratchpad for in-memory sort, or finding the pivot */
nr_bytes += max_t(size_t,
(XFARRAY_QSORT_PIVOT_NR + 1) * pivot_rec_sz,
XFARRAY_ISORT_NR * array->obj_size);
si = kvzalloc(nr_bytes, XCHK_GFP_FLAGS);
if (!si)
return -ENOMEM;
si->array = array;
si->cmp_fn = cmp_fn;
si->flags = flags;
si->max_stack_depth = max_stack_depth;
si->max_stack_used = 1;
xfarray_sortinfo_lo(si)[0] = 0;
xfarray_sortinfo_hi(si)[0] = array->nr - 1;
trace_xfarray_sort(si, nr_bytes);
*infop = si;
return 0;
}
/* Should this sort be terminated by a fatal signal? */
static inline bool
xfarray_sort_terminated(
struct xfarray_sortinfo *si,
int *error)
{
/*
* If preemption is disabled, we need to yield to the scheduler every
* few seconds so that we don't run afoul of the soft lockup watchdog
* or RCU stall detector.
*/
cond_resched();
if ((si->flags & XFARRAY_SORT_KILLABLE) &&
fatal_signal_pending(current)) {
if (*error == 0)
*error = -EINTR;
return true;
}
return false;
}
/* Do we want an in-memory sort? */
static inline bool
xfarray_want_isort(
struct xfarray_sortinfo *si,
xfarray_idx_t start,
xfarray_idx_t end)
{
/*
* For array subsets that fit in the scratchpad, it's much faster to
* use the kernel's heapsort than quicksort's stack machine.
*/
return (end - start) < XFARRAY_ISORT_NR;
}
/* Return the scratch space within the sortinfo structure. */
static inline void *xfarray_sortinfo_isort_scratch(struct xfarray_sortinfo *si)
{
return xfarray_sortinfo_hi(si) + si->max_stack_depth;
}
/*
* Sort a small number of array records using scratchpad memory. The records
* need not be contiguous in the xfile's memory pages.
*/
STATIC int
xfarray_isort(
struct xfarray_sortinfo *si,
xfarray_idx_t lo,
xfarray_idx_t hi)
{
void *scratch = xfarray_sortinfo_isort_scratch(si);
loff_t lo_pos = xfarray_pos(si->array, lo);
loff_t len = xfarray_pos(si->array, hi - lo + 1);
int error;
trace_xfarray_isort(si, lo, hi);
xfarray_sort_bump_loads(si);
error = xfile_load(si->array->xfile, scratch, len, lo_pos);
if (error)
return error;
xfarray_sort_bump_heapsorts(si);
sort(scratch, hi - lo + 1, si->array->obj_size, si->cmp_fn, NULL);
xfarray_sort_bump_stores(si);
return xfile_store(si->array->xfile, scratch, len, lo_pos);
}
/*
* Sort the records from lo to hi (inclusive) if they are all backed by the
* same memory folio. Returns 1 if it sorted, 0 if it did not, or a negative
* errno.
*/
STATIC int
xfarray_foliosort(
struct xfarray_sortinfo *si,
xfarray_idx_t lo,
xfarray_idx_t hi)
{
struct folio *folio;
void *startp;
loff_t lo_pos = xfarray_pos(si->array, lo);
uint64_t len = xfarray_pos(si->array, hi - lo + 1);
/* No single folio could back this many records. */
if (len > XFILE_MAX_FOLIO_SIZE)
return 0;
xfarray_sort_bump_loads(si);
folio = xfile_get_folio(si->array->xfile, lo_pos, len, XFILE_ALLOC);
if (IS_ERR(folio))
return PTR_ERR(folio);
if (!folio)
return 0;
trace_xfarray_foliosort(si, lo, hi);
xfarray_sort_bump_heapsorts(si);
startp = folio_address(folio) + offset_in_folio(folio, lo_pos);
sort(startp, hi - lo + 1, si->array->obj_size, si->cmp_fn, NULL);
xfarray_sort_bump_stores(si);
xfile_put_folio(si->array->xfile, folio);
return 1;
}
/* Return a pointer to the xfarray pivot record within the sortinfo struct. */
static inline void *xfarray_sortinfo_pivot(struct xfarray_sortinfo *si)
{
return xfarray_sortinfo_hi(si) + si->max_stack_depth;
}
/* Return a pointer to the start of the pivot array. */
static inline void *
xfarray_sortinfo_pivot_array(
struct xfarray_sortinfo *si)
{
return xfarray_sortinfo_pivot(si) + si->array->obj_size;
}
/* The xfarray record is stored at the start of each pivot array element. */
static inline void *
xfarray_pivot_array_rec(
void *pa,
size_t pa_recsz,
unsigned int pa_idx)
{
return pa + (pa_recsz * pa_idx);
}
/* The xfarray index is stored at the end of each pivot array element. */
static inline xfarray_idx_t *
xfarray_pivot_array_idx(
void *pa,
size_t pa_recsz,
unsigned int pa_idx)
{
return xfarray_pivot_array_rec(pa, pa_recsz, pa_idx + 1) -
sizeof(xfarray_idx_t);
}
/*
* Find a pivot value for quicksort partitioning, swap it with a[lo], and save
* the cached pivot record for the next step.
*
* Load evenly-spaced records within the given range into memory, sort them,
* and choose the pivot from the median record. Using multiple points will
* improve the quality of the pivot selection, and hopefully avoid the worst
* quicksort behavior, since our array values are nearly always evenly sorted.
*/
STATIC int
xfarray_qsort_pivot(
struct xfarray_sortinfo *si,
xfarray_idx_t lo,
xfarray_idx_t hi)
{
void *pivot = xfarray_sortinfo_pivot(si);
void *parray = xfarray_sortinfo_pivot_array(si);
void *recp;
xfarray_idx_t *idxp;
xfarray_idx_t step = (hi - lo) / (XFARRAY_QSORT_PIVOT_NR - 1);
size_t pivot_rec_sz = xfarray_pivot_rec_sz(si->array);
int i, j;
int error;
ASSERT(step > 0);
/*
* Load the xfarray indexes of the records we intend to sample into the
* pivot array.
*/
idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, 0);
*idxp = lo;
for (i = 1; i < XFARRAY_QSORT_PIVOT_NR - 1; i++) {
idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);
*idxp = lo + (i * step);
}
idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
XFARRAY_QSORT_PIVOT_NR - 1);
*idxp = hi;
/* Load the selected xfarray records into the pivot array. */
for (i = 0; i < XFARRAY_QSORT_PIVOT_NR; i++) {
xfarray_idx_t idx;
recp = xfarray_pivot_array_rec(parray, pivot_rec_sz, i);
idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);
/* No unset records; load directly into the array. */
if (likely(si->array->unset_slots == 0)) {
error = xfarray_sort_load(si, *idxp, recp);
if (error)
return error;
continue;
}
/*
* Load non-null records into the scratchpad without changing
* the xfarray_idx_t in the pivot array.
*/
idx = *idxp;
xfarray_sort_bump_loads(si);
error = xfarray_load_next(si->array, &idx, recp);
if (error)
return error;
}
xfarray_sort_bump_heapsorts(si);
sort(parray, XFARRAY_QSORT_PIVOT_NR, pivot_rec_sz, si->cmp_fn, NULL);
/*
* We sorted the pivot array records (which includes the xfarray
* indices) in xfarray record order. The median element of the pivot
* array contains the xfarray record that we will use as the pivot.
* Copy that xfarray record to the designated space.
*/
recp = xfarray_pivot_array_rec(parray, pivot_rec_sz,
XFARRAY_QSORT_PIVOT_NR / 2);
memcpy(pivot, recp, si->array->obj_size);
/* If the pivot record we chose was already in a[lo] then we're done. */
idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
XFARRAY_QSORT_PIVOT_NR / 2);
if (*idxp == lo)
return 0;
/*
* Find the cached copy of a[lo] in the pivot array so that we can swap
* a[lo] and a[pivot].
*/
for (i = 0, j = -1; i < XFARRAY_QSORT_PIVOT_NR; i++) {
idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);
if (*idxp == lo)
j = i;
}
if (j < 0) {
ASSERT(j >= 0);
return -EFSCORRUPTED;
}
/* Swap a[lo] and a[pivot]. */
error = xfarray_sort_store(si, lo, pivot);
if (error)
return error;
recp = xfarray_pivot_array_rec(parray, pivot_rec_sz, j);
idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
XFARRAY_QSORT_PIVOT_NR / 2);
return xfarray_sort_store(si, *idxp, recp);
}
/*
* Set up the pointers for the next iteration. We push onto the stack all of
* the unsorted values between a[lo + 1] and a[end[i]], and we tweak the
* current stack frame to point to the unsorted values between a[beg[i]] and
* a[lo] so that those values will be sorted when we pop the stack.
*/
static inline int
xfarray_qsort_push(
struct xfarray_sortinfo *si,
xfarray_idx_t *si_lo,
xfarray_idx_t *si_hi,
xfarray_idx_t lo,
xfarray_idx_t hi)
{
/* Check for stack overflows */
if (si->stack_depth >= si->max_stack_depth - 1) {
ASSERT(si->stack_depth < si->max_stack_depth - 1);
return -EFSCORRUPTED;
}
si->max_stack_used = max_t(uint8_t, si->max_stack_used,
si->stack_depth + 2);
si_lo[si->stack_depth + 1] = lo + 1;
si_hi[si->stack_depth + 1] = si_hi[si->stack_depth];
si_hi[si->stack_depth++] = lo - 1;
/*
* Always start with the smaller of the two partitions to keep the
* amount of recursion in check.
*/
if (si_hi[si->stack_depth] - si_lo[si->stack_depth] >
si_hi[si->stack_depth - 1] - si_lo[si->stack_depth - 1]) {
swap(si_lo[si->stack_depth], si_lo[si->stack_depth - 1]);
swap(si_hi[si->stack_depth], si_hi[si->stack_depth - 1]);
}
return 0;
}
static inline void
xfarray_sort_scan_done(
struct xfarray_sortinfo *si)
{
if (si->folio)
xfile_put_folio(si->array->xfile, si->folio);
si->folio = NULL;
}
/*
* Cache the folio backing the start of the given array element. If the array
* element is contained entirely within the folio, return a pointer to the
* cached folio. Otherwise, load the element into the scratchpad and return a
* pointer to the scratchpad.
*/
static inline int
xfarray_sort_scan(
struct xfarray_sortinfo *si,
xfarray_idx_t idx,
void **ptrp)
{
loff_t idx_pos = xfarray_pos(si->array, idx);
int error = 0;
if (xfarray_sort_terminated(si, &error))
return error;
trace_xfarray_sort_scan(si, idx);
/* If the cached folio doesn't cover this index, release it. */
if (si->folio &&
(idx < si->first_folio_idx || idx > si->last_folio_idx))
xfarray_sort_scan_done(si);
/* Grab the first folio that backs this array element. */
if (!si->folio) {
loff_t next_pos;
si->folio = xfile_get_folio(si->array->xfile, idx_pos,
si->array->obj_size, XFILE_ALLOC);
if (IS_ERR(si->folio))
return PTR_ERR(si->folio);
si->first_folio_idx = xfarray_idx(si->array,
folio_pos(si->folio) + si->array->obj_size - 1);
next_pos = folio_pos(si->folio) + folio_size(si->folio);
si->last_folio_idx = xfarray_idx(si->array, next_pos - 1);
if (xfarray_pos(si->array, si->last_folio_idx + 1) > next_pos)
si->last_folio_idx--;
trace_xfarray_sort_scan(si, idx);
}
/*
* If this folio still doesn't cover the desired element, it must cross
* a folio boundary. Read into the scratchpad and we're done.
*/
if (idx < si->first_folio_idx || idx > si->last_folio_idx) {
void *temp = xfarray_scratch(si->array);
error = xfile_load(si->array->xfile, temp, si->array->obj_size,
idx_pos);
if (error)
return error;
*ptrp = temp;
return 0;
}
/* Otherwise return a pointer to the array element in the folio. */
*ptrp = folio_address(si->folio) + offset_in_folio(si->folio, idx_pos);
return 0;
}
/*
* Sort the array elements via quicksort. This implementation incorporates
* four optimizations discussed in Sedgewick:
*
* 1. Use an explicit stack of array indices to store the next array partition
* to sort. This helps us to avoid recursion in the call stack, which is
* particularly expensive in the kernel.
*
* 2. For arrays with records in arbitrary or user-controlled order, choose the
* pivot element using a median-of-nine decision tree. This reduces the
* probability of selecting a bad pivot value which causes worst case
* behavior (i.e. partition sizes of 1).
*
* 3. The smaller of the two sub-partitions is pushed onto the stack to start
* the next level of recursion, and the larger sub-partition replaces the
* current stack frame. This guarantees that we won't need more than
* log2(nr) stack space.
*
* 4. For small sets, load the records into the scratchpad and run heapsort on
* them because that is very fast. In the author's experience, this yields
* a ~10% reduction in runtime.
*
* If a small set is contained entirely within a single xfile memory page,
* map the page directly and run heap sort directly on the xfile page
* instead of using the load/store interface. This halves the runtime.
*
* 5. This optimization is specific to the implementation. When converging lo
* and hi after selecting a pivot, we will try to retain the xfile memory
* page between load calls, which reduces run time by 50%.
*/
/*
* Due to the use of signed indices, we can only support up to 2^63 records.
* Files can only grow to 2^63 bytes, so this is not much of a limitation.
*/
#define QSORT_MAX_RECS (1ULL << 63)
int
xfarray_sort(
struct xfarray *array,
xfarray_cmp_fn cmp_fn,
unsigned int flags)
{
struct xfarray_sortinfo *si;
xfarray_idx_t *si_lo, *si_hi;
void *pivot;
void *scratch = xfarray_scratch(array);
xfarray_idx_t lo, hi;
int error = 0;
if (array->nr < 2)
return 0;
if (array->nr >= QSORT_MAX_RECS)
return -E2BIG;
error = xfarray_sortinfo_alloc(array, cmp_fn, flags, &si);
if (error)
return error;
si_lo = xfarray_sortinfo_lo(si);
si_hi = xfarray_sortinfo_hi(si);
pivot = xfarray_sortinfo_pivot(si);
while (si->stack_depth >= 0) {
int ret;
lo = si_lo[si->stack_depth];
hi = si_hi[si->stack_depth];
trace_xfarray_qsort(si, lo, hi);
/* Nothing left in this partition to sort; pop stack. */
if (lo >= hi) {
si->stack_depth--;
continue;
}
/*
* If directly mapping the folio and sorting can solve our
* problems, we're done.
*/
ret = xfarray_foliosort(si, lo, hi);
if (ret < 0)
goto out_free;
if (ret == 1) {
si->stack_depth--;
continue;
}
/* If insertion sort can solve our problems, we're done. */
if (xfarray_want_isort(si, lo, hi)) {
error = xfarray_isort(si, lo, hi);
if (error)
goto out_free;
si->stack_depth--;
continue;
}
/* Pick a pivot, move it to a[lo] and stash it. */
error = xfarray_qsort_pivot(si, lo, hi);
if (error)
goto out_free;
/*
* Rearrange a[lo..hi] such that everything smaller than the
* pivot is on the left side of the range and everything larger
* than the pivot is on the right side of the range.
*/
while (lo < hi) {
void *p;
/*
* Decrement hi until it finds an a[hi] less than the
* pivot value.
*/
error = xfarray_sort_scan(si, hi, &p);
if (error)
goto out_free;
while (xfarray_sort_cmp(si, p, pivot) >= 0 && lo < hi) {
hi--;
error = xfarray_sort_scan(si, hi, &p);
if (error)
goto out_free;
}
if (p != scratch)
memcpy(scratch, p, si->array->obj_size);
xfarray_sort_scan_done(si);
if (xfarray_sort_terminated(si, &error))
goto out_free;
/* Copy that item (a[hi]) to a[lo]. */
if (lo < hi) {
error = xfarray_sort_store(si, lo++, scratch);
if (error)
goto out_free;
}
/*
* Increment lo until it finds an a[lo] greater than
* the pivot value.
*/
error = xfarray_sort_scan(si, lo, &p);
if (error)
goto out_free;
while (xfarray_sort_cmp(si, p, pivot) <= 0 && lo < hi) {
lo++;
error = xfarray_sort_scan(si, lo, &p);
if (error)
goto out_free;
}
if (p != scratch)
memcpy(scratch, p, si->array->obj_size);
xfarray_sort_scan_done(si);
if (xfarray_sort_terminated(si, &error))
goto out_free;
/* Copy that item (a[lo]) to a[hi]. */
if (lo < hi) {
error = xfarray_sort_store(si, hi--, scratch);
if (error)
goto out_free;
}
if (xfarray_sort_terminated(si, &error))
goto out_free;
}
/*
* Put our pivot value in the correct place at a[lo]. All
* values between a[beg[i]] and a[lo - 1] should be less than
* the pivot; and all values between a[lo + 1] and a[end[i]-1]
* should be greater than the pivot.
*/
error = xfarray_sort_store(si, lo, pivot);
if (error)
goto out_free;
/* Set up the stack frame to process the two partitions. */
error = xfarray_qsort_push(si, si_lo, si_hi, lo, hi);
if (error)
goto out_free;
if (xfarray_sort_terminated(si, &error))
goto out_free;
}
out_free:
trace_xfarray_sort_stats(si, error);
kvfree(si);
return error;
}