linux-stable/Documentation/dev-tools/kasan.rst
Linus Torvalds 902861e34c - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory.  Series
   "implement "memmap on memory" feature on s390".
 
 - More folio conversions from Matthew Wilcox in the series
 
 	"Convert memcontrol charge moving to use folios"
 	"mm: convert mm counter to take a folio"
 
 - Chengming Zhou has optimized zswap's rbtree locking, providing
   significant reductions in system time and modest but measurable
   reductions in overall runtimes.  The series is "mm/zswap: optimize the
   scalability of zswap rb-tree".
 
 - Chengming Zhou has also provided the series "mm/zswap: optimize zswap
   lru list" which provides measurable runtime benefits in some
   swap-intensive situations.
 
 - And Chengming Zhou further optimizes zswap in the series "mm/zswap:
   optimize for dynamic zswap_pools".  Measured improvements are modest.
 
 - zswap cleanups and simplifications from Yosry Ahmed in the series "mm:
   zswap: simplify zswap_swapoff()".
 
 - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
   contributed several DAX cleanups as well as adding a sysfs tunable to
   control the memmap_on_memory setting when the dax device is hotplugged
   as system memory.
 
 - Johannes Weiner has added the large series "mm: zswap: cleanups",
   which does that.
 
 - More DAMON work from SeongJae Park in the series
 
 	"mm/damon: make DAMON debugfs interface deprecation unignorable"
 	"selftests/damon: add more tests for core functionalities and corner cases"
 	"Docs/mm/damon: misc readability improvements"
 	"mm/damon: let DAMOS feeds and tame/auto-tune itself"
 
 - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
   extension" Rakie Kim has developed a new mempolicy interleaving policy
   wherein we allocate memory across nodes in a weighted fashion rather
   than uniformly.  This is beneficial in heterogeneous memory environments
   appearing with CXL.
 
 - Christophe Leroy has contributed some cleanup and consolidation work
   against the ARM pagetable dumping code in the series "mm: ptdump:
   Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
 
 - Luis Chamberlain has added some additional xarray selftesting in the
   series "test_xarray: advanced API multi-index tests".
 
 - Muhammad Usama Anjum has reworked the selftest code to make its
   human-readable output conform to the TAP ("Test Anything Protocol")
   format.  Amongst other things, this opens up the use of third-party
   tools to parse and process out selftesting results.
 
 - Ryan Roberts has added fork()-time PTE batching of THP ptes in the
   series "mm/memory: optimize fork() with PTE-mapped THP".  Mainly
   targeted at arm64, this significantly speeds up fork() when the process
   has a large number of pte-mapped folios.
 
 - David Hildenbrand also gets in on the THP pte batching game in his
   series "mm/memory: optimize unmap/zap with PTE-mapped THP".  It
   implements batching during munmap() and other pte teardown situations.
   The microbenchmark improvements are nice.
 
 - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan
   Roberts further utilizes arm's pte's contiguous bit ("contpte
   mappings").  Kernel build times on arm64 improved nicely.  Ryan's series
   "Address some contpte nits" provides some followup work.
 
 - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
   fixed an obscure hugetlb race which was causing unnecessary page faults.
   He has also added a reproducer under the selftest code.
 
 - In the series "selftests/mm: Output cleanups for the compaction test",
   Mark Brown did what the title claims.
 
 - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring".
 
 - Even more zswap material from Nhat Pham.  The series "fix and extend
   zswap kselftests" does as claimed.
 
 - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
   regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in
   our handling of DAX on archiecctures which have virtually aliasing data
   caches.  The arm architecture is the main beneficiary.
 
 - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic
   improvements in worst-case mmap_lock hold times during certain
   userfaultfd operations.
 
 - Some page_owner enhancements and maintenance work from Oscar Salvador
   in his series
 
 	"page_owner: print stacks and their outstanding allocations"
 	"page_owner: Fixup and cleanup"
 
 - Uladzislau Rezki has contributed some vmalloc scalability improvements
   in his series "Mitigate a vmap lock contention".  It realizes a 12x
   improvement for a certain microbenchmark.
 
 - Some kexec/crash cleanup work from Baoquan He in the series "Split
   crash out from kexec and clean up related config items".
 
 - Some zsmalloc maintenance work from Chengming Zhou in the series
 
 	"mm/zsmalloc: fix and optimize objects/page migration"
 	"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
 
 - Zi Yan has taught the MM to perform compaction on folios larger than
   order=0.  This a step along the path to implementaton of the merging of
   large anonymous folios.  The series is named "Enable >0 order folio
   memory compaction".
 
 - Christoph Hellwig has done quite a lot of cleanup work in the
   pagecache writeback code in his series "convert write_cache_pages() to
   an iterator".
 
 - Some modest hugetlb cleanups and speedups in Vishal Moola's series
   "Handle hugetlb faults under the VMA lock".
 
 - Zi Yan has changed the page splitting code so we can split huge pages
   into sizes other than order-0 to better utilize large folios.  The
   series is named "Split a folio to any lower order folios".
 
 - David Hildenbrand has contributed the series "mm: remove
   total_mapcount()", a cleanup.
 
 - Matthew Wilcox has sought to improve the performance of bulk memory
   freeing in his series "Rearrange batched folio freeing".
 
 - Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
   provides large improvements in bootup times on large machines which are
   configured to use large numbers of hugetlb pages.
 
 - Matthew Wilcox's series "PageFlags cleanups" does that.
 
 - Qi Zheng's series "minor fixes and supplement for ptdesc" does that
   also.  S390 is affected.
 
 - Cleanups to our pagemap utility functions from Peter Xu in his series
   "mm/treewide: Replace pXd_large() with pXd_leaf()".
 
 - Nico Pache has fixed a few things with our hugepage selftests in his
   series "selftests/mm: Improve Hugepage Test Handling in MM Selftests".
 
 - Also, of course, many singleton patches to many things.  Please see
   the individual changelogs for details.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA
 joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx
 TMNhHfyiHYDTx/GAV9NXW84tasJSDgA=
 =TG55
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
   from hotplugged memory rather than only from main memory. Series
   "implement "memmap on memory" feature on s390".

 - More folio conversions from Matthew Wilcox in the series

	"Convert memcontrol charge moving to use folios"
	"mm: convert mm counter to take a folio"

 - Chengming Zhou has optimized zswap's rbtree locking, providing
   significant reductions in system time and modest but measurable
   reductions in overall runtimes. The series is "mm/zswap: optimize the
   scalability of zswap rb-tree".

 - Chengming Zhou has also provided the series "mm/zswap: optimize zswap
   lru list" which provides measurable runtime benefits in some
   swap-intensive situations.

 - And Chengming Zhou further optimizes zswap in the series "mm/zswap:
   optimize for dynamic zswap_pools". Measured improvements are modest.

 - zswap cleanups and simplifications from Yosry Ahmed in the series
   "mm: zswap: simplify zswap_swapoff()".

 - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
   contributed several DAX cleanups as well as adding a sysfs tunable to
   control the memmap_on_memory setting when the dax device is
   hotplugged as system memory.

 - Johannes Weiner has added the large series "mm: zswap: cleanups",
   which does that.

 - More DAMON work from SeongJae Park in the series

	"mm/damon: make DAMON debugfs interface deprecation unignorable"
	"selftests/damon: add more tests for core functionalities and corner cases"
	"Docs/mm/damon: misc readability improvements"
	"mm/damon: let DAMOS feeds and tame/auto-tune itself"

 - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
   extension" Rakie Kim has developed a new mempolicy interleaving
   policy wherein we allocate memory across nodes in a weighted fashion
   rather than uniformly. This is beneficial in heterogeneous memory
   environments appearing with CXL.

 - Christophe Leroy has contributed some cleanup and consolidation work
   against the ARM pagetable dumping code in the series "mm: ptdump:
   Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".

 - Luis Chamberlain has added some additional xarray selftesting in the
   series "test_xarray: advanced API multi-index tests".

 - Muhammad Usama Anjum has reworked the selftest code to make its
   human-readable output conform to the TAP ("Test Anything Protocol")
   format. Amongst other things, this opens up the use of third-party
   tools to parse and process out selftesting results.

 - Ryan Roberts has added fork()-time PTE batching of THP ptes in the
   series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
   targeted at arm64, this significantly speeds up fork() when the
   process has a large number of pte-mapped folios.

 - David Hildenbrand also gets in on the THP pte batching game in his
   series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
   implements batching during munmap() and other pte teardown
   situations. The microbenchmark improvements are nice.

 - And in the series "Transparent Contiguous PTEs for User Mappings"
   Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
   mappings"). Kernel build times on arm64 improved nicely. Ryan's
   series "Address some contpte nits" provides some followup work.

 - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
   fixed an obscure hugetlb race which was causing unnecessary page
   faults. He has also added a reproducer under the selftest code.

 - In the series "selftests/mm: Output cleanups for the compaction
   test", Mark Brown did what the title claims.

 - Kinsey Ho has added the series "mm/mglru: code cleanup and
   refactoring".

 - Even more zswap material from Nhat Pham. The series "fix and extend
   zswap kselftests" does as claimed.

 - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
   regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
   in our handling of DAX on archiecctures which have virtually aliasing
   data caches. The arm architecture is the main beneficiary.

 - Lokesh Gidra's series "per-vma locks in userfaultfd" provides
   dramatic improvements in worst-case mmap_lock hold times during
   certain userfaultfd operations.

 - Some page_owner enhancements and maintenance work from Oscar Salvador
   in his series

	"page_owner: print stacks and their outstanding allocations"
	"page_owner: Fixup and cleanup"

 - Uladzislau Rezki has contributed some vmalloc scalability
   improvements in his series "Mitigate a vmap lock contention". It
   realizes a 12x improvement for a certain microbenchmark.

 - Some kexec/crash cleanup work from Baoquan He in the series "Split
   crash out from kexec and clean up related config items".

 - Some zsmalloc maintenance work from Chengming Zhou in the series

	"mm/zsmalloc: fix and optimize objects/page migration"
	"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"

 - Zi Yan has taught the MM to perform compaction on folios larger than
   order=0. This a step along the path to implementaton of the merging
   of large anonymous folios. The series is named "Enable >0 order folio
   memory compaction".

 - Christoph Hellwig has done quite a lot of cleanup work in the
   pagecache writeback code in his series "convert write_cache_pages()
   to an iterator".

 - Some modest hugetlb cleanups and speedups in Vishal Moola's series
   "Handle hugetlb faults under the VMA lock".

 - Zi Yan has changed the page splitting code so we can split huge pages
   into sizes other than order-0 to better utilize large folios. The
   series is named "Split a folio to any lower order folios".

 - David Hildenbrand has contributed the series "mm: remove
   total_mapcount()", a cleanup.

 - Matthew Wilcox has sought to improve the performance of bulk memory
   freeing in his series "Rearrange batched folio freeing".

 - Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
   provides large improvements in bootup times on large machines which
   are configured to use large numbers of hugetlb pages.

 - Matthew Wilcox's series "PageFlags cleanups" does that.

 - Qi Zheng's series "minor fixes and supplement for ptdesc" does that
   also. S390 is affected.

 - Cleanups to our pagemap utility functions from Peter Xu in his series
   "mm/treewide: Replace pXd_large() with pXd_leaf()".

 - Nico Pache has fixed a few things with our hugepage selftests in his
   series "selftests/mm: Improve Hugepage Test Handling in MM
   Selftests".

 - Also, of course, many singleton patches to many things. Please see
   the individual changelogs for details.

* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
  mm/zswap: remove the memcpy if acomp is not sleepable
  crypto: introduce: acomp_is_async to expose if comp drivers might sleep
  memtest: use {READ,WRITE}_ONCE in memory scanning
  mm: prohibit the last subpage from reusing the entire large folio
  mm: recover pud_leaf() definitions in nopmd case
  selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
  selftests/mm: skip uffd hugetlb tests with insufficient hugepages
  selftests/mm: dont fail testsuite due to a lack of hugepages
  mm/huge_memory: skip invalid debugfs new_order input for folio split
  mm/huge_memory: check new folio order when split a folio
  mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
  mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
  mm: fix list corruption in put_pages_list
  mm: remove folio from deferred split list before uncharging it
  filemap: avoid unnecessary major faults in filemap_fault()
  mm,page_owner: drop unnecessary check
  mm,page_owner: check for null stack_record before bumping its refcount
  mm: swap: fix race between free_swap_and_cache() and swapoff()
  mm/treewide: align up pXd_leaf() retval across archs
  mm/treewide: drop pXd_large()
  ...
2024-03-14 17:43:30 -07:00

574 lines
24 KiB
ReStructuredText

.. SPDX-License-Identifier: GPL-2.0
.. Copyright (C) 2023, Google LLC.
Kernel Address Sanitizer (KASAN)
================================
Overview
--------
Kernel Address Sanitizer (KASAN) is a dynamic memory safety error detector
designed to find out-of-bounds and use-after-free bugs.
KASAN has three modes:
1. Generic KASAN
2. Software Tag-Based KASAN
3. Hardware Tag-Based KASAN
Generic KASAN, enabled with CONFIG_KASAN_GENERIC, is the mode intended for
debugging, similar to userspace ASan. This mode is supported on many CPU
architectures, but it has significant performance and memory overheads.
Software Tag-Based KASAN or SW_TAGS KASAN, enabled with CONFIG_KASAN_SW_TAGS,
can be used for both debugging and dogfood testing, similar to userspace HWASan.
This mode is only supported for arm64, but its moderate memory overhead allows
using it for testing on memory-restricted devices with real workloads.
Hardware Tag-Based KASAN or HW_TAGS KASAN, enabled with CONFIG_KASAN_HW_TAGS,
is the mode intended to be used as an in-field memory bug detector or as a
security mitigation. This mode only works on arm64 CPUs that support MTE
(Memory Tagging Extension), but it has low memory and performance overheads and
thus can be used in production.
For details about the memory and performance impact of each KASAN mode, see the
descriptions of the corresponding Kconfig options.
The Generic and the Software Tag-Based modes are commonly referred to as the
software modes. The Software Tag-Based and the Hardware Tag-Based modes are
referred to as the tag-based modes.
Support
-------
Architectures
~~~~~~~~~~~~~
Generic KASAN is supported on x86_64, arm, arm64, powerpc, riscv, s390, xtensa,
and loongarch, and the tag-based KASAN modes are supported only on arm64.
Compilers
~~~~~~~~~
Software KASAN modes use compile-time instrumentation to insert validity checks
before every memory access and thus require a compiler version that provides
support for that. The Hardware Tag-Based mode relies on hardware to perform
these checks but still requires a compiler version that supports the memory
tagging instructions.
Generic KASAN requires GCC version 8.3.0 or later
or any Clang version supported by the kernel.
Software Tag-Based KASAN requires GCC 11+
or any Clang version supported by the kernel.
Hardware Tag-Based KASAN requires GCC 10+ or Clang 12+.
Memory types
~~~~~~~~~~~~
Generic KASAN supports finding bugs in all of slab, page_alloc, vmap, vmalloc,
stack, and global memory.
Software Tag-Based KASAN supports slab, page_alloc, vmalloc, and stack memory.
Hardware Tag-Based KASAN supports slab, page_alloc, and non-executable vmalloc
memory.
For slab, both software KASAN modes support SLUB and SLAB allocators, while
Hardware Tag-Based KASAN only supports SLUB.
Usage
-----
To enable KASAN, configure the kernel with::
CONFIG_KASAN=y
and choose between ``CONFIG_KASAN_GENERIC`` (to enable Generic KASAN),
``CONFIG_KASAN_SW_TAGS`` (to enable Software Tag-Based KASAN), and
``CONFIG_KASAN_HW_TAGS`` (to enable Hardware Tag-Based KASAN).
For the software modes, also choose between ``CONFIG_KASAN_OUTLINE`` and
``CONFIG_KASAN_INLINE``. Outline and inline are compiler instrumentation types.
The former produces a smaller binary while the latter is up to 2 times faster.
To include alloc and free stack traces of affected slab objects into reports,
enable ``CONFIG_STACKTRACE``. To include alloc and free stack traces of affected
physical pages, enable ``CONFIG_PAGE_OWNER`` and boot with ``page_owner=on``.
Boot parameters
~~~~~~~~~~~~~~~
KASAN is affected by the generic ``panic_on_warn`` command line parameter.
When it is enabled, KASAN panics the kernel after printing a bug report.
By default, KASAN prints a bug report only for the first invalid memory access.
With ``kasan_multi_shot``, KASAN prints a report on every invalid access. This
effectively disables ``panic_on_warn`` for KASAN reports.
Alternatively, independent of ``panic_on_warn``, the ``kasan.fault=`` boot
parameter can be used to control panic and reporting behaviour:
- ``kasan.fault=report``, ``=panic``, or ``=panic_on_write`` controls whether
to only print a KASAN report, panic the kernel, or panic the kernel on
invalid writes only (default: ``report``). The panic happens even if
``kasan_multi_shot`` is enabled. Note that when using asynchronous mode of
Hardware Tag-Based KASAN, ``kasan.fault=panic_on_write`` always panics on
asynchronously checked accesses (including reads).
Software and Hardware Tag-Based KASAN modes (see the section about various
modes below) support altering stack trace collection behavior:
- ``kasan.stacktrace=off`` or ``=on`` disables or enables alloc and free stack
traces collection (default: ``on``).
- ``kasan.stack_ring_size=<number of entries>`` specifies the number of entries
in the stack ring (default: ``32768``).
Hardware Tag-Based KASAN mode is intended for use in production as a security
mitigation. Therefore, it supports additional boot parameters that allow
disabling KASAN altogether or controlling its features:
- ``kasan=off`` or ``=on`` controls whether KASAN is enabled (default: ``on``).
- ``kasan.mode=sync``, ``=async`` or ``=asymm`` controls whether KASAN
is configured in synchronous, asynchronous or asymmetric mode of
execution (default: ``sync``).
Synchronous mode: a bad access is detected immediately when a tag
check fault occurs.
Asynchronous mode: a bad access detection is delayed. When a tag check
fault occurs, the information is stored in hardware (in the TFSR_EL1
register for arm64). The kernel periodically checks the hardware and
only reports tag faults during these checks.
Asymmetric mode: a bad access is detected synchronously on reads and
asynchronously on writes.
- ``kasan.vmalloc=off`` or ``=on`` disables or enables tagging of vmalloc
allocations (default: ``on``).
- ``kasan.page_alloc.sample=<sampling interval>`` makes KASAN tag only every
Nth page_alloc allocation with the order equal or greater than
``kasan.page_alloc.sample.order``, where N is the value of the ``sample``
parameter (default: ``1``, or tag every such allocation).
This parameter is intended to mitigate the performance overhead introduced
by KASAN.
Note that enabling this parameter makes Hardware Tag-Based KASAN skip checks
of allocations chosen by sampling and thus miss bad accesses to these
allocations. Use the default value for accurate bug detection.
- ``kasan.page_alloc.sample.order=<minimum page order>`` specifies the minimum
order of allocations that are affected by sampling (default: ``3``).
Only applies when ``kasan.page_alloc.sample`` is set to a value greater
than ``1``.
This parameter is intended to allow sampling only large page_alloc
allocations, which is the biggest source of the performance overhead.
Error reports
~~~~~~~~~~~~~
A typical KASAN report looks like this::
==================================================================
BUG: KASAN: slab-out-of-bounds in kmalloc_oob_right+0xa8/0xbc [kasan_test]
Write of size 1 at addr ffff8801f44ec37b by task insmod/2760
CPU: 1 PID: 2760 Comm: insmod Not tainted 4.19.0-rc3+ #698
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
Call Trace:
dump_stack+0x94/0xd8
print_address_description+0x73/0x280
kasan_report+0x144/0x187
__asan_report_store1_noabort+0x17/0x20
kmalloc_oob_right+0xa8/0xbc [kasan_test]
kmalloc_tests_init+0x16/0x700 [kasan_test]
do_one_initcall+0xa5/0x3ae
do_init_module+0x1b6/0x547
load_module+0x75df/0x8070
__do_sys_init_module+0x1c6/0x200
__x64_sys_init_module+0x6e/0xb0
do_syscall_64+0x9f/0x2c0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f96443109da
RSP: 002b:00007ffcf0b51b08 EFLAGS: 00000202 ORIG_RAX: 00000000000000af
RAX: ffffffffffffffda RBX: 000055dc3ee521a0 RCX: 00007f96443109da
RDX: 00007f96445cff88 RSI: 0000000000057a50 RDI: 00007f9644992000
RBP: 000055dc3ee510b0 R08: 0000000000000003 R09: 0000000000000000
R10: 00007f964430cd0a R11: 0000000000000202 R12: 00007f96445cff88
R13: 000055dc3ee51090 R14: 0000000000000000 R15: 0000000000000000
Allocated by task 2760:
save_stack+0x43/0xd0
kasan_kmalloc+0xa7/0xd0
kmem_cache_alloc_trace+0xe1/0x1b0
kmalloc_oob_right+0x56/0xbc [kasan_test]
kmalloc_tests_init+0x16/0x700 [kasan_test]
do_one_initcall+0xa5/0x3ae
do_init_module+0x1b6/0x547
load_module+0x75df/0x8070
__do_sys_init_module+0x1c6/0x200
__x64_sys_init_module+0x6e/0xb0
do_syscall_64+0x9f/0x2c0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Freed by task 815:
save_stack+0x43/0xd0
__kasan_slab_free+0x135/0x190
kasan_slab_free+0xe/0x10
kfree+0x93/0x1a0
umh_complete+0x6a/0xa0
call_usermodehelper_exec_async+0x4c3/0x640
ret_from_fork+0x35/0x40
The buggy address belongs to the object at ffff8801f44ec300
which belongs to the cache kmalloc-128 of size 128
The buggy address is located 123 bytes inside of
128-byte region [ffff8801f44ec300, ffff8801f44ec380)
The buggy address belongs to the page:
page:ffffea0007d13b00 count:1 mapcount:0 mapping:ffff8801f7001640 index:0x0
flags: 0x200000000000100(slab)
raw: 0200000000000100 ffffea0007d11dc0 0000001a0000001a ffff8801f7001640
raw: 0000000000000000 0000000080150015 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8801f44ec200: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
ffff8801f44ec280: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
>ffff8801f44ec300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03
^
ffff8801f44ec380: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
ffff8801f44ec400: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
==================================================================
The report header summarizes what kind of bug happened and what kind of access
caused it. It is followed by a stack trace of the bad access, a stack trace of
where the accessed memory was allocated (in case a slab object was accessed),
and a stack trace of where the object was freed (in case of a use-after-free
bug report). Next comes a description of the accessed slab object and the
information about the accessed memory page.
In the end, the report shows the memory state around the accessed address.
Internally, KASAN tracks memory state separately for each memory granule, which
is either 8 or 16 aligned bytes depending on KASAN mode. Each number in the
memory state section of the report shows the state of one of the memory
granules that surround the accessed address.
For Generic KASAN, the size of each memory granule is 8. The state of each
granule is encoded in one shadow byte. Those 8 bytes can be accessible,
partially accessible, freed, or be a part of a redzone. KASAN uses the following
encoding for each shadow byte: 00 means that all 8 bytes of the corresponding
memory region are accessible; number N (1 <= N <= 7) means that the first N
bytes are accessible, and other (8 - N) bytes are not; any negative value
indicates that the entire 8-byte word is inaccessible. KASAN uses different
negative values to distinguish between different kinds of inaccessible memory
like redzones or freed memory (see mm/kasan/kasan.h).
In the report above, the arrow points to the shadow byte ``03``, which means
that the accessed address is partially accessible.
For tag-based KASAN modes, this last report section shows the memory tags around
the accessed address (see the `Implementation details`_ section).
Note that KASAN bug titles (like ``slab-out-of-bounds`` or ``use-after-free``)
are best-effort: KASAN prints the most probable bug type based on the limited
information it has. The actual type of the bug might be different.
Generic KASAN also reports up to two auxiliary call stack traces. These stack
traces point to places in code that interacted with the object but that are not
directly present in the bad access stack trace. Currently, this includes
call_rcu() and workqueue queuing.
CONFIG_KASAN_EXTRA_INFO
~~~~~~~~~~~~~~~~~~~~~~~
Enabling CONFIG_KASAN_EXTRA_INFO allows KASAN to record and report more
information. The extra information currently supported is the CPU number and
timestamp at allocation and free. More information can help find the cause of
the bug and correlate the error with other system events, at the cost of using
extra memory to record more information (more cost details in the help text of
CONFIG_KASAN_EXTRA_INFO).
Here is the report with CONFIG_KASAN_EXTRA_INFO enabled (only the
different parts are shown)::
==================================================================
...
Allocated by task 134 on cpu 5 at 229.133855s:
...
Freed by task 136 on cpu 3 at 230.199335s:
...
==================================================================
Implementation details
----------------------
Generic KASAN
~~~~~~~~~~~~~
Software KASAN modes use shadow memory to record whether each byte of memory is
safe to access and use compile-time instrumentation to insert shadow memory
checks before each memory access.
Generic KASAN dedicates 1/8th of kernel memory to its shadow memory (16TB
to cover 128TB on x86_64) and uses direct mapping with a scale and offset to
translate a memory address to its corresponding shadow address.
Here is the function which translates an address to its corresponding shadow
address::
static inline void *kasan_mem_to_shadow(const void *addr)
{
return (void *)((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT)
+ KASAN_SHADOW_OFFSET;
}
where ``KASAN_SHADOW_SCALE_SHIFT = 3``.
Compile-time instrumentation is used to insert memory access checks. Compiler
inserts function calls (``__asan_load*(addr)``, ``__asan_store*(addr)``) before
each memory access of size 1, 2, 4, 8, or 16. These functions check whether
memory accesses are valid or not by checking corresponding shadow memory.
With inline instrumentation, instead of making function calls, the compiler
directly inserts the code to check shadow memory. This option significantly
enlarges the kernel, but it gives an x1.1-x2 performance boost over the
outline-instrumented kernel.
Generic KASAN is the only mode that delays the reuse of freed objects via
quarantine (see mm/kasan/quarantine.c for implementation).
Software Tag-Based KASAN
~~~~~~~~~~~~~~~~~~~~~~~~
Software Tag-Based KASAN uses a software memory tagging approach to checking
access validity. It is currently only implemented for the arm64 architecture.
Software Tag-Based KASAN uses the Top Byte Ignore (TBI) feature of arm64 CPUs
to store a pointer tag in the top byte of kernel pointers. It uses shadow memory
to store memory tags associated with each 16-byte memory cell (therefore, it
dedicates 1/16th of the kernel memory for shadow memory).
On each memory allocation, Software Tag-Based KASAN generates a random tag, tags
the allocated memory with this tag, and embeds the same tag into the returned
pointer.
Software Tag-Based KASAN uses compile-time instrumentation to insert checks
before each memory access. These checks make sure that the tag of the memory
that is being accessed is equal to the tag of the pointer that is used to access
this memory. In case of a tag mismatch, Software Tag-Based KASAN prints a bug
report.
Software Tag-Based KASAN also has two instrumentation modes (outline, which
emits callbacks to check memory accesses; and inline, which performs the shadow
memory checks inline). With outline instrumentation mode, a bug report is
printed from the function that performs the access check. With inline
instrumentation, a ``brk`` instruction is emitted by the compiler, and a
dedicated ``brk`` handler is used to print bug reports.
Software Tag-Based KASAN uses 0xFF as a match-all pointer tag (accesses through
pointers with the 0xFF pointer tag are not checked). The value 0xFE is currently
reserved to tag freed memory regions.
Hardware Tag-Based KASAN
~~~~~~~~~~~~~~~~~~~~~~~~
Hardware Tag-Based KASAN is similar to the software mode in concept but uses
hardware memory tagging support instead of compiler instrumentation and
shadow memory.
Hardware Tag-Based KASAN is currently only implemented for arm64 architecture
and based on both arm64 Memory Tagging Extension (MTE) introduced in ARMv8.5
Instruction Set Architecture and Top Byte Ignore (TBI).
Special arm64 instructions are used to assign memory tags for each allocation.
Same tags are assigned to pointers to those allocations. On every memory
access, hardware makes sure that the tag of the memory that is being accessed is
equal to the tag of the pointer that is used to access this memory. In case of a
tag mismatch, a fault is generated, and a report is printed.
Hardware Tag-Based KASAN uses 0xFF as a match-all pointer tag (accesses through
pointers with the 0xFF pointer tag are not checked). The value 0xFE is currently
reserved to tag freed memory regions.
If the hardware does not support MTE (pre ARMv8.5), Hardware Tag-Based KASAN
will not be enabled. In this case, all KASAN boot parameters are ignored.
Note that enabling CONFIG_KASAN_HW_TAGS always results in in-kernel TBI being
enabled. Even when ``kasan.mode=off`` is provided or when the hardware does not
support MTE (but supports TBI).
Hardware Tag-Based KASAN only reports the first found bug. After that, MTE tag
checking gets disabled.
Shadow memory
-------------
The contents of this section are only applicable to software KASAN modes.
The kernel maps memory in several different parts of the address space.
The range of kernel virtual addresses is large: there is not enough real
memory to support a real shadow region for every address that could be
accessed by the kernel. Therefore, KASAN only maps real shadow for certain
parts of the address space.
Default behaviour
~~~~~~~~~~~~~~~~~
By default, architectures only map real memory over the shadow region
for the linear mapping (and potentially other small areas). For all
other areas - such as vmalloc and vmemmap space - a single read-only
page is mapped over the shadow area. This read-only shadow page
declares all memory accesses as permitted.
This presents a problem for modules: they do not live in the linear
mapping but in a dedicated module space. By hooking into the module
allocator, KASAN temporarily maps real shadow memory to cover them.
This allows detection of invalid accesses to module globals, for example.
This also creates an incompatibility with ``VMAP_STACK``: if the stack
lives in vmalloc space, it will be shadowed by the read-only page, and
the kernel will fault when trying to set up the shadow data for stack
variables.
CONFIG_KASAN_VMALLOC
~~~~~~~~~~~~~~~~~~~~
With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the
cost of greater memory usage. Currently, this is supported on x86,
arm64, riscv, s390, and powerpc.
This works by hooking into vmalloc and vmap and dynamically
allocating real shadow memory to back the mappings.
Most mappings in vmalloc space are small, requiring less than a full
page of shadow space. Allocating a full shadow page per mapping would
therefore be wasteful. Furthermore, to ensure that different mappings
use different shadow pages, mappings would have to be aligned to
``KASAN_GRANULE_SIZE * PAGE_SIZE``.
Instead, KASAN shares backing space across multiple mappings. It allocates
a backing page when a mapping in vmalloc space uses a particular page
of the shadow region. This page can be shared by other vmalloc
mappings later on.
KASAN hooks into the vmap infrastructure to lazily clean up unused shadow
memory.
To avoid the difficulties around swapping mappings around, KASAN expects
that the part of the shadow region that covers the vmalloc space will
not be covered by the early shadow page but will be left unmapped.
This will require changes in arch-specific code.
This allows ``VMAP_STACK`` support on x86 and can simplify support of
architectures that do not have a fixed module region.
For developers
--------------
Ignoring accesses
~~~~~~~~~~~~~~~~~
Software KASAN modes use compiler instrumentation to insert validity checks.
Such instrumentation might be incompatible with some parts of the kernel, and
therefore needs to be disabled.
Other parts of the kernel might access metadata for allocated objects.
Normally, KASAN detects and reports such accesses, but in some cases (e.g.,
in memory allocators), these accesses are valid.
For software KASAN modes, to disable instrumentation for a specific file or
directory, add a ``KASAN_SANITIZE`` annotation to the respective kernel
Makefile:
- For a single file (e.g., main.o)::
KASAN_SANITIZE_main.o := n
- For all files in one directory::
KASAN_SANITIZE := n
For software KASAN modes, to disable instrumentation on a per-function basis,
use the KASAN-specific ``__no_sanitize_address`` function attribute or the
generic ``noinstr`` one.
Note that disabling compiler instrumentation (either on a per-file or a
per-function basis) makes KASAN ignore the accesses that happen directly in
that code for software KASAN modes. It does not help when the accesses happen
indirectly (through calls to instrumented functions) or with Hardware
Tag-Based KASAN, which does not use compiler instrumentation.
For software KASAN modes, to disable KASAN reports in a part of the kernel code
for the current task, annotate this part of the code with a
``kasan_disable_current()``/``kasan_enable_current()`` section. This also
disables the reports for indirect accesses that happen through function calls.
For tag-based KASAN modes, to disable access checking, use
``kasan_reset_tag()`` or ``page_kasan_tag_reset()``. Note that temporarily
disabling access checking via ``page_kasan_tag_reset()`` requires saving and
restoring the per-page KASAN tag via ``page_kasan_tag``/``page_kasan_tag_set``.
Tests
~~~~~
There are KASAN tests that allow verifying that KASAN works and can detect
certain types of memory corruptions. The tests consist of two parts:
1. Tests that are integrated with the KUnit Test Framework. Enabled with
``CONFIG_KASAN_KUNIT_TEST``. These tests can be run and partially verified
automatically in a few different ways; see the instructions below.
2. Tests that are currently incompatible with KUnit. Enabled with
``CONFIG_KASAN_MODULE_TEST`` and can only be run as a module. These tests can
only be verified manually by loading the kernel module and inspecting the
kernel log for KASAN reports.
Each KUnit-compatible KASAN test prints one of multiple KASAN reports if an
error is detected. Then the test prints its number and status.
When a test passes::
ok 28 - kmalloc_double_kzfree
When a test fails due to a failed ``kmalloc``::
# kmalloc_large_oob_right: ASSERTION FAILED at mm/kasan/kasan_test.c:245
Expected ptr is not null, but is
not ok 5 - kmalloc_large_oob_right
When a test fails due to a missing KASAN report::
# kmalloc_double_kzfree: EXPECTATION FAILED at mm/kasan/kasan_test.c:709
KASAN failure expected in "kfree_sensitive(ptr)", but none occurred
not ok 28 - kmalloc_double_kzfree
At the end the cumulative status of all KASAN tests is printed. On success::
ok 1 - kasan
Or, if one of the tests failed::
not ok 1 - kasan
There are a few ways to run KUnit-compatible KASAN tests.
1. Loadable module
With ``CONFIG_KUNIT`` enabled, KASAN-KUnit tests can be built as a loadable
module and run by loading ``kasan_test.ko`` with ``insmod`` or ``modprobe``.
2. Built-In
With ``CONFIG_KUNIT`` built-in, KASAN-KUnit tests can be built-in as well.
In this case, the tests will run at boot as a late-init call.
3. Using kunit_tool
With ``CONFIG_KUNIT`` and ``CONFIG_KASAN_KUNIT_TEST`` built-in, it is also
possible to use ``kunit_tool`` to see the results of KUnit tests in a more
readable way. This will not print the KASAN reports of the tests that passed.
See `KUnit documentation <https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html>`_
for more up-to-date information on ``kunit_tool``.
.. _KUnit: https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html