Aidan MacDonald ca54d06fca clk: ingenic: Mark critical clocks in Ingenic SoCs
Consider CPU, L2 cache, and memory clocks as critical to prevent
them -- and the parent clocks -- from being automatically gated,
since nothing calls clk_get() on these clocks.

Gating the CPU clock hangs the processor, and gating memory makes
external DRAM inaccessible. Normal kernel code can't hope to deal
with either situation so those clocks have to be critical.

The L2 cache is required only if caches are running, and could be
gated if the kernel takes care to flush and disable caches before
gating the clock. There's no mechanism to do this, and probably no
reason to do it, so it's simpler to mark the L2 cache as critical.

Signed-off-by: Aidan MacDonald <aidanmacdonald.0x0@gmail.com>
Reviewed-by: Paul Cercueil <paul@crapouillou.net>
Link: https://lore.kernel.org/r/20220428164454.17908-3-aidanmacdonald.0x0@gmail.com
Tested-by: 周琰杰 (Zhou Yanjie) <zhouyanjie@wanyeetech.com> # On X1000 and X1830
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-05-18 13:56:22 -07:00

496 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* X1000 SoC CGU driver
* Copyright (c) 2019 周琰杰 (Zhou Yanjie) <zhouyanjie@wanyeetech.com>
*/
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <dt-bindings/clock/ingenic,x1000-cgu.h>
#include "cgu.h"
#include "pm.h"
/* CGU register offsets */
#define CGU_REG_CPCCR 0x00
#define CGU_REG_APLL 0x10
#define CGU_REG_MPLL 0x14
#define CGU_REG_CLKGR 0x20
#define CGU_REG_OPCR 0x24
#define CGU_REG_DDRCDR 0x2c
#define CGU_REG_USBPCR 0x3c
#define CGU_REG_USBPCR1 0x48
#define CGU_REG_USBCDR 0x50
#define CGU_REG_MACCDR 0x54
#define CGU_REG_I2SCDR 0x60
#define CGU_REG_LPCDR 0x64
#define CGU_REG_MSC0CDR 0x68
#define CGU_REG_I2SCDR1 0x70
#define CGU_REG_SSICDR 0x74
#define CGU_REG_CIMCDR 0x7c
#define CGU_REG_PCMCDR 0x84
#define CGU_REG_MSC1CDR 0xa4
#define CGU_REG_CMP_INTR 0xb0
#define CGU_REG_CMP_INTRE 0xb4
#define CGU_REG_DRCG 0xd0
#define CGU_REG_CPCSR 0xd4
#define CGU_REG_PCMCDR1 0xe0
#define CGU_REG_MACPHYC 0xe8
/* bits within the OPCR register */
#define OPCR_SPENDN0 BIT(7)
#define OPCR_SPENDN1 BIT(6)
/* bits within the USBPCR register */
#define USBPCR_SIDDQ BIT(21)
#define USBPCR_OTG_DISABLE BIT(20)
/* bits within the USBPCR1 register */
#define USBPCR1_REFCLKSEL_SHIFT 26
#define USBPCR1_REFCLKSEL_MASK (0x3 << USBPCR1_REFCLKSEL_SHIFT)
#define USBPCR1_REFCLKSEL_CORE (0x2 << USBPCR1_REFCLKSEL_SHIFT)
#define USBPCR1_REFCLKDIV_SHIFT 24
#define USBPCR1_REFCLKDIV_MASK (0x3 << USBPCR1_REFCLKDIV_SHIFT)
#define USBPCR1_REFCLKDIV_48 (0x2 << USBPCR1_REFCLKDIV_SHIFT)
#define USBPCR1_REFCLKDIV_24 (0x1 << USBPCR1_REFCLKDIV_SHIFT)
#define USBPCR1_REFCLKDIV_12 (0x0 << USBPCR1_REFCLKDIV_SHIFT)
static struct ingenic_cgu *cgu;
static unsigned long x1000_otg_phy_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
u32 usbpcr1;
unsigned refclk_div;
usbpcr1 = readl(cgu->base + CGU_REG_USBPCR1);
refclk_div = usbpcr1 & USBPCR1_REFCLKDIV_MASK;
switch (refclk_div) {
case USBPCR1_REFCLKDIV_12:
return 12000000;
case USBPCR1_REFCLKDIV_24:
return 24000000;
case USBPCR1_REFCLKDIV_48:
return 48000000;
}
return parent_rate;
}
static long x1000_otg_phy_round_rate(struct clk_hw *hw, unsigned long req_rate,
unsigned long *parent_rate)
{
if (req_rate < 18000000)
return 12000000;
if (req_rate < 36000000)
return 24000000;
return 48000000;
}
static int x1000_otg_phy_set_rate(struct clk_hw *hw, unsigned long req_rate,
unsigned long parent_rate)
{
unsigned long flags;
u32 usbpcr1, div_bits;
switch (req_rate) {
case 12000000:
div_bits = USBPCR1_REFCLKDIV_12;
break;
case 24000000:
div_bits = USBPCR1_REFCLKDIV_24;
break;
case 48000000:
div_bits = USBPCR1_REFCLKDIV_48;
break;
default:
return -EINVAL;
}
spin_lock_irqsave(&cgu->lock, flags);
usbpcr1 = readl(cgu->base + CGU_REG_USBPCR1);
usbpcr1 &= ~USBPCR1_REFCLKDIV_MASK;
usbpcr1 |= div_bits;
writel(usbpcr1, cgu->base + CGU_REG_USBPCR1);
spin_unlock_irqrestore(&cgu->lock, flags);
return 0;
}
static int x1000_usb_phy_enable(struct clk_hw *hw)
{
void __iomem *reg_opcr = cgu->base + CGU_REG_OPCR;
void __iomem *reg_usbpcr = cgu->base + CGU_REG_USBPCR;
writel(readl(reg_opcr) | OPCR_SPENDN0, reg_opcr);
writel(readl(reg_usbpcr) & ~USBPCR_OTG_DISABLE & ~USBPCR_SIDDQ, reg_usbpcr);
return 0;
}
static void x1000_usb_phy_disable(struct clk_hw *hw)
{
void __iomem *reg_opcr = cgu->base + CGU_REG_OPCR;
void __iomem *reg_usbpcr = cgu->base + CGU_REG_USBPCR;
writel(readl(reg_opcr) & ~OPCR_SPENDN0, reg_opcr);
writel(readl(reg_usbpcr) | USBPCR_OTG_DISABLE | USBPCR_SIDDQ, reg_usbpcr);
}
static int x1000_usb_phy_is_enabled(struct clk_hw *hw)
{
void __iomem *reg_opcr = cgu->base + CGU_REG_OPCR;
void __iomem *reg_usbpcr = cgu->base + CGU_REG_USBPCR;
return (readl(reg_opcr) & OPCR_SPENDN0) &&
!(readl(reg_usbpcr) & USBPCR_SIDDQ) &&
!(readl(reg_usbpcr) & USBPCR_OTG_DISABLE);
}
static const struct clk_ops x1000_otg_phy_ops = {
.recalc_rate = x1000_otg_phy_recalc_rate,
.round_rate = x1000_otg_phy_round_rate,
.set_rate = x1000_otg_phy_set_rate,
.enable = x1000_usb_phy_enable,
.disable = x1000_usb_phy_disable,
.is_enabled = x1000_usb_phy_is_enabled,
};
static const s8 pll_od_encoding[8] = {
0x0, 0x1, -1, 0x2, -1, -1, -1, 0x3,
};
static const struct ingenic_cgu_clk_info x1000_cgu_clocks[] = {
/* External clocks */
[X1000_CLK_EXCLK] = { "ext", CGU_CLK_EXT },
[X1000_CLK_RTCLK] = { "rtc", CGU_CLK_EXT },
/* PLLs */
[X1000_CLK_APLL] = {
"apll", CGU_CLK_PLL,
.parents = { X1000_CLK_EXCLK, -1, -1, -1 },
.pll = {
.reg = CGU_REG_APLL,
.rate_multiplier = 1,
.m_shift = 24,
.m_bits = 7,
.m_offset = 1,
.n_shift = 18,
.n_bits = 5,
.n_offset = 1,
.od_shift = 16,
.od_bits = 2,
.od_max = 8,
.od_encoding = pll_od_encoding,
.bypass_reg = CGU_REG_APLL,
.bypass_bit = 9,
.enable_bit = 8,
.stable_bit = 10,
},
},
[X1000_CLK_MPLL] = {
"mpll", CGU_CLK_PLL,
.parents = { X1000_CLK_EXCLK, -1, -1, -1 },
.pll = {
.reg = CGU_REG_MPLL,
.rate_multiplier = 1,
.m_shift = 24,
.m_bits = 7,
.m_offset = 1,
.n_shift = 18,
.n_bits = 5,
.n_offset = 1,
.od_shift = 16,
.od_bits = 2,
.od_max = 8,
.od_encoding = pll_od_encoding,
.bypass_reg = CGU_REG_MPLL,
.bypass_bit = 6,
.enable_bit = 7,
.stable_bit = 0,
},
},
/* Custom (SoC-specific) OTG PHY */
[X1000_CLK_OTGPHY] = {
"otg_phy", CGU_CLK_CUSTOM,
.parents = { -1, -1, X1000_CLK_EXCLK, -1 },
.custom = { &x1000_otg_phy_ops },
},
/* Muxes & dividers */
[X1000_CLK_SCLKA] = {
"sclk_a", CGU_CLK_MUX,
.parents = { -1, X1000_CLK_EXCLK, X1000_CLK_APLL, -1 },
.mux = { CGU_REG_CPCCR, 30, 2 },
},
[X1000_CLK_CPUMUX] = {
"cpu_mux", CGU_CLK_MUX,
.parents = { -1, X1000_CLK_SCLKA, X1000_CLK_MPLL, -1 },
.mux = { CGU_REG_CPCCR, 28, 2 },
},
[X1000_CLK_CPU] = {
"cpu", CGU_CLK_DIV | CGU_CLK_GATE,
/*
* Disabling the CPU clock or any parent clocks will hang the
* system; mark it critical.
*/
.flags = CLK_IS_CRITICAL,
.parents = { X1000_CLK_CPUMUX, -1, -1, -1 },
.div = { CGU_REG_CPCCR, 0, 1, 4, 22, -1, -1 },
.gate = { CGU_REG_CLKGR, 30 },
},
[X1000_CLK_L2CACHE] = {
"l2cache", CGU_CLK_DIV,
/*
* The L2 cache clock is critical if caches are enabled and
* disabling it or any parent clocks will hang the system.
*/
.flags = CLK_IS_CRITICAL,
.parents = { X1000_CLK_CPUMUX, -1, -1, -1 },
.div = { CGU_REG_CPCCR, 4, 1, 4, 22, -1, -1 },
},
[X1000_CLK_AHB0] = {
"ahb0", CGU_CLK_MUX | CGU_CLK_DIV,
.parents = { -1, X1000_CLK_SCLKA, X1000_CLK_MPLL, -1 },
.mux = { CGU_REG_CPCCR, 26, 2 },
.div = { CGU_REG_CPCCR, 8, 1, 4, 21, -1, -1 },
},
[X1000_CLK_AHB2PMUX] = {
"ahb2_apb_mux", CGU_CLK_MUX,
.parents = { -1, X1000_CLK_SCLKA, X1000_CLK_MPLL, -1 },
.mux = { CGU_REG_CPCCR, 24, 2 },
},
[X1000_CLK_AHB2] = {
"ahb2", CGU_CLK_DIV,
.parents = { X1000_CLK_AHB2PMUX, -1, -1, -1 },
.div = { CGU_REG_CPCCR, 12, 1, 4, 20, -1, -1 },
},
[X1000_CLK_PCLK] = {
"pclk", CGU_CLK_DIV | CGU_CLK_GATE,
.parents = { X1000_CLK_AHB2PMUX, -1, -1, -1 },
.div = { CGU_REG_CPCCR, 16, 1, 4, 20, -1, -1 },
.gate = { CGU_REG_CLKGR, 28 },
},
[X1000_CLK_DDR] = {
"ddr", CGU_CLK_MUX | CGU_CLK_DIV | CGU_CLK_GATE,
/*
* Disabling DDR clock or its parents will render DRAM
* inaccessible; mark it critical.
*/
.flags = CLK_IS_CRITICAL,
.parents = { -1, X1000_CLK_SCLKA, X1000_CLK_MPLL, -1 },
.mux = { CGU_REG_DDRCDR, 30, 2 },
.div = { CGU_REG_DDRCDR, 0, 1, 4, 29, 28, 27 },
.gate = { CGU_REG_CLKGR, 31 },
},
[X1000_CLK_MAC] = {
"mac", CGU_CLK_MUX | CGU_CLK_DIV | CGU_CLK_GATE,
.parents = { X1000_CLK_SCLKA, X1000_CLK_MPLL },
.mux = { CGU_REG_MACCDR, 31, 1 },
.div = { CGU_REG_MACCDR, 0, 1, 8, 29, 28, 27 },
.gate = { CGU_REG_CLKGR, 25 },
},
[X1000_CLK_LCD] = {
"lcd", CGU_CLK_MUX | CGU_CLK_DIV | CGU_CLK_GATE,
.parents = { X1000_CLK_SCLKA, X1000_CLK_MPLL },
.mux = { CGU_REG_LPCDR, 31, 1 },
.div = { CGU_REG_LPCDR, 0, 1, 8, 28, 27, 26 },
.gate = { CGU_REG_CLKGR, 23 },
},
[X1000_CLK_MSCMUX] = {
"msc_mux", CGU_CLK_MUX,
.parents = { X1000_CLK_SCLKA, X1000_CLK_MPLL},
.mux = { CGU_REG_MSC0CDR, 31, 1 },
},
[X1000_CLK_MSC0] = {
"msc0", CGU_CLK_DIV | CGU_CLK_GATE,
.parents = { X1000_CLK_MSCMUX, -1, -1, -1 },
.div = { CGU_REG_MSC0CDR, 0, 2, 8, 29, 28, 27 },
.gate = { CGU_REG_CLKGR, 4 },
},
[X1000_CLK_MSC1] = {
"msc1", CGU_CLK_DIV | CGU_CLK_GATE,
.parents = { X1000_CLK_MSCMUX, -1, -1, -1 },
.div = { CGU_REG_MSC1CDR, 0, 2, 8, 29, 28, 27 },
.gate = { CGU_REG_CLKGR, 5 },
},
[X1000_CLK_OTG] = {
"otg", CGU_CLK_DIV | CGU_CLK_GATE | CGU_CLK_MUX,
.parents = { X1000_CLK_EXCLK, -1,
X1000_CLK_APLL, X1000_CLK_MPLL },
.mux = { CGU_REG_USBCDR, 30, 2 },
.div = { CGU_REG_USBCDR, 0, 1, 8, 29, 28, 27 },
.gate = { CGU_REG_CLKGR, 3 },
},
[X1000_CLK_SSIPLL] = {
"ssi_pll", CGU_CLK_MUX | CGU_CLK_DIV,
.parents = { X1000_CLK_SCLKA, X1000_CLK_MPLL, -1, -1 },
.mux = { CGU_REG_SSICDR, 31, 1 },
.div = { CGU_REG_SSICDR, 0, 1, 8, 29, 28, 27 },
},
[X1000_CLK_SSIPLL_DIV2] = {
"ssi_pll_div2", CGU_CLK_FIXDIV,
.parents = { X1000_CLK_SSIPLL },
.fixdiv = { 2 },
},
[X1000_CLK_SSIMUX] = {
"ssi_mux", CGU_CLK_MUX,
.parents = { X1000_CLK_EXCLK, X1000_CLK_SSIPLL_DIV2, -1, -1 },
.mux = { CGU_REG_SSICDR, 30, 1 },
},
[X1000_CLK_EXCLK_DIV512] = {
"exclk_div512", CGU_CLK_FIXDIV,
.parents = { X1000_CLK_EXCLK },
.fixdiv = { 512 },
},
[X1000_CLK_RTC] = {
"rtc_ercs", CGU_CLK_MUX | CGU_CLK_GATE,
.parents = { X1000_CLK_EXCLK_DIV512, X1000_CLK_RTCLK },
.mux = { CGU_REG_OPCR, 2, 1},
.gate = { CGU_REG_CLKGR, 27 },
},
/* Gate-only clocks */
[X1000_CLK_EMC] = {
"emc", CGU_CLK_GATE,
.parents = { X1000_CLK_AHB2, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 0 },
},
[X1000_CLK_EFUSE] = {
"efuse", CGU_CLK_GATE,
.parents = { X1000_CLK_AHB2, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 1 },
},
[X1000_CLK_SFC] = {
"sfc", CGU_CLK_GATE,
.parents = { X1000_CLK_SSIPLL, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 2 },
},
[X1000_CLK_I2C0] = {
"i2c0", CGU_CLK_GATE,
.parents = { X1000_CLK_PCLK, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 7 },
},
[X1000_CLK_I2C1] = {
"i2c1", CGU_CLK_GATE,
.parents = { X1000_CLK_PCLK, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 8 },
},
[X1000_CLK_I2C2] = {
"i2c2", CGU_CLK_GATE,
.parents = { X1000_CLK_PCLK, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 9 },
},
[X1000_CLK_UART0] = {
"uart0", CGU_CLK_GATE,
.parents = { X1000_CLK_EXCLK, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 14 },
},
[X1000_CLK_UART1] = {
"uart1", CGU_CLK_GATE,
.parents = { X1000_CLK_EXCLK, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 15 },
},
[X1000_CLK_UART2] = {
"uart2", CGU_CLK_GATE,
.parents = { X1000_CLK_EXCLK, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 16 },
},
[X1000_CLK_TCU] = {
"tcu", CGU_CLK_GATE,
.parents = { X1000_CLK_EXCLK, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 18 },
},
[X1000_CLK_SSI] = {
"ssi", CGU_CLK_GATE,
.parents = { X1000_CLK_SSIMUX, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 19 },
},
[X1000_CLK_OST] = {
"ost", CGU_CLK_GATE,
.parents = { X1000_CLK_EXCLK, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 20 },
},
[X1000_CLK_PDMA] = {
"pdma", CGU_CLK_GATE,
.parents = { X1000_CLK_EXCLK, -1, -1, -1 },
.gate = { CGU_REG_CLKGR, 21 },
},
};
static void __init x1000_cgu_init(struct device_node *np)
{
int retval;
cgu = ingenic_cgu_new(x1000_cgu_clocks,
ARRAY_SIZE(x1000_cgu_clocks), np);
if (!cgu) {
pr_err("%s: failed to initialise CGU\n", __func__);
return;
}
retval = ingenic_cgu_register_clocks(cgu);
if (retval) {
pr_err("%s: failed to register CGU Clocks\n", __func__);
return;
}
ingenic_cgu_register_syscore_ops(cgu);
}
/*
* CGU has some children devices, this is useful for probing children devices
* in the case where the device node is compatible with "simple-mfd".
*/
CLK_OF_DECLARE_DRIVER(x1000_cgu, "ingenic,x1000-cgu", x1000_cgu_init);