mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-08 14:13:53 +00:00
8eb71d95f3
Switch over pid namespaces to use the newly introduced common lifetime counter. Currently every namespace type has its own lifetime counter which is stored in the specific namespace struct. The lifetime counters are used identically for all namespaces types. Namespaces may of course have additional unrelated counters and these are not altered. This introduces a common lifetime counter into struct ns_common. The ns_common struct encompasses information that all namespaces share. That should include the lifetime counter since its common for all of them. It also allows us to unify the type of the counters across all namespaces. Most of them use refcount_t but one uses atomic_t and at least one uses kref. Especially the last one doesn't make much sense since it's just a wrapper around refcount_t since 2016 and actually complicates cleanup operations by having to use container_of() to cast the correct namespace struct out of struct ns_common. Having the lifetime counter for the namespaces in one place reduces maintenance cost. Not just because after switching all namespaces over we will have removed more code than we added but also because the logic is more easily understandable and we indicate to the user that the basic lifetime requirements for all namespaces are currently identical. Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Link: https://lore.kernel.org/r/159644979226.604812.7512601754841882036.stgit@localhost.localdomain Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
461 lines
11 KiB
C
461 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Pid namespaces
|
|
*
|
|
* Authors:
|
|
* (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
|
|
* (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
|
|
* Many thanks to Oleg Nesterov for comments and help
|
|
*
|
|
*/
|
|
|
|
#include <linux/pid.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/user_namespace.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/cred.h>
|
|
#include <linux/err.h>
|
|
#include <linux/acct.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/proc_ns.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/idr.h>
|
|
|
|
static DEFINE_MUTEX(pid_caches_mutex);
|
|
static struct kmem_cache *pid_ns_cachep;
|
|
/* Write once array, filled from the beginning. */
|
|
static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
|
|
|
|
/*
|
|
* creates the kmem cache to allocate pids from.
|
|
* @level: pid namespace level
|
|
*/
|
|
|
|
static struct kmem_cache *create_pid_cachep(unsigned int level)
|
|
{
|
|
/* Level 0 is init_pid_ns.pid_cachep */
|
|
struct kmem_cache **pkc = &pid_cache[level - 1];
|
|
struct kmem_cache *kc;
|
|
char name[4 + 10 + 1];
|
|
unsigned int len;
|
|
|
|
kc = READ_ONCE(*pkc);
|
|
if (kc)
|
|
return kc;
|
|
|
|
snprintf(name, sizeof(name), "pid_%u", level + 1);
|
|
len = sizeof(struct pid) + level * sizeof(struct upid);
|
|
mutex_lock(&pid_caches_mutex);
|
|
/* Name collision forces to do allocation under mutex. */
|
|
if (!*pkc)
|
|
*pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
|
|
mutex_unlock(&pid_caches_mutex);
|
|
/* current can fail, but someone else can succeed. */
|
|
return READ_ONCE(*pkc);
|
|
}
|
|
|
|
static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
|
|
{
|
|
return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
|
|
}
|
|
|
|
static void dec_pid_namespaces(struct ucounts *ucounts)
|
|
{
|
|
dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
|
|
}
|
|
|
|
static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
|
|
struct pid_namespace *parent_pid_ns)
|
|
{
|
|
struct pid_namespace *ns;
|
|
unsigned int level = parent_pid_ns->level + 1;
|
|
struct ucounts *ucounts;
|
|
int err;
|
|
|
|
err = -EINVAL;
|
|
if (!in_userns(parent_pid_ns->user_ns, user_ns))
|
|
goto out;
|
|
|
|
err = -ENOSPC;
|
|
if (level > MAX_PID_NS_LEVEL)
|
|
goto out;
|
|
ucounts = inc_pid_namespaces(user_ns);
|
|
if (!ucounts)
|
|
goto out;
|
|
|
|
err = -ENOMEM;
|
|
ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
|
|
if (ns == NULL)
|
|
goto out_dec;
|
|
|
|
idr_init(&ns->idr);
|
|
|
|
ns->pid_cachep = create_pid_cachep(level);
|
|
if (ns->pid_cachep == NULL)
|
|
goto out_free_idr;
|
|
|
|
err = ns_alloc_inum(&ns->ns);
|
|
if (err)
|
|
goto out_free_idr;
|
|
ns->ns.ops = &pidns_operations;
|
|
|
|
refcount_set(&ns->ns.count, 1);
|
|
ns->level = level;
|
|
ns->parent = get_pid_ns(parent_pid_ns);
|
|
ns->user_ns = get_user_ns(user_ns);
|
|
ns->ucounts = ucounts;
|
|
ns->pid_allocated = PIDNS_ADDING;
|
|
|
|
return ns;
|
|
|
|
out_free_idr:
|
|
idr_destroy(&ns->idr);
|
|
kmem_cache_free(pid_ns_cachep, ns);
|
|
out_dec:
|
|
dec_pid_namespaces(ucounts);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void delayed_free_pidns(struct rcu_head *p)
|
|
{
|
|
struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
|
|
|
|
dec_pid_namespaces(ns->ucounts);
|
|
put_user_ns(ns->user_ns);
|
|
|
|
kmem_cache_free(pid_ns_cachep, ns);
|
|
}
|
|
|
|
static void destroy_pid_namespace(struct pid_namespace *ns)
|
|
{
|
|
ns_free_inum(&ns->ns);
|
|
|
|
idr_destroy(&ns->idr);
|
|
call_rcu(&ns->rcu, delayed_free_pidns);
|
|
}
|
|
|
|
struct pid_namespace *copy_pid_ns(unsigned long flags,
|
|
struct user_namespace *user_ns, struct pid_namespace *old_ns)
|
|
{
|
|
if (!(flags & CLONE_NEWPID))
|
|
return get_pid_ns(old_ns);
|
|
if (task_active_pid_ns(current) != old_ns)
|
|
return ERR_PTR(-EINVAL);
|
|
return create_pid_namespace(user_ns, old_ns);
|
|
}
|
|
|
|
void put_pid_ns(struct pid_namespace *ns)
|
|
{
|
|
struct pid_namespace *parent;
|
|
|
|
while (ns != &init_pid_ns) {
|
|
parent = ns->parent;
|
|
if (!refcount_dec_and_test(&ns->ns.count))
|
|
break;
|
|
destroy_pid_namespace(ns);
|
|
ns = parent;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_pid_ns);
|
|
|
|
void zap_pid_ns_processes(struct pid_namespace *pid_ns)
|
|
{
|
|
int nr;
|
|
int rc;
|
|
struct task_struct *task, *me = current;
|
|
int init_pids = thread_group_leader(me) ? 1 : 2;
|
|
struct pid *pid;
|
|
|
|
/* Don't allow any more processes into the pid namespace */
|
|
disable_pid_allocation(pid_ns);
|
|
|
|
/*
|
|
* Ignore SIGCHLD causing any terminated children to autoreap.
|
|
* This speeds up the namespace shutdown, plus see the comment
|
|
* below.
|
|
*/
|
|
spin_lock_irq(&me->sighand->siglock);
|
|
me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
|
|
spin_unlock_irq(&me->sighand->siglock);
|
|
|
|
/*
|
|
* The last thread in the cgroup-init thread group is terminating.
|
|
* Find remaining pid_ts in the namespace, signal and wait for them
|
|
* to exit.
|
|
*
|
|
* Note: This signals each threads in the namespace - even those that
|
|
* belong to the same thread group, To avoid this, we would have
|
|
* to walk the entire tasklist looking a processes in this
|
|
* namespace, but that could be unnecessarily expensive if the
|
|
* pid namespace has just a few processes. Or we need to
|
|
* maintain a tasklist for each pid namespace.
|
|
*
|
|
*/
|
|
rcu_read_lock();
|
|
read_lock(&tasklist_lock);
|
|
nr = 2;
|
|
idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
|
|
task = pid_task(pid, PIDTYPE_PID);
|
|
if (task && !__fatal_signal_pending(task))
|
|
group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
|
|
* kernel_wait4() will also block until our children traced from the
|
|
* parent namespace are detached and become EXIT_DEAD.
|
|
*/
|
|
do {
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
rc = kernel_wait4(-1, NULL, __WALL, NULL);
|
|
} while (rc != -ECHILD);
|
|
|
|
/*
|
|
* kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
|
|
* process whose parents processes are outside of the pid
|
|
* namespace. Such processes are created with setns()+fork().
|
|
*
|
|
* If those EXIT_ZOMBIE processes are not reaped by their
|
|
* parents before their parents exit, they will be reparented
|
|
* to pid_ns->child_reaper. Thus pidns->child_reaper needs to
|
|
* stay valid until they all go away.
|
|
*
|
|
* The code relies on the the pid_ns->child_reaper ignoring
|
|
* SIGCHILD to cause those EXIT_ZOMBIE processes to be
|
|
* autoreaped if reparented.
|
|
*
|
|
* Semantically it is also desirable to wait for EXIT_ZOMBIE
|
|
* processes before allowing the child_reaper to be reaped, as
|
|
* that gives the invariant that when the init process of a
|
|
* pid namespace is reaped all of the processes in the pid
|
|
* namespace are gone.
|
|
*
|
|
* Once all of the other tasks are gone from the pid_namespace
|
|
* free_pid() will awaken this task.
|
|
*/
|
|
for (;;) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (pid_ns->pid_allocated == init_pids)
|
|
break;
|
|
schedule();
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
if (pid_ns->reboot)
|
|
current->signal->group_exit_code = pid_ns->reboot;
|
|
|
|
acct_exit_ns(pid_ns);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
|
static int pid_ns_ctl_handler(struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct pid_namespace *pid_ns = task_active_pid_ns(current);
|
|
struct ctl_table tmp = *table;
|
|
int ret, next;
|
|
|
|
if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
|
|
return -EPERM;
|
|
|
|
/*
|
|
* Writing directly to ns' last_pid field is OK, since this field
|
|
* is volatile in a living namespace anyway and a code writing to
|
|
* it should synchronize its usage with external means.
|
|
*/
|
|
|
|
next = idr_get_cursor(&pid_ns->idr) - 1;
|
|
|
|
tmp.data = &next;
|
|
ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
|
|
if (!ret && write)
|
|
idr_set_cursor(&pid_ns->idr, next + 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
extern int pid_max;
|
|
static struct ctl_table pid_ns_ctl_table[] = {
|
|
{
|
|
.procname = "ns_last_pid",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0666, /* permissions are checked in the handler */
|
|
.proc_handler = pid_ns_ctl_handler,
|
|
.extra1 = SYSCTL_ZERO,
|
|
.extra2 = &pid_max,
|
|
},
|
|
{ }
|
|
};
|
|
static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
|
|
#endif /* CONFIG_CHECKPOINT_RESTORE */
|
|
|
|
int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
|
|
{
|
|
if (pid_ns == &init_pid_ns)
|
|
return 0;
|
|
|
|
switch (cmd) {
|
|
case LINUX_REBOOT_CMD_RESTART2:
|
|
case LINUX_REBOOT_CMD_RESTART:
|
|
pid_ns->reboot = SIGHUP;
|
|
break;
|
|
|
|
case LINUX_REBOOT_CMD_POWER_OFF:
|
|
case LINUX_REBOOT_CMD_HALT:
|
|
pid_ns->reboot = SIGINT;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
read_lock(&tasklist_lock);
|
|
send_sig(SIGKILL, pid_ns->child_reaper, 1);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
do_exit(0);
|
|
|
|
/* Not reached */
|
|
return 0;
|
|
}
|
|
|
|
static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
|
|
{
|
|
return container_of(ns, struct pid_namespace, ns);
|
|
}
|
|
|
|
static struct ns_common *pidns_get(struct task_struct *task)
|
|
{
|
|
struct pid_namespace *ns;
|
|
|
|
rcu_read_lock();
|
|
ns = task_active_pid_ns(task);
|
|
if (ns)
|
|
get_pid_ns(ns);
|
|
rcu_read_unlock();
|
|
|
|
return ns ? &ns->ns : NULL;
|
|
}
|
|
|
|
static struct ns_common *pidns_for_children_get(struct task_struct *task)
|
|
{
|
|
struct pid_namespace *ns = NULL;
|
|
|
|
task_lock(task);
|
|
if (task->nsproxy) {
|
|
ns = task->nsproxy->pid_ns_for_children;
|
|
get_pid_ns(ns);
|
|
}
|
|
task_unlock(task);
|
|
|
|
if (ns) {
|
|
read_lock(&tasklist_lock);
|
|
if (!ns->child_reaper) {
|
|
put_pid_ns(ns);
|
|
ns = NULL;
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
return ns ? &ns->ns : NULL;
|
|
}
|
|
|
|
static void pidns_put(struct ns_common *ns)
|
|
{
|
|
put_pid_ns(to_pid_ns(ns));
|
|
}
|
|
|
|
static int pidns_install(struct nsset *nsset, struct ns_common *ns)
|
|
{
|
|
struct nsproxy *nsproxy = nsset->nsproxy;
|
|
struct pid_namespace *active = task_active_pid_ns(current);
|
|
struct pid_namespace *ancestor, *new = to_pid_ns(ns);
|
|
|
|
if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
|
|
!ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
/*
|
|
* Only allow entering the current active pid namespace
|
|
* or a child of the current active pid namespace.
|
|
*
|
|
* This is required for fork to return a usable pid value and
|
|
* this maintains the property that processes and their
|
|
* children can not escape their current pid namespace.
|
|
*/
|
|
if (new->level < active->level)
|
|
return -EINVAL;
|
|
|
|
ancestor = new;
|
|
while (ancestor->level > active->level)
|
|
ancestor = ancestor->parent;
|
|
if (ancestor != active)
|
|
return -EINVAL;
|
|
|
|
put_pid_ns(nsproxy->pid_ns_for_children);
|
|
nsproxy->pid_ns_for_children = get_pid_ns(new);
|
|
return 0;
|
|
}
|
|
|
|
static struct ns_common *pidns_get_parent(struct ns_common *ns)
|
|
{
|
|
struct pid_namespace *active = task_active_pid_ns(current);
|
|
struct pid_namespace *pid_ns, *p;
|
|
|
|
/* See if the parent is in the current namespace */
|
|
pid_ns = p = to_pid_ns(ns)->parent;
|
|
for (;;) {
|
|
if (!p)
|
|
return ERR_PTR(-EPERM);
|
|
if (p == active)
|
|
break;
|
|
p = p->parent;
|
|
}
|
|
|
|
return &get_pid_ns(pid_ns)->ns;
|
|
}
|
|
|
|
static struct user_namespace *pidns_owner(struct ns_common *ns)
|
|
{
|
|
return to_pid_ns(ns)->user_ns;
|
|
}
|
|
|
|
const struct proc_ns_operations pidns_operations = {
|
|
.name = "pid",
|
|
.type = CLONE_NEWPID,
|
|
.get = pidns_get,
|
|
.put = pidns_put,
|
|
.install = pidns_install,
|
|
.owner = pidns_owner,
|
|
.get_parent = pidns_get_parent,
|
|
};
|
|
|
|
const struct proc_ns_operations pidns_for_children_operations = {
|
|
.name = "pid_for_children",
|
|
.real_ns_name = "pid",
|
|
.type = CLONE_NEWPID,
|
|
.get = pidns_for_children_get,
|
|
.put = pidns_put,
|
|
.install = pidns_install,
|
|
.owner = pidns_owner,
|
|
.get_parent = pidns_get_parent,
|
|
};
|
|
|
|
static __init int pid_namespaces_init(void)
|
|
{
|
|
pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
|
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
|
register_sysctl_paths(kern_path, pid_ns_ctl_table);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
__initcall(pid_namespaces_init);
|