linux-stable/include/linux/percpu-rwsem.h
Hou Tao e6b1a44ecc locking/percpu-rwsem: Use this_cpu_{inc,dec}() for read_count
The __this_cpu*() accessors are (in general) IRQ-unsafe which, given
that percpu-rwsem is a blocking primitive, should be just fine.

However, file_end_write() is used from IRQ context and will cause
load-store issues on architectures where the per-cpu accessors are not
natively irq-safe.

Fix it by using the IRQ-safe this_cpu_*() for operations on
read_count. This will generate more expensive code on a number of
platforms, which might cause a performance regression for some of the
other percpu-rwsem users.

If any such is reported, we can consider alternative solutions.

Fixes: 70fe2f48152e ("aio: fix freeze protection of aio writes")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20200915140750.137881-1-houtao1@huawei.com
2020-09-16 16:26:56 +02:00

154 lines
4.2 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_PERCPU_RWSEM_H
#define _LINUX_PERCPU_RWSEM_H
#include <linux/atomic.h>
#include <linux/percpu.h>
#include <linux/rcuwait.h>
#include <linux/wait.h>
#include <linux/rcu_sync.h>
#include <linux/lockdep.h>
struct percpu_rw_semaphore {
struct rcu_sync rss;
unsigned int __percpu *read_count;
struct rcuwait writer;
wait_queue_head_t waiters;
atomic_t block;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif
};
#ifdef CONFIG_DEBUG_LOCK_ALLOC
#define __PERCPU_RWSEM_DEP_MAP_INIT(lockname) .dep_map = { .name = #lockname },
#else
#define __PERCPU_RWSEM_DEP_MAP_INIT(lockname)
#endif
#define __DEFINE_PERCPU_RWSEM(name, is_static) \
static DEFINE_PER_CPU(unsigned int, __percpu_rwsem_rc_##name); \
is_static struct percpu_rw_semaphore name = { \
.rss = __RCU_SYNC_INITIALIZER(name.rss), \
.read_count = &__percpu_rwsem_rc_##name, \
.writer = __RCUWAIT_INITIALIZER(name.writer), \
.waiters = __WAIT_QUEUE_HEAD_INITIALIZER(name.waiters), \
.block = ATOMIC_INIT(0), \
__PERCPU_RWSEM_DEP_MAP_INIT(name) \
}
#define DEFINE_PERCPU_RWSEM(name) \
__DEFINE_PERCPU_RWSEM(name, /* not static */)
#define DEFINE_STATIC_PERCPU_RWSEM(name) \
__DEFINE_PERCPU_RWSEM(name, static)
extern bool __percpu_down_read(struct percpu_rw_semaphore *, bool);
static inline void percpu_down_read(struct percpu_rw_semaphore *sem)
{
might_sleep();
rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
preempt_disable();
/*
* We are in an RCU-sched read-side critical section, so the writer
* cannot both change sem->state from readers_fast and start checking
* counters while we are here. So if we see !sem->state, we know that
* the writer won't be checking until we're past the preempt_enable()
* and that once the synchronize_rcu() is done, the writer will see
* anything we did within this RCU-sched read-size critical section.
*/
if (likely(rcu_sync_is_idle(&sem->rss)))
this_cpu_inc(*sem->read_count);
else
__percpu_down_read(sem, false); /* Unconditional memory barrier */
/*
* The preempt_enable() prevents the compiler from
* bleeding the critical section out.
*/
preempt_enable();
}
static inline bool percpu_down_read_trylock(struct percpu_rw_semaphore *sem)
{
bool ret = true;
preempt_disable();
/*
* Same as in percpu_down_read().
*/
if (likely(rcu_sync_is_idle(&sem->rss)))
this_cpu_inc(*sem->read_count);
else
ret = __percpu_down_read(sem, true); /* Unconditional memory barrier */
preempt_enable();
/*
* The barrier() from preempt_enable() prevents the compiler from
* bleeding the critical section out.
*/
if (ret)
rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
return ret;
}
static inline void percpu_up_read(struct percpu_rw_semaphore *sem)
{
rwsem_release(&sem->dep_map, _RET_IP_);
preempt_disable();
/*
* Same as in percpu_down_read().
*/
if (likely(rcu_sync_is_idle(&sem->rss))) {
this_cpu_dec(*sem->read_count);
} else {
/*
* slowpath; reader will only ever wake a single blocked
* writer.
*/
smp_mb(); /* B matches C */
/*
* In other words, if they see our decrement (presumably to
* aggregate zero, as that is the only time it matters) they
* will also see our critical section.
*/
this_cpu_dec(*sem->read_count);
rcuwait_wake_up(&sem->writer);
}
preempt_enable();
}
extern void percpu_down_write(struct percpu_rw_semaphore *);
extern void percpu_up_write(struct percpu_rw_semaphore *);
extern int __percpu_init_rwsem(struct percpu_rw_semaphore *,
const char *, struct lock_class_key *);
extern void percpu_free_rwsem(struct percpu_rw_semaphore *);
#define percpu_init_rwsem(sem) \
({ \
static struct lock_class_key rwsem_key; \
__percpu_init_rwsem(sem, #sem, &rwsem_key); \
})
#define percpu_rwsem_is_held(sem) lockdep_is_held(sem)
#define percpu_rwsem_assert_held(sem) lockdep_assert_held(sem)
static inline void percpu_rwsem_release(struct percpu_rw_semaphore *sem,
bool read, unsigned long ip)
{
lock_release(&sem->dep_map, ip);
}
static inline void percpu_rwsem_acquire(struct percpu_rw_semaphore *sem,
bool read, unsigned long ip)
{
lock_acquire(&sem->dep_map, 0, 1, read, 1, NULL, ip);
}
#endif