mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-10 07:00:48 +00:00
7034228792
Having received another series of whitespace patches I decided to do this once and for all rather than dealing with this kind of patches trickling in forever. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
503 lines
13 KiB
ArmAsm
503 lines
13 KiB
ArmAsm
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Unified implementation of memcpy, memmove and the __copy_user backend.
|
|
*
|
|
* Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
|
|
* Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
|
|
* Copyright (C) 2002 Broadcom, Inc.
|
|
* memcpy/copy_user author: Mark Vandevoorde
|
|
*
|
|
* Mnemonic names for arguments to memcpy/__copy_user
|
|
*/
|
|
|
|
#include <asm/asm.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/regdef.h>
|
|
|
|
#define dst a0
|
|
#define src a1
|
|
#define len a2
|
|
|
|
/*
|
|
* Spec
|
|
*
|
|
* memcpy copies len bytes from src to dst and sets v0 to dst.
|
|
* It assumes that
|
|
* - src and dst don't overlap
|
|
* - src is readable
|
|
* - dst is writable
|
|
* memcpy uses the standard calling convention
|
|
*
|
|
* __copy_user copies up to len bytes from src to dst and sets a2 (len) to
|
|
* the number of uncopied bytes due to an exception caused by a read or write.
|
|
* __copy_user assumes that src and dst don't overlap, and that the call is
|
|
* implementing one of the following:
|
|
* copy_to_user
|
|
* - src is readable (no exceptions when reading src)
|
|
* copy_from_user
|
|
* - dst is writable (no exceptions when writing dst)
|
|
* __copy_user uses a non-standard calling convention; see
|
|
* arch/mips/include/asm/uaccess.h
|
|
*
|
|
* When an exception happens on a load, the handler must
|
|
# ensure that all of the destination buffer is overwritten to prevent
|
|
* leaking information to user mode programs.
|
|
*/
|
|
|
|
/*
|
|
* Implementation
|
|
*/
|
|
|
|
/*
|
|
* The exception handler for loads requires that:
|
|
* 1- AT contain the address of the byte just past the end of the source
|
|
* of the copy,
|
|
* 2- src_entry <= src < AT, and
|
|
* 3- (dst - src) == (dst_entry - src_entry),
|
|
* The _entry suffix denotes values when __copy_user was called.
|
|
*
|
|
* (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
|
|
* (2) is met by incrementing src by the number of bytes copied
|
|
* (3) is met by not doing loads between a pair of increments of dst and src
|
|
*
|
|
* The exception handlers for stores adjust len (if necessary) and return.
|
|
* These handlers do not need to overwrite any data.
|
|
*
|
|
* For __rmemcpy and memmove an exception is always a kernel bug, therefore
|
|
* they're not protected.
|
|
*/
|
|
|
|
#define EXC(inst_reg,addr,handler) \
|
|
9: inst_reg, addr; \
|
|
.section __ex_table,"a"; \
|
|
PTR 9b, handler; \
|
|
.previous
|
|
|
|
/*
|
|
* Only on the 64-bit kernel we can made use of 64-bit registers.
|
|
*/
|
|
|
|
#define LOAD ld
|
|
#define LOADL ldl
|
|
#define LOADR ldr
|
|
#define STOREL sdl
|
|
#define STORER sdr
|
|
#define STORE sd
|
|
#define ADD daddu
|
|
#define SUB dsubu
|
|
#define SRL dsrl
|
|
#define SRA dsra
|
|
#define SLL dsll
|
|
#define SLLV dsllv
|
|
#define SRLV dsrlv
|
|
#define NBYTES 8
|
|
#define LOG_NBYTES 3
|
|
|
|
/*
|
|
* As we are sharing code base with the mips32 tree (which use the o32 ABI
|
|
* register definitions). We need to redefine the register definitions from
|
|
* the n64 ABI register naming to the o32 ABI register naming.
|
|
*/
|
|
#undef t0
|
|
#undef t1
|
|
#undef t2
|
|
#undef t3
|
|
#define t0 $8
|
|
#define t1 $9
|
|
#define t2 $10
|
|
#define t3 $11
|
|
#define t4 $12
|
|
#define t5 $13
|
|
#define t6 $14
|
|
#define t7 $15
|
|
|
|
#ifdef CONFIG_CPU_LITTLE_ENDIAN
|
|
#define LDFIRST LOADR
|
|
#define LDREST LOADL
|
|
#define STFIRST STORER
|
|
#define STREST STOREL
|
|
#define SHIFT_DISCARD SLLV
|
|
#else
|
|
#define LDFIRST LOADL
|
|
#define LDREST LOADR
|
|
#define STFIRST STOREL
|
|
#define STREST STORER
|
|
#define SHIFT_DISCARD SRLV
|
|
#endif
|
|
|
|
#define FIRST(unit) ((unit)*NBYTES)
|
|
#define REST(unit) (FIRST(unit)+NBYTES-1)
|
|
#define UNIT(unit) FIRST(unit)
|
|
|
|
#define ADDRMASK (NBYTES-1)
|
|
|
|
.text
|
|
.set noreorder
|
|
.set noat
|
|
|
|
/*
|
|
* t7 is used as a flag to note inatomic mode.
|
|
*/
|
|
LEAF(__copy_user_inatomic)
|
|
b __copy_user_common
|
|
li t7, 1
|
|
END(__copy_user_inatomic)
|
|
|
|
/*
|
|
* A combined memcpy/__copy_user
|
|
* __copy_user sets len to 0 for success; else to an upper bound of
|
|
* the number of uncopied bytes.
|
|
* memcpy sets v0 to dst.
|
|
*/
|
|
.align 5
|
|
LEAF(memcpy) /* a0=dst a1=src a2=len */
|
|
move v0, dst /* return value */
|
|
__memcpy:
|
|
FEXPORT(__copy_user)
|
|
li t7, 0 /* not inatomic */
|
|
__copy_user_common:
|
|
/*
|
|
* Note: dst & src may be unaligned, len may be 0
|
|
* Temps
|
|
*/
|
|
#
|
|
# Octeon doesn't care if the destination is unaligned. The hardware
|
|
# can fix it faster than we can special case the assembly.
|
|
#
|
|
pref 0, 0(src)
|
|
sltu t0, len, NBYTES # Check if < 1 word
|
|
bnez t0, copy_bytes_checklen
|
|
and t0, src, ADDRMASK # Check if src unaligned
|
|
bnez t0, src_unaligned
|
|
sltu t0, len, 4*NBYTES # Check if < 4 words
|
|
bnez t0, less_than_4units
|
|
sltu t0, len, 8*NBYTES # Check if < 8 words
|
|
bnez t0, less_than_8units
|
|
sltu t0, len, 16*NBYTES # Check if < 16 words
|
|
bnez t0, cleanup_both_aligned
|
|
sltu t0, len, 128+1 # Check if len < 129
|
|
bnez t0, 1f # Skip prefetch if len is too short
|
|
sltu t0, len, 256+1 # Check if len < 257
|
|
bnez t0, 1f # Skip prefetch if len is too short
|
|
pref 0, 128(src) # We must not prefetch invalid addresses
|
|
#
|
|
# This is where we loop if there is more than 128 bytes left
|
|
2: pref 0, 256(src) # We must not prefetch invalid addresses
|
|
#
|
|
# This is where we loop if we can't prefetch anymore
|
|
1:
|
|
EXC( LOAD t0, UNIT(0)(src), l_exc)
|
|
EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
|
|
EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
|
|
EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
|
|
SUB len, len, 16*NBYTES
|
|
EXC( STORE t0, UNIT(0)(dst), s_exc_p16u)
|
|
EXC( STORE t1, UNIT(1)(dst), s_exc_p15u)
|
|
EXC( STORE t2, UNIT(2)(dst), s_exc_p14u)
|
|
EXC( STORE t3, UNIT(3)(dst), s_exc_p13u)
|
|
EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
|
|
EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
|
|
EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
|
|
EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
|
|
EXC( STORE t0, UNIT(4)(dst), s_exc_p12u)
|
|
EXC( STORE t1, UNIT(5)(dst), s_exc_p11u)
|
|
EXC( STORE t2, UNIT(6)(dst), s_exc_p10u)
|
|
ADD src, src, 16*NBYTES
|
|
EXC( STORE t3, UNIT(7)(dst), s_exc_p9u)
|
|
ADD dst, dst, 16*NBYTES
|
|
EXC( LOAD t0, UNIT(-8)(src), l_exc_copy)
|
|
EXC( LOAD t1, UNIT(-7)(src), l_exc_copy)
|
|
EXC( LOAD t2, UNIT(-6)(src), l_exc_copy)
|
|
EXC( LOAD t3, UNIT(-5)(src), l_exc_copy)
|
|
EXC( STORE t0, UNIT(-8)(dst), s_exc_p8u)
|
|
EXC( STORE t1, UNIT(-7)(dst), s_exc_p7u)
|
|
EXC( STORE t2, UNIT(-6)(dst), s_exc_p6u)
|
|
EXC( STORE t3, UNIT(-5)(dst), s_exc_p5u)
|
|
EXC( LOAD t0, UNIT(-4)(src), l_exc_copy)
|
|
EXC( LOAD t1, UNIT(-3)(src), l_exc_copy)
|
|
EXC( LOAD t2, UNIT(-2)(src), l_exc_copy)
|
|
EXC( LOAD t3, UNIT(-1)(src), l_exc_copy)
|
|
EXC( STORE t0, UNIT(-4)(dst), s_exc_p4u)
|
|
EXC( STORE t1, UNIT(-3)(dst), s_exc_p3u)
|
|
EXC( STORE t2, UNIT(-2)(dst), s_exc_p2u)
|
|
EXC( STORE t3, UNIT(-1)(dst), s_exc_p1u)
|
|
sltu t0, len, 256+1 # See if we can prefetch more
|
|
beqz t0, 2b
|
|
sltu t0, len, 128 # See if we can loop more time
|
|
beqz t0, 1b
|
|
nop
|
|
#
|
|
# Jump here if there are less than 16*NBYTES left.
|
|
#
|
|
cleanup_both_aligned:
|
|
beqz len, done
|
|
sltu t0, len, 8*NBYTES
|
|
bnez t0, less_than_8units
|
|
nop
|
|
EXC( LOAD t0, UNIT(0)(src), l_exc)
|
|
EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
|
|
EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
|
|
EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
|
|
SUB len, len, 8*NBYTES
|
|
EXC( STORE t0, UNIT(0)(dst), s_exc_p8u)
|
|
EXC( STORE t1, UNIT(1)(dst), s_exc_p7u)
|
|
EXC( STORE t2, UNIT(2)(dst), s_exc_p6u)
|
|
EXC( STORE t3, UNIT(3)(dst), s_exc_p5u)
|
|
EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
|
|
EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
|
|
EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
|
|
EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
|
|
EXC( STORE t0, UNIT(4)(dst), s_exc_p4u)
|
|
EXC( STORE t1, UNIT(5)(dst), s_exc_p3u)
|
|
EXC( STORE t2, UNIT(6)(dst), s_exc_p2u)
|
|
EXC( STORE t3, UNIT(7)(dst), s_exc_p1u)
|
|
ADD src, src, 8*NBYTES
|
|
beqz len, done
|
|
ADD dst, dst, 8*NBYTES
|
|
#
|
|
# Jump here if there are less than 8*NBYTES left.
|
|
#
|
|
less_than_8units:
|
|
sltu t0, len, 4*NBYTES
|
|
bnez t0, less_than_4units
|
|
nop
|
|
EXC( LOAD t0, UNIT(0)(src), l_exc)
|
|
EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
|
|
EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
|
|
EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
|
|
SUB len, len, 4*NBYTES
|
|
EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
|
|
EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
|
|
EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
|
|
EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
|
|
ADD src, src, 4*NBYTES
|
|
beqz len, done
|
|
ADD dst, dst, 4*NBYTES
|
|
#
|
|
# Jump here if there are less than 4*NBYTES left. This means
|
|
# we may need to copy up to 3 NBYTES words.
|
|
#
|
|
less_than_4units:
|
|
sltu t0, len, 1*NBYTES
|
|
bnez t0, copy_bytes_checklen
|
|
nop
|
|
#
|
|
# 1) Copy NBYTES, then check length again
|
|
#
|
|
EXC( LOAD t0, 0(src), l_exc)
|
|
SUB len, len, NBYTES
|
|
sltu t1, len, 8
|
|
EXC( STORE t0, 0(dst), s_exc_p1u)
|
|
ADD src, src, NBYTES
|
|
bnez t1, copy_bytes_checklen
|
|
ADD dst, dst, NBYTES
|
|
#
|
|
# 2) Copy NBYTES, then check length again
|
|
#
|
|
EXC( LOAD t0, 0(src), l_exc)
|
|
SUB len, len, NBYTES
|
|
sltu t1, len, 8
|
|
EXC( STORE t0, 0(dst), s_exc_p1u)
|
|
ADD src, src, NBYTES
|
|
bnez t1, copy_bytes_checklen
|
|
ADD dst, dst, NBYTES
|
|
#
|
|
# 3) Copy NBYTES, then check length again
|
|
#
|
|
EXC( LOAD t0, 0(src), l_exc)
|
|
SUB len, len, NBYTES
|
|
ADD src, src, NBYTES
|
|
ADD dst, dst, NBYTES
|
|
b copy_bytes_checklen
|
|
EXC( STORE t0, -8(dst), s_exc_p1u)
|
|
|
|
src_unaligned:
|
|
#define rem t8
|
|
SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter
|
|
beqz t0, cleanup_src_unaligned
|
|
and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES
|
|
1:
|
|
/*
|
|
* Avoid consecutive LD*'s to the same register since some mips
|
|
* implementations can't issue them in the same cycle.
|
|
* It's OK to load FIRST(N+1) before REST(N) because the two addresses
|
|
* are to the same unit (unless src is aligned, but it's not).
|
|
*/
|
|
EXC( LDFIRST t0, FIRST(0)(src), l_exc)
|
|
EXC( LDFIRST t1, FIRST(1)(src), l_exc_copy)
|
|
SUB len, len, 4*NBYTES
|
|
EXC( LDREST t0, REST(0)(src), l_exc_copy)
|
|
EXC( LDREST t1, REST(1)(src), l_exc_copy)
|
|
EXC( LDFIRST t2, FIRST(2)(src), l_exc_copy)
|
|
EXC( LDFIRST t3, FIRST(3)(src), l_exc_copy)
|
|
EXC( LDREST t2, REST(2)(src), l_exc_copy)
|
|
EXC( LDREST t3, REST(3)(src), l_exc_copy)
|
|
ADD src, src, 4*NBYTES
|
|
EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
|
|
EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
|
|
EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
|
|
EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
|
|
bne len, rem, 1b
|
|
ADD dst, dst, 4*NBYTES
|
|
|
|
cleanup_src_unaligned:
|
|
beqz len, done
|
|
and rem, len, NBYTES-1 # rem = len % NBYTES
|
|
beq rem, len, copy_bytes
|
|
nop
|
|
1:
|
|
EXC( LDFIRST t0, FIRST(0)(src), l_exc)
|
|
EXC( LDREST t0, REST(0)(src), l_exc_copy)
|
|
SUB len, len, NBYTES
|
|
EXC( STORE t0, 0(dst), s_exc_p1u)
|
|
ADD src, src, NBYTES
|
|
bne len, rem, 1b
|
|
ADD dst, dst, NBYTES
|
|
|
|
copy_bytes_checklen:
|
|
beqz len, done
|
|
nop
|
|
copy_bytes:
|
|
/* 0 < len < NBYTES */
|
|
#define COPY_BYTE(N) \
|
|
EXC( lb t0, N(src), l_exc); \
|
|
SUB len, len, 1; \
|
|
beqz len, done; \
|
|
EXC( sb t0, N(dst), s_exc_p1)
|
|
|
|
COPY_BYTE(0)
|
|
COPY_BYTE(1)
|
|
COPY_BYTE(2)
|
|
COPY_BYTE(3)
|
|
COPY_BYTE(4)
|
|
COPY_BYTE(5)
|
|
EXC( lb t0, NBYTES-2(src), l_exc)
|
|
SUB len, len, 1
|
|
jr ra
|
|
EXC( sb t0, NBYTES-2(dst), s_exc_p1)
|
|
done:
|
|
jr ra
|
|
nop
|
|
END(memcpy)
|
|
|
|
l_exc_copy:
|
|
/*
|
|
* Copy bytes from src until faulting load address (or until a
|
|
* lb faults)
|
|
*
|
|
* When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
|
|
* may be more than a byte beyond the last address.
|
|
* Hence, the lb below may get an exception.
|
|
*
|
|
* Assumes src < THREAD_BUADDR($28)
|
|
*/
|
|
LOAD t0, TI_TASK($28)
|
|
LOAD t0, THREAD_BUADDR(t0)
|
|
1:
|
|
EXC( lb t1, 0(src), l_exc)
|
|
ADD src, src, 1
|
|
sb t1, 0(dst) # can't fault -- we're copy_from_user
|
|
bne src, t0, 1b
|
|
ADD dst, dst, 1
|
|
l_exc:
|
|
LOAD t0, TI_TASK($28)
|
|
LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address
|
|
SUB len, AT, t0 # len number of uncopied bytes
|
|
bnez t7, 2f /* Skip the zeroing out part if inatomic */
|
|
/*
|
|
* Here's where we rely on src and dst being incremented in tandem,
|
|
* See (3) above.
|
|
* dst += (fault addr - src) to put dst at first byte to clear
|
|
*/
|
|
ADD dst, t0 # compute start address in a1
|
|
SUB dst, src
|
|
/*
|
|
* Clear len bytes starting at dst. Can't call __bzero because it
|
|
* might modify len. An inefficient loop for these rare times...
|
|
*/
|
|
beqz len, done
|
|
SUB src, len, 1
|
|
1: sb zero, 0(dst)
|
|
ADD dst, dst, 1
|
|
bnez src, 1b
|
|
SUB src, src, 1
|
|
2: jr ra
|
|
nop
|
|
|
|
|
|
#define SEXC(n) \
|
|
s_exc_p ## n ## u: \
|
|
jr ra; \
|
|
ADD len, len, n*NBYTES
|
|
|
|
SEXC(16)
|
|
SEXC(15)
|
|
SEXC(14)
|
|
SEXC(13)
|
|
SEXC(12)
|
|
SEXC(11)
|
|
SEXC(10)
|
|
SEXC(9)
|
|
SEXC(8)
|
|
SEXC(7)
|
|
SEXC(6)
|
|
SEXC(5)
|
|
SEXC(4)
|
|
SEXC(3)
|
|
SEXC(2)
|
|
SEXC(1)
|
|
|
|
s_exc_p1:
|
|
jr ra
|
|
ADD len, len, 1
|
|
s_exc:
|
|
jr ra
|
|
nop
|
|
|
|
.align 5
|
|
LEAF(memmove)
|
|
ADD t0, a0, a2
|
|
ADD t1, a1, a2
|
|
sltu t0, a1, t0 # dst + len <= src -> memcpy
|
|
sltu t1, a0, t1 # dst >= src + len -> memcpy
|
|
and t0, t1
|
|
beqz t0, __memcpy
|
|
move v0, a0 /* return value */
|
|
beqz a2, r_out
|
|
END(memmove)
|
|
|
|
/* fall through to __rmemcpy */
|
|
LEAF(__rmemcpy) /* a0=dst a1=src a2=len */
|
|
sltu t0, a1, a0
|
|
beqz t0, r_end_bytes_up # src >= dst
|
|
nop
|
|
ADD a0, a2 # dst = dst + len
|
|
ADD a1, a2 # src = src + len
|
|
|
|
r_end_bytes:
|
|
lb t0, -1(a1)
|
|
SUB a2, a2, 0x1
|
|
sb t0, -1(a0)
|
|
SUB a1, a1, 0x1
|
|
bnez a2, r_end_bytes
|
|
SUB a0, a0, 0x1
|
|
|
|
r_out:
|
|
jr ra
|
|
move a2, zero
|
|
|
|
r_end_bytes_up:
|
|
lb t0, (a1)
|
|
SUB a2, a2, 0x1
|
|
sb t0, (a0)
|
|
ADD a1, a1, 0x1
|
|
bnez a2, r_end_bytes_up
|
|
ADD a0, a0, 0x1
|
|
|
|
jr ra
|
|
move a2, zero
|
|
END(__rmemcpy)
|