linux-stable/kernel/context_tracking.c
Valentin Schneider 4eab44a8ae context_tracking: Make context_tracking_key __ro_after_init
context_tracking_key is only ever enabled in __init ct_cpu_tracker_user(),
so mark it as __ro_after_init.

Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240313180106.2917308-3-vschneid@redhat.com
2024-03-22 11:18:18 +01:00

733 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Context tracking: Probe on high level context boundaries such as kernel,
* userspace, guest or idle.
*
* This is used by RCU to remove its dependency on the timer tick while a CPU
* runs in idle, userspace or guest mode.
*
* User/guest tracking started by Frederic Weisbecker:
*
* Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker
*
* Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton,
* Steven Rostedt, Peter Zijlstra for suggestions and improvements.
*
* RCU extended quiescent state bits imported from kernel/rcu/tree.c
* where the relevant authorship may be found.
*/
#include <linux/context_tracking.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/hardirq.h>
#include <linux/export.h>
#include <linux/kprobes.h>
#include <trace/events/rcu.h>
DEFINE_PER_CPU(struct context_tracking, context_tracking) = {
#ifdef CONFIG_CONTEXT_TRACKING_IDLE
.dynticks_nesting = 1,
.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
#endif
.state = ATOMIC_INIT(RCU_DYNTICKS_IDX),
};
EXPORT_SYMBOL_GPL(context_tracking);
#ifdef CONFIG_CONTEXT_TRACKING_IDLE
#define TPS(x) tracepoint_string(x)
/* Record the current task on dyntick-idle entry. */
static __always_inline void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}
/* Record no current task on dyntick-idle exit. */
static __always_inline void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}
/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
static __always_inline void rcu_dynticks_task_trace_enter(void)
{
#ifdef CONFIG_TASKS_TRACE_RCU
if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
current->trc_reader_special.b.need_mb = true;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}
/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
static __always_inline void rcu_dynticks_task_trace_exit(void)
{
#ifdef CONFIG_TASKS_TRACE_RCU
if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
current->trc_reader_special.b.need_mb = false;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}
/*
* Record entry into an extended quiescent state. This is only to be
* called when not already in an extended quiescent state, that is,
* RCU is watching prior to the call to this function and is no longer
* watching upon return.
*/
static noinstr void ct_kernel_exit_state(int offset)
{
int seq;
/*
* CPUs seeing atomic_add_return() must see prior RCU read-side
* critical sections, and we also must force ordering with the
* next idle sojourn.
*/
rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
seq = ct_state_inc(offset);
// RCU is no longer watching. Better be in extended quiescent state!
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & RCU_DYNTICKS_IDX));
}
/*
* Record exit from an extended quiescent state. This is only to be
* called from an extended quiescent state, that is, RCU is not watching
* prior to the call to this function and is watching upon return.
*/
static noinstr void ct_kernel_enter_state(int offset)
{
int seq;
/*
* CPUs seeing atomic_add_return() must see prior idle sojourns,
* and we also must force ordering with the next RCU read-side
* critical section.
*/
seq = ct_state_inc(offset);
// RCU is now watching. Better not be in an extended quiescent state!
rcu_dynticks_task_trace_exit(); // After ->dynticks update!
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & RCU_DYNTICKS_IDX));
}
/*
* Enter an RCU extended quiescent state, which can be either the
* idle loop or adaptive-tickless usermode execution.
*
* We crowbar the ->dynticks_nmi_nesting field to zero to allow for
* the possibility of usermode upcalls having messed up our count
* of interrupt nesting level during the prior busy period.
*/
static void noinstr ct_kernel_exit(bool user, int offset)
{
struct context_tracking *ct = this_cpu_ptr(&context_tracking);
WARN_ON_ONCE(ct_dynticks_nmi_nesting() != DYNTICK_IRQ_NONIDLE);
WRITE_ONCE(ct->dynticks_nmi_nesting, 0);
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
ct_dynticks_nesting() == 0);
if (ct_dynticks_nesting() != 1) {
// RCU will still be watching, so just do accounting and leave.
ct->dynticks_nesting--;
return;
}
instrumentation_begin();
lockdep_assert_irqs_disabled();
trace_rcu_dyntick(TPS("Start"), ct_dynticks_nesting(), 0, ct_dynticks());
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
rcu_preempt_deferred_qs(current);
// instrumentation for the noinstr ct_kernel_exit_state()
instrument_atomic_write(&ct->state, sizeof(ct->state));
instrumentation_end();
WRITE_ONCE(ct->dynticks_nesting, 0); /* Avoid irq-access tearing. */
// RCU is watching here ...
ct_kernel_exit_state(offset);
// ... but is no longer watching here.
rcu_dynticks_task_enter();
}
/*
* Exit an RCU extended quiescent state, which can be either the
* idle loop or adaptive-tickless usermode execution.
*
* We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
* allow for the possibility of usermode upcalls messing up our count of
* interrupt nesting level during the busy period that is just now starting.
*/
static void noinstr ct_kernel_enter(bool user, int offset)
{
struct context_tracking *ct = this_cpu_ptr(&context_tracking);
long oldval;
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled());
oldval = ct_dynticks_nesting();
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
if (oldval) {
// RCU was already watching, so just do accounting and leave.
ct->dynticks_nesting++;
return;
}
rcu_dynticks_task_exit();
// RCU is not watching here ...
ct_kernel_enter_state(offset);
// ... but is watching here.
instrumentation_begin();
// instrumentation for the noinstr ct_kernel_enter_state()
instrument_atomic_write(&ct->state, sizeof(ct->state));
trace_rcu_dyntick(TPS("End"), ct_dynticks_nesting(), 1, ct_dynticks());
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
WRITE_ONCE(ct->dynticks_nesting, 1);
WARN_ON_ONCE(ct_dynticks_nmi_nesting());
WRITE_ONCE(ct->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
instrumentation_end();
}
/**
* ct_nmi_exit - inform RCU of exit from NMI context
*
* If we are returning from the outermost NMI handler that interrupted an
* RCU-idle period, update ct->state and ct->dynticks_nmi_nesting
* to let the RCU grace-period handling know that the CPU is back to
* being RCU-idle.
*
* If you add or remove a call to ct_nmi_exit(), be sure to test
* with CONFIG_RCU_EQS_DEBUG=y.
*/
void noinstr ct_nmi_exit(void)
{
struct context_tracking *ct = this_cpu_ptr(&context_tracking);
instrumentation_begin();
/*
* Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
* (We are exiting an NMI handler, so RCU better be paying attention
* to us!)
*/
WARN_ON_ONCE(ct_dynticks_nmi_nesting() <= 0);
WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
/*
* If the nesting level is not 1, the CPU wasn't RCU-idle, so
* leave it in non-RCU-idle state.
*/
if (ct_dynticks_nmi_nesting() != 1) {
trace_rcu_dyntick(TPS("--="), ct_dynticks_nmi_nesting(), ct_dynticks_nmi_nesting() - 2,
ct_dynticks());
WRITE_ONCE(ct->dynticks_nmi_nesting, /* No store tearing. */
ct_dynticks_nmi_nesting() - 2);
instrumentation_end();
return;
}
/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
trace_rcu_dyntick(TPS("Startirq"), ct_dynticks_nmi_nesting(), 0, ct_dynticks());
WRITE_ONCE(ct->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
// instrumentation for the noinstr ct_kernel_exit_state()
instrument_atomic_write(&ct->state, sizeof(ct->state));
instrumentation_end();
// RCU is watching here ...
ct_kernel_exit_state(RCU_DYNTICKS_IDX);
// ... but is no longer watching here.
if (!in_nmi())
rcu_dynticks_task_enter();
}
/**
* ct_nmi_enter - inform RCU of entry to NMI context
*
* If the CPU was idle from RCU's viewpoint, update ct->state and
* ct->dynticks_nmi_nesting to let the RCU grace-period handling know
* that the CPU is active. This implementation permits nested NMIs, as
* long as the nesting level does not overflow an int. (You will probably
* run out of stack space first.)
*
* If you add or remove a call to ct_nmi_enter(), be sure to test
* with CONFIG_RCU_EQS_DEBUG=y.
*/
void noinstr ct_nmi_enter(void)
{
long incby = 2;
struct context_tracking *ct = this_cpu_ptr(&context_tracking);
/* Complain about underflow. */
WARN_ON_ONCE(ct_dynticks_nmi_nesting() < 0);
/*
* If idle from RCU viewpoint, atomically increment ->dynticks
* to mark non-idle and increment ->dynticks_nmi_nesting by one.
* Otherwise, increment ->dynticks_nmi_nesting by two. This means
* if ->dynticks_nmi_nesting is equal to one, we are guaranteed
* to be in the outermost NMI handler that interrupted an RCU-idle
* period (observation due to Andy Lutomirski).
*/
if (rcu_dynticks_curr_cpu_in_eqs()) {
if (!in_nmi())
rcu_dynticks_task_exit();
// RCU is not watching here ...
ct_kernel_enter_state(RCU_DYNTICKS_IDX);
// ... but is watching here.
instrumentation_begin();
// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
instrument_atomic_read(&ct->state, sizeof(ct->state));
// instrumentation for the noinstr ct_kernel_enter_state()
instrument_atomic_write(&ct->state, sizeof(ct->state));
incby = 1;
} else if (!in_nmi()) {
instrumentation_begin();
rcu_irq_enter_check_tick();
} else {
instrumentation_begin();
}
trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
ct_dynticks_nmi_nesting(),
ct_dynticks_nmi_nesting() + incby, ct_dynticks());
instrumentation_end();
WRITE_ONCE(ct->dynticks_nmi_nesting, /* Prevent store tearing. */
ct_dynticks_nmi_nesting() + incby);
barrier();
}
/**
* ct_idle_enter - inform RCU that current CPU is entering idle
*
* Enter idle mode, in other words, -leave- the mode in which RCU
* read-side critical sections can occur. (Though RCU read-side
* critical sections can occur in irq handlers in idle, a possibility
* handled by irq_enter() and irq_exit().)
*
* If you add or remove a call to ct_idle_enter(), be sure to test with
* CONFIG_RCU_EQS_DEBUG=y.
*/
void noinstr ct_idle_enter(void)
{
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled());
ct_kernel_exit(false, RCU_DYNTICKS_IDX + CONTEXT_IDLE);
}
EXPORT_SYMBOL_GPL(ct_idle_enter);
/**
* ct_idle_exit - inform RCU that current CPU is leaving idle
*
* Exit idle mode, in other words, -enter- the mode in which RCU
* read-side critical sections can occur.
*
* If you add or remove a call to ct_idle_exit(), be sure to test with
* CONFIG_RCU_EQS_DEBUG=y.
*/
void noinstr ct_idle_exit(void)
{
unsigned long flags;
raw_local_irq_save(flags);
ct_kernel_enter(false, RCU_DYNTICKS_IDX - CONTEXT_IDLE);
raw_local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(ct_idle_exit);
/**
* ct_irq_enter - inform RCU that current CPU is entering irq away from idle
*
* Enter an interrupt handler, which might possibly result in exiting
* idle mode, in other words, entering the mode in which read-side critical
* sections can occur. The caller must have disabled interrupts.
*
* Note that the Linux kernel is fully capable of entering an interrupt
* handler that it never exits, for example when doing upcalls to user mode!
* This code assumes that the idle loop never does upcalls to user mode.
* If your architecture's idle loop does do upcalls to user mode (or does
* anything else that results in unbalanced calls to the irq_enter() and
* irq_exit() functions), RCU will give you what you deserve, good and hard.
* But very infrequently and irreproducibly.
*
* Use things like work queues to work around this limitation.
*
* You have been warned.
*
* If you add or remove a call to ct_irq_enter(), be sure to test with
* CONFIG_RCU_EQS_DEBUG=y.
*/
noinstr void ct_irq_enter(void)
{
lockdep_assert_irqs_disabled();
ct_nmi_enter();
}
/**
* ct_irq_exit - inform RCU that current CPU is exiting irq towards idle
*
* Exit from an interrupt handler, which might possibly result in entering
* idle mode, in other words, leaving the mode in which read-side critical
* sections can occur. The caller must have disabled interrupts.
*
* This code assumes that the idle loop never does anything that might
* result in unbalanced calls to irq_enter() and irq_exit(). If your
* architecture's idle loop violates this assumption, RCU will give you what
* you deserve, good and hard. But very infrequently and irreproducibly.
*
* Use things like work queues to work around this limitation.
*
* You have been warned.
*
* If you add or remove a call to ct_irq_exit(), be sure to test with
* CONFIG_RCU_EQS_DEBUG=y.
*/
noinstr void ct_irq_exit(void)
{
lockdep_assert_irqs_disabled();
ct_nmi_exit();
}
/*
* Wrapper for ct_irq_enter() where interrupts are enabled.
*
* If you add or remove a call to ct_irq_enter_irqson(), be sure to test
* with CONFIG_RCU_EQS_DEBUG=y.
*/
void ct_irq_enter_irqson(void)
{
unsigned long flags;
local_irq_save(flags);
ct_irq_enter();
local_irq_restore(flags);
}
/*
* Wrapper for ct_irq_exit() where interrupts are enabled.
*
* If you add or remove a call to ct_irq_exit_irqson(), be sure to test
* with CONFIG_RCU_EQS_DEBUG=y.
*/
void ct_irq_exit_irqson(void)
{
unsigned long flags;
local_irq_save(flags);
ct_irq_exit();
local_irq_restore(flags);
}
#else
static __always_inline void ct_kernel_exit(bool user, int offset) { }
static __always_inline void ct_kernel_enter(bool user, int offset) { }
#endif /* #ifdef CONFIG_CONTEXT_TRACKING_IDLE */
#ifdef CONFIG_CONTEXT_TRACKING_USER
#define CREATE_TRACE_POINTS
#include <trace/events/context_tracking.h>
DEFINE_STATIC_KEY_FALSE_RO(context_tracking_key);
EXPORT_SYMBOL_GPL(context_tracking_key);
static noinstr bool context_tracking_recursion_enter(void)
{
int recursion;
recursion = __this_cpu_inc_return(context_tracking.recursion);
if (recursion == 1)
return true;
WARN_ONCE((recursion < 1), "Invalid context tracking recursion value %d\n", recursion);
__this_cpu_dec(context_tracking.recursion);
return false;
}
static __always_inline void context_tracking_recursion_exit(void)
{
__this_cpu_dec(context_tracking.recursion);
}
/**
* __ct_user_enter - Inform the context tracking that the CPU is going
* to enter user or guest space mode.
*
* @state: userspace context-tracking state to enter.
*
* This function must be called right before we switch from the kernel
* to user or guest space, when it's guaranteed the remaining kernel
* instructions to execute won't use any RCU read side critical section
* because this function sets RCU in extended quiescent state.
*/
void noinstr __ct_user_enter(enum ctx_state state)
{
struct context_tracking *ct = this_cpu_ptr(&context_tracking);
lockdep_assert_irqs_disabled();
/* Kernel threads aren't supposed to go to userspace */
WARN_ON_ONCE(!current->mm);
if (!context_tracking_recursion_enter())
return;
if (__ct_state() != state) {
if (ct->active) {
/*
* At this stage, only low level arch entry code remains and
* then we'll run in userspace. We can assume there won't be
* any RCU read-side critical section until the next call to
* user_exit() or ct_irq_enter(). Let's remove RCU's dependency
* on the tick.
*/
if (state == CONTEXT_USER) {
instrumentation_begin();
trace_user_enter(0);
vtime_user_enter(current);
instrumentation_end();
}
/*
* Other than generic entry implementation, we may be past the last
* rescheduling opportunity in the entry code. Trigger a self IPI
* that will fire and reschedule once we resume in user/guest mode.
*/
rcu_irq_work_resched();
/*
* Enter RCU idle mode right before resuming userspace. No use of RCU
* is permitted between this call and rcu_eqs_exit(). This way the
* CPU doesn't need to maintain the tick for RCU maintenance purposes
* when the CPU runs in userspace.
*/
ct_kernel_exit(true, RCU_DYNTICKS_IDX + state);
/*
* Special case if we only track user <-> kernel transitions for tickless
* cputime accounting but we don't support RCU extended quiescent state.
* In this we case we don't care about any concurrency/ordering.
*/
if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE))
raw_atomic_set(&ct->state, state);
} else {
/*
* Even if context tracking is disabled on this CPU, because it's outside
* the full dynticks mask for example, we still have to keep track of the
* context transitions and states to prevent inconsistency on those of
* other CPUs.
* If a task triggers an exception in userspace, sleep on the exception
* handler and then migrate to another CPU, that new CPU must know where
* the exception returns by the time we call exception_exit().
* This information can only be provided by the previous CPU when it called
* exception_enter().
* OTOH we can spare the calls to vtime and RCU when context_tracking.active
* is false because we know that CPU is not tickless.
*/
if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) {
/* Tracking for vtime only, no concurrent RCU EQS accounting */
raw_atomic_set(&ct->state, state);
} else {
/*
* Tracking for vtime and RCU EQS. Make sure we don't race
* with NMIs. OTOH we don't care about ordering here since
* RCU only requires RCU_DYNTICKS_IDX increments to be fully
* ordered.
*/
raw_atomic_add(state, &ct->state);
}
}
}
context_tracking_recursion_exit();
}
EXPORT_SYMBOL_GPL(__ct_user_enter);
/*
* OBSOLETE:
* This function should be noinstr but the below local_irq_restore() is
* unsafe because it involves illegal RCU uses through tracing and lockdep.
* This is unlikely to be fixed as this function is obsolete. The preferred
* way is to call __context_tracking_enter() through user_enter_irqoff()
* or context_tracking_guest_enter(). It should be the arch entry code
* responsibility to call into context tracking with IRQs disabled.
*/
void ct_user_enter(enum ctx_state state)
{
unsigned long flags;
/*
* Some contexts may involve an exception occuring in an irq,
* leading to that nesting:
* ct_irq_enter() rcu_eqs_exit(true) rcu_eqs_enter(true) ct_irq_exit()
* This would mess up the dyntick_nesting count though. And rcu_irq_*()
* helpers are enough to protect RCU uses inside the exception. So
* just return immediately if we detect we are in an IRQ.
*/
if (in_interrupt())
return;
local_irq_save(flags);
__ct_user_enter(state);
local_irq_restore(flags);
}
NOKPROBE_SYMBOL(ct_user_enter);
EXPORT_SYMBOL_GPL(ct_user_enter);
/**
* user_enter_callable() - Unfortunate ASM callable version of user_enter() for
* archs that didn't manage to check the context tracking
* static key from low level code.
*
* This OBSOLETE function should be noinstr but it unsafely calls
* local_irq_restore(), involving illegal RCU uses through tracing and lockdep.
* This is unlikely to be fixed as this function is obsolete. The preferred
* way is to call user_enter_irqoff(). It should be the arch entry code
* responsibility to call into context tracking with IRQs disabled.
*/
void user_enter_callable(void)
{
user_enter();
}
NOKPROBE_SYMBOL(user_enter_callable);
/**
* __ct_user_exit - Inform the context tracking that the CPU is
* exiting user or guest mode and entering the kernel.
*
* @state: userspace context-tracking state being exited from.
*
* This function must be called after we entered the kernel from user or
* guest space before any use of RCU read side critical section. This
* potentially include any high level kernel code like syscalls, exceptions,
* signal handling, etc...
*
* This call supports re-entrancy. This way it can be called from any exception
* handler without needing to know if we came from userspace or not.
*/
void noinstr __ct_user_exit(enum ctx_state state)
{
struct context_tracking *ct = this_cpu_ptr(&context_tracking);
if (!context_tracking_recursion_enter())
return;
if (__ct_state() == state) {
if (ct->active) {
/*
* Exit RCU idle mode while entering the kernel because it can
* run a RCU read side critical section anytime.
*/
ct_kernel_enter(true, RCU_DYNTICKS_IDX - state);
if (state == CONTEXT_USER) {
instrumentation_begin();
vtime_user_exit(current);
trace_user_exit(0);
instrumentation_end();
}
/*
* Special case if we only track user <-> kernel transitions for tickless
* cputime accounting but we don't support RCU extended quiescent state.
* In this we case we don't care about any concurrency/ordering.
*/
if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE))
raw_atomic_set(&ct->state, CONTEXT_KERNEL);
} else {
if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) {
/* Tracking for vtime only, no concurrent RCU EQS accounting */
raw_atomic_set(&ct->state, CONTEXT_KERNEL);
} else {
/*
* Tracking for vtime and RCU EQS. Make sure we don't race
* with NMIs. OTOH we don't care about ordering here since
* RCU only requires RCU_DYNTICKS_IDX increments to be fully
* ordered.
*/
raw_atomic_sub(state, &ct->state);
}
}
}
context_tracking_recursion_exit();
}
EXPORT_SYMBOL_GPL(__ct_user_exit);
/*
* OBSOLETE:
* This function should be noinstr but the below local_irq_save() is
* unsafe because it involves illegal RCU uses through tracing and lockdep.
* This is unlikely to be fixed as this function is obsolete. The preferred
* way is to call __context_tracking_exit() through user_exit_irqoff()
* or context_tracking_guest_exit(). It should be the arch entry code
* responsibility to call into context tracking with IRQs disabled.
*/
void ct_user_exit(enum ctx_state state)
{
unsigned long flags;
if (in_interrupt())
return;
local_irq_save(flags);
__ct_user_exit(state);
local_irq_restore(flags);
}
NOKPROBE_SYMBOL(ct_user_exit);
EXPORT_SYMBOL_GPL(ct_user_exit);
/**
* user_exit_callable() - Unfortunate ASM callable version of user_exit() for
* archs that didn't manage to check the context tracking
* static key from low level code.
*
* This OBSOLETE function should be noinstr but it unsafely calls local_irq_save(),
* involving illegal RCU uses through tracing and lockdep. This is unlikely
* to be fixed as this function is obsolete. The preferred way is to call
* user_exit_irqoff(). It should be the arch entry code responsibility to
* call into context tracking with IRQs disabled.
*/
void user_exit_callable(void)
{
user_exit();
}
NOKPROBE_SYMBOL(user_exit_callable);
void __init ct_cpu_track_user(int cpu)
{
static __initdata bool initialized = false;
if (!per_cpu(context_tracking.active, cpu)) {
per_cpu(context_tracking.active, cpu) = true;
static_branch_inc(&context_tracking_key);
}
if (initialized)
return;
#ifdef CONFIG_HAVE_TIF_NOHZ
/*
* Set TIF_NOHZ to init/0 and let it propagate to all tasks through fork
* This assumes that init is the only task at this early boot stage.
*/
set_tsk_thread_flag(&init_task, TIF_NOHZ);
#endif
WARN_ON_ONCE(!tasklist_empty());
initialized = true;
}
#ifdef CONFIG_CONTEXT_TRACKING_USER_FORCE
void __init context_tracking_init(void)
{
int cpu;
for_each_possible_cpu(cpu)
ct_cpu_track_user(cpu);
}
#endif
#endif /* #ifdef CONFIG_CONTEXT_TRACKING_USER */