linux-stable/lib/maple_tree.c
Liam R. Howlett 955a923d28 maple_tree: fix mas_empty_area_rev() null pointer dereference
Currently the code calls mas_start() followed by mas_data_end() if the
maple state is MA_START, but mas_start() may return with the maple state
node == NULL.  This will lead to a null pointer dereference when checking
information in the NULL node, which is done in mas_data_end().

Avoid setting the offset if there is no node by waiting until after the
maple state is checked for an empty or single entry state.

A user could trigger the events to cause a kernel oops by unmapping all
vmas to produce an empty maple tree, then mapping a vma that would cause
the scenario described above.

Link: https://lkml.kernel.org/r/20240422203349.2418465-1-Liam.Howlett@oracle.com
Fixes: 54a611b605 ("Maple Tree: add new data structure")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Marius Fleischer <fleischermarius@gmail.com>
Closes: https://lore.kernel.org/lkml/CAJg=8jyuSxDL6XvqEXY_66M20psRK2J53oBTP+fjV5xpW2-R6w@mail.gmail.com/
Link: https://lore.kernel.org/lkml/CAJg=8jyuSxDL6XvqEXY_66M20psRK2J53oBTP+fjV5xpW2-R6w@mail.gmail.com/
Tested-by: Marius Fleischer <fleischermarius@gmail.com>
Tested-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:28:05 -07:00

7656 lines
192 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Maple Tree implementation
* Copyright (c) 2018-2022 Oracle Corporation
* Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
* Matthew Wilcox <willy@infradead.org>
* Copyright (c) 2023 ByteDance
* Author: Peng Zhang <zhangpeng.00@bytedance.com>
*/
/*
* DOC: Interesting implementation details of the Maple Tree
*
* Each node type has a number of slots for entries and a number of slots for
* pivots. In the case of dense nodes, the pivots are implied by the position
* and are simply the slot index + the minimum of the node.
*
* In regular B-Tree terms, pivots are called keys. The term pivot is used to
* indicate that the tree is specifying ranges. Pivots may appear in the
* subtree with an entry attached to the value whereas keys are unique to a
* specific position of a B-tree. Pivot values are inclusive of the slot with
* the same index.
*
*
* The following illustrates the layout of a range64 nodes slots and pivots.
*
*
* Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
* ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
* │ │ │ │ │ │ │ │ └─ Implied maximum
* │ │ │ │ │ │ │ └─ Pivot 14
* │ │ │ │ │ │ └─ Pivot 13
* │ │ │ │ │ └─ Pivot 12
* │ │ │ │ └─ Pivot 11
* │ │ │ └─ Pivot 2
* │ │ └─ Pivot 1
* │ └─ Pivot 0
* └─ Implied minimum
*
* Slot contents:
* Internal (non-leaf) nodes contain pointers to other nodes.
* Leaf nodes contain entries.
*
* The location of interest is often referred to as an offset. All offsets have
* a slot, but the last offset has an implied pivot from the node above (or
* UINT_MAX for the root node.
*
* Ranges complicate certain write activities. When modifying any of
* the B-tree variants, it is known that one entry will either be added or
* deleted. When modifying the Maple Tree, one store operation may overwrite
* the entire data set, or one half of the tree, or the middle half of the tree.
*
*/
#include <linux/maple_tree.h>
#include <linux/xarray.h>
#include <linux/types.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/limits.h>
#include <asm/barrier.h>
#define CREATE_TRACE_POINTS
#include <trace/events/maple_tree.h>
#define MA_ROOT_PARENT 1
/*
* Maple state flags
* * MA_STATE_BULK - Bulk insert mode
* * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
* * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
*/
#define MA_STATE_BULK 1
#define MA_STATE_REBALANCE 2
#define MA_STATE_PREALLOC 4
#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
#define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
#define ma_mnode_ptr(x) ((struct maple_node *)(x))
#define ma_enode_ptr(x) ((struct maple_enode *)(x))
static struct kmem_cache *maple_node_cache;
#ifdef CONFIG_DEBUG_MAPLE_TREE
static const unsigned long mt_max[] = {
[maple_dense] = MAPLE_NODE_SLOTS,
[maple_leaf_64] = ULONG_MAX,
[maple_range_64] = ULONG_MAX,
[maple_arange_64] = ULONG_MAX,
};
#define mt_node_max(x) mt_max[mte_node_type(x)]
#endif
static const unsigned char mt_slots[] = {
[maple_dense] = MAPLE_NODE_SLOTS,
[maple_leaf_64] = MAPLE_RANGE64_SLOTS,
[maple_range_64] = MAPLE_RANGE64_SLOTS,
[maple_arange_64] = MAPLE_ARANGE64_SLOTS,
};
#define mt_slot_count(x) mt_slots[mte_node_type(x)]
static const unsigned char mt_pivots[] = {
[maple_dense] = 0,
[maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
[maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
[maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
};
#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
static const unsigned char mt_min_slots[] = {
[maple_dense] = MAPLE_NODE_SLOTS / 2,
[maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
[maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
[maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
};
#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
struct maple_big_node {
struct maple_pnode *parent;
unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
union {
struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
struct {
unsigned long padding[MAPLE_BIG_NODE_GAPS];
unsigned long gap[MAPLE_BIG_NODE_GAPS];
};
};
unsigned char b_end;
enum maple_type type;
};
/*
* The maple_subtree_state is used to build a tree to replace a segment of an
* existing tree in a more atomic way. Any walkers of the older tree will hit a
* dead node and restart on updates.
*/
struct maple_subtree_state {
struct ma_state *orig_l; /* Original left side of subtree */
struct ma_state *orig_r; /* Original right side of subtree */
struct ma_state *l; /* New left side of subtree */
struct ma_state *m; /* New middle of subtree (rare) */
struct ma_state *r; /* New right side of subtree */
struct ma_topiary *free; /* nodes to be freed */
struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
struct maple_big_node *bn;
};
#ifdef CONFIG_KASAN_STACK
/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
#define noinline_for_kasan noinline_for_stack
#else
#define noinline_for_kasan inline
#endif
/* Functions */
static inline struct maple_node *mt_alloc_one(gfp_t gfp)
{
return kmem_cache_alloc(maple_node_cache, gfp);
}
static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
{
return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
}
static inline void mt_free_one(struct maple_node *node)
{
kmem_cache_free(maple_node_cache, node);
}
static inline void mt_free_bulk(size_t size, void __rcu **nodes)
{
kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
}
static void mt_free_rcu(struct rcu_head *head)
{
struct maple_node *node = container_of(head, struct maple_node, rcu);
kmem_cache_free(maple_node_cache, node);
}
/*
* ma_free_rcu() - Use rcu callback to free a maple node
* @node: The node to free
*
* The maple tree uses the parent pointer to indicate this node is no longer in
* use and will be freed.
*/
static void ma_free_rcu(struct maple_node *node)
{
WARN_ON(node->parent != ma_parent_ptr(node));
call_rcu(&node->rcu, mt_free_rcu);
}
static void mas_set_height(struct ma_state *mas)
{
unsigned int new_flags = mas->tree->ma_flags;
new_flags &= ~MT_FLAGS_HEIGHT_MASK;
MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
mas->tree->ma_flags = new_flags;
}
static unsigned int mas_mt_height(struct ma_state *mas)
{
return mt_height(mas->tree);
}
static inline unsigned int mt_attr(struct maple_tree *mt)
{
return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
}
static __always_inline enum maple_type mte_node_type(
const struct maple_enode *entry)
{
return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
MAPLE_NODE_TYPE_MASK;
}
static __always_inline bool ma_is_dense(const enum maple_type type)
{
return type < maple_leaf_64;
}
static __always_inline bool ma_is_leaf(const enum maple_type type)
{
return type < maple_range_64;
}
static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
{
return ma_is_leaf(mte_node_type(entry));
}
/*
* We also reserve values with the bottom two bits set to '10' which are
* below 4096
*/
static __always_inline bool mt_is_reserved(const void *entry)
{
return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
xa_is_internal(entry);
}
static __always_inline void mas_set_err(struct ma_state *mas, long err)
{
mas->node = MA_ERROR(err);
mas->status = ma_error;
}
static __always_inline bool mas_is_ptr(const struct ma_state *mas)
{
return mas->status == ma_root;
}
static __always_inline bool mas_is_start(const struct ma_state *mas)
{
return mas->status == ma_start;
}
static __always_inline bool mas_is_none(const struct ma_state *mas)
{
return mas->status == ma_none;
}
static __always_inline bool mas_is_paused(const struct ma_state *mas)
{
return mas->status == ma_pause;
}
static __always_inline bool mas_is_overflow(struct ma_state *mas)
{
return mas->status == ma_overflow;
}
static inline bool mas_is_underflow(struct ma_state *mas)
{
return mas->status == ma_underflow;
}
static __always_inline struct maple_node *mte_to_node(
const struct maple_enode *entry)
{
return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
}
/*
* mte_to_mat() - Convert a maple encoded node to a maple topiary node.
* @entry: The maple encoded node
*
* Return: a maple topiary pointer
*/
static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
{
return (struct maple_topiary *)
((unsigned long)entry & ~MAPLE_NODE_MASK);
}
/*
* mas_mn() - Get the maple state node.
* @mas: The maple state
*
* Return: the maple node (not encoded - bare pointer).
*/
static inline struct maple_node *mas_mn(const struct ma_state *mas)
{
return mte_to_node(mas->node);
}
/*
* mte_set_node_dead() - Set a maple encoded node as dead.
* @mn: The maple encoded node.
*/
static inline void mte_set_node_dead(struct maple_enode *mn)
{
mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
smp_wmb(); /* Needed for RCU */
}
/* Bit 1 indicates the root is a node */
#define MAPLE_ROOT_NODE 0x02
/* maple_type stored bit 3-6 */
#define MAPLE_ENODE_TYPE_SHIFT 0x03
/* Bit 2 means a NULL somewhere below */
#define MAPLE_ENODE_NULL 0x04
static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
enum maple_type type)
{
return (void *)((unsigned long)node |
(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
}
static inline void *mte_mk_root(const struct maple_enode *node)
{
return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
}
static inline void *mte_safe_root(const struct maple_enode *node)
{
return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
}
static inline void *mte_set_full(const struct maple_enode *node)
{
return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
}
static inline void *mte_clear_full(const struct maple_enode *node)
{
return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
}
static inline bool mte_has_null(const struct maple_enode *node)
{
return (unsigned long)node & MAPLE_ENODE_NULL;
}
static __always_inline bool ma_is_root(struct maple_node *node)
{
return ((unsigned long)node->parent & MA_ROOT_PARENT);
}
static __always_inline bool mte_is_root(const struct maple_enode *node)
{
return ma_is_root(mte_to_node(node));
}
static inline bool mas_is_root_limits(const struct ma_state *mas)
{
return !mas->min && mas->max == ULONG_MAX;
}
static __always_inline bool mt_is_alloc(struct maple_tree *mt)
{
return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
}
/*
* The Parent Pointer
* Excluding root, the parent pointer is 256B aligned like all other tree nodes.
* When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
* bit values need an extra bit to store the offset. This extra bit comes from
* a reuse of the last bit in the node type. This is possible by using bit 1 to
* indicate if bit 2 is part of the type or the slot.
*
* Note types:
* 0x??1 = Root
* 0x?00 = 16 bit nodes
* 0x010 = 32 bit nodes
* 0x110 = 64 bit nodes
*
* Slot size and alignment
* 0b??1 : Root
* 0b?00 : 16 bit values, type in 0-1, slot in 2-7
* 0b010 : 32 bit values, type in 0-2, slot in 3-7
* 0b110 : 64 bit values, type in 0-2, slot in 3-7
*/
#define MAPLE_PARENT_ROOT 0x01
#define MAPLE_PARENT_SLOT_SHIFT 0x03
#define MAPLE_PARENT_SLOT_MASK 0xF8
#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
#define MAPLE_PARENT_RANGE64 0x06
#define MAPLE_PARENT_RANGE32 0x04
#define MAPLE_PARENT_NOT_RANGE16 0x02
/*
* mte_parent_shift() - Get the parent shift for the slot storage.
* @parent: The parent pointer cast as an unsigned long
* Return: The shift into that pointer to the star to of the slot
*/
static inline unsigned long mte_parent_shift(unsigned long parent)
{
/* Note bit 1 == 0 means 16B */
if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
return MAPLE_PARENT_SLOT_SHIFT;
return MAPLE_PARENT_16B_SLOT_SHIFT;
}
/*
* mte_parent_slot_mask() - Get the slot mask for the parent.
* @parent: The parent pointer cast as an unsigned long.
* Return: The slot mask for that parent.
*/
static inline unsigned long mte_parent_slot_mask(unsigned long parent)
{
/* Note bit 1 == 0 means 16B */
if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
return MAPLE_PARENT_SLOT_MASK;
return MAPLE_PARENT_16B_SLOT_MASK;
}
/*
* mas_parent_type() - Return the maple_type of the parent from the stored
* parent type.
* @mas: The maple state
* @enode: The maple_enode to extract the parent's enum
* Return: The node->parent maple_type
*/
static inline
enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
{
unsigned long p_type;
p_type = (unsigned long)mte_to_node(enode)->parent;
if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
return 0;
p_type &= MAPLE_NODE_MASK;
p_type &= ~mte_parent_slot_mask(p_type);
switch (p_type) {
case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
if (mt_is_alloc(mas->tree))
return maple_arange_64;
return maple_range_64;
}
return 0;
}
/*
* mas_set_parent() - Set the parent node and encode the slot
* @enode: The encoded maple node.
* @parent: The encoded maple node that is the parent of @enode.
* @slot: The slot that @enode resides in @parent.
*
* Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
* parent type.
*/
static inline
void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
const struct maple_enode *parent, unsigned char slot)
{
unsigned long val = (unsigned long)parent;
unsigned long shift;
unsigned long type;
enum maple_type p_type = mte_node_type(parent);
MAS_BUG_ON(mas, p_type == maple_dense);
MAS_BUG_ON(mas, p_type == maple_leaf_64);
switch (p_type) {
case maple_range_64:
case maple_arange_64:
shift = MAPLE_PARENT_SLOT_SHIFT;
type = MAPLE_PARENT_RANGE64;
break;
default:
case maple_dense:
case maple_leaf_64:
shift = type = 0;
break;
}
val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
val |= (slot << shift) | type;
mte_to_node(enode)->parent = ma_parent_ptr(val);
}
/*
* mte_parent_slot() - get the parent slot of @enode.
* @enode: The encoded maple node.
*
* Return: The slot in the parent node where @enode resides.
*/
static __always_inline
unsigned int mte_parent_slot(const struct maple_enode *enode)
{
unsigned long val = (unsigned long)mte_to_node(enode)->parent;
if (unlikely(val & MA_ROOT_PARENT))
return 0;
/*
* Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
* by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
*/
return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
}
/*
* mte_parent() - Get the parent of @node.
* @node: The encoded maple node.
*
* Return: The parent maple node.
*/
static __always_inline
struct maple_node *mte_parent(const struct maple_enode *enode)
{
return (void *)((unsigned long)
(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
}
/*
* ma_dead_node() - check if the @enode is dead.
* @enode: The encoded maple node
*
* Return: true if dead, false otherwise.
*/
static __always_inline bool ma_dead_node(const struct maple_node *node)
{
struct maple_node *parent;
/* Do not reorder reads from the node prior to the parent check */
smp_rmb();
parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
return (parent == node);
}
/*
* mte_dead_node() - check if the @enode is dead.
* @enode: The encoded maple node
*
* Return: true if dead, false otherwise.
*/
static __always_inline bool mte_dead_node(const struct maple_enode *enode)
{
struct maple_node *parent, *node;
node = mte_to_node(enode);
/* Do not reorder reads from the node prior to the parent check */
smp_rmb();
parent = mte_parent(enode);
return (parent == node);
}
/*
* mas_allocated() - Get the number of nodes allocated in a maple state.
* @mas: The maple state
*
* The ma_state alloc member is overloaded to hold a pointer to the first
* allocated node or to the number of requested nodes to allocate. If bit 0 is
* set, then the alloc contains the number of requested nodes. If there is an
* allocated node, then the total allocated nodes is in that node.
*
* Return: The total number of nodes allocated
*/
static inline unsigned long mas_allocated(const struct ma_state *mas)
{
if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
return 0;
return mas->alloc->total;
}
/*
* mas_set_alloc_req() - Set the requested number of allocations.
* @mas: the maple state
* @count: the number of allocations.
*
* The requested number of allocations is either in the first allocated node,
* located in @mas->alloc->request_count, or directly in @mas->alloc if there is
* no allocated node. Set the request either in the node or do the necessary
* encoding to store in @mas->alloc directly.
*/
static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
{
if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
if (!count)
mas->alloc = NULL;
else
mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
return;
}
mas->alloc->request_count = count;
}
/*
* mas_alloc_req() - get the requested number of allocations.
* @mas: The maple state
*
* The alloc count is either stored directly in @mas, or in
* @mas->alloc->request_count if there is at least one node allocated. Decode
* the request count if it's stored directly in @mas->alloc.
*
* Return: The allocation request count.
*/
static inline unsigned int mas_alloc_req(const struct ma_state *mas)
{
if ((unsigned long)mas->alloc & 0x1)
return (unsigned long)(mas->alloc) >> 1;
else if (mas->alloc)
return mas->alloc->request_count;
return 0;
}
/*
* ma_pivots() - Get a pointer to the maple node pivots.
* @node - the maple node
* @type - the node type
*
* In the event of a dead node, this array may be %NULL
*
* Return: A pointer to the maple node pivots
*/
static inline unsigned long *ma_pivots(struct maple_node *node,
enum maple_type type)
{
switch (type) {
case maple_arange_64:
return node->ma64.pivot;
case maple_range_64:
case maple_leaf_64:
return node->mr64.pivot;
case maple_dense:
return NULL;
}
return NULL;
}
/*
* ma_gaps() - Get a pointer to the maple node gaps.
* @node - the maple node
* @type - the node type
*
* Return: A pointer to the maple node gaps
*/
static inline unsigned long *ma_gaps(struct maple_node *node,
enum maple_type type)
{
switch (type) {
case maple_arange_64:
return node->ma64.gap;
case maple_range_64:
case maple_leaf_64:
case maple_dense:
return NULL;
}
return NULL;
}
/*
* mas_safe_pivot() - get the pivot at @piv or mas->max.
* @mas: The maple state
* @pivots: The pointer to the maple node pivots
* @piv: The pivot to fetch
* @type: The maple node type
*
* Return: The pivot at @piv within the limit of the @pivots array, @mas->max
* otherwise.
*/
static __always_inline unsigned long
mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
unsigned char piv, enum maple_type type)
{
if (piv >= mt_pivots[type])
return mas->max;
return pivots[piv];
}
/*
* mas_safe_min() - Return the minimum for a given offset.
* @mas: The maple state
* @pivots: The pointer to the maple node pivots
* @offset: The offset into the pivot array
*
* Return: The minimum range value that is contained in @offset.
*/
static inline unsigned long
mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
{
if (likely(offset))
return pivots[offset - 1] + 1;
return mas->min;
}
/*
* mte_set_pivot() - Set a pivot to a value in an encoded maple node.
* @mn: The encoded maple node
* @piv: The pivot offset
* @val: The value of the pivot
*/
static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
unsigned long val)
{
struct maple_node *node = mte_to_node(mn);
enum maple_type type = mte_node_type(mn);
BUG_ON(piv >= mt_pivots[type]);
switch (type) {
case maple_range_64:
case maple_leaf_64:
node->mr64.pivot[piv] = val;
break;
case maple_arange_64:
node->ma64.pivot[piv] = val;
break;
case maple_dense:
break;
}
}
/*
* ma_slots() - Get a pointer to the maple node slots.
* @mn: The maple node
* @mt: The maple node type
*
* Return: A pointer to the maple node slots
*/
static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
{
switch (mt) {
case maple_arange_64:
return mn->ma64.slot;
case maple_range_64:
case maple_leaf_64:
return mn->mr64.slot;
case maple_dense:
return mn->slot;
}
return NULL;
}
static inline bool mt_write_locked(const struct maple_tree *mt)
{
return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
lockdep_is_held(&mt->ma_lock);
}
static __always_inline bool mt_locked(const struct maple_tree *mt)
{
return mt_external_lock(mt) ? mt_lock_is_held(mt) :
lockdep_is_held(&mt->ma_lock);
}
static __always_inline void *mt_slot(const struct maple_tree *mt,
void __rcu **slots, unsigned char offset)
{
return rcu_dereference_check(slots[offset], mt_locked(mt));
}
static __always_inline void *mt_slot_locked(struct maple_tree *mt,
void __rcu **slots, unsigned char offset)
{
return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
}
/*
* mas_slot_locked() - Get the slot value when holding the maple tree lock.
* @mas: The maple state
* @slots: The pointer to the slots
* @offset: The offset into the slots array to fetch
*
* Return: The entry stored in @slots at the @offset.
*/
static __always_inline void *mas_slot_locked(struct ma_state *mas,
void __rcu **slots, unsigned char offset)
{
return mt_slot_locked(mas->tree, slots, offset);
}
/*
* mas_slot() - Get the slot value when not holding the maple tree lock.
* @mas: The maple state
* @slots: The pointer to the slots
* @offset: The offset into the slots array to fetch
*
* Return: The entry stored in @slots at the @offset
*/
static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
unsigned char offset)
{
return mt_slot(mas->tree, slots, offset);
}
/*
* mas_root() - Get the maple tree root.
* @mas: The maple state.
*
* Return: The pointer to the root of the tree
*/
static __always_inline void *mas_root(struct ma_state *mas)
{
return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
}
static inline void *mt_root_locked(struct maple_tree *mt)
{
return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
}
/*
* mas_root_locked() - Get the maple tree root when holding the maple tree lock.
* @mas: The maple state.
*
* Return: The pointer to the root of the tree
*/
static inline void *mas_root_locked(struct ma_state *mas)
{
return mt_root_locked(mas->tree);
}
static inline struct maple_metadata *ma_meta(struct maple_node *mn,
enum maple_type mt)
{
switch (mt) {
case maple_arange_64:
return &mn->ma64.meta;
default:
return &mn->mr64.meta;
}
}
/*
* ma_set_meta() - Set the metadata information of a node.
* @mn: The maple node
* @mt: The maple node type
* @offset: The offset of the highest sub-gap in this node.
* @end: The end of the data in this node.
*/
static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
unsigned char offset, unsigned char end)
{
struct maple_metadata *meta = ma_meta(mn, mt);
meta->gap = offset;
meta->end = end;
}
/*
* mt_clear_meta() - clear the metadata information of a node, if it exists
* @mt: The maple tree
* @mn: The maple node
* @type: The maple node type
* @offset: The offset of the highest sub-gap in this node.
* @end: The end of the data in this node.
*/
static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
enum maple_type type)
{
struct maple_metadata *meta;
unsigned long *pivots;
void __rcu **slots;
void *next;
switch (type) {
case maple_range_64:
pivots = mn->mr64.pivot;
if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
slots = mn->mr64.slot;
next = mt_slot_locked(mt, slots,
MAPLE_RANGE64_SLOTS - 1);
if (unlikely((mte_to_node(next) &&
mte_node_type(next))))
return; /* no metadata, could be node */
}
fallthrough;
case maple_arange_64:
meta = ma_meta(mn, type);
break;
default:
return;
}
meta->gap = 0;
meta->end = 0;
}
/*
* ma_meta_end() - Get the data end of a node from the metadata
* @mn: The maple node
* @mt: The maple node type
*/
static inline unsigned char ma_meta_end(struct maple_node *mn,
enum maple_type mt)
{
struct maple_metadata *meta = ma_meta(mn, mt);
return meta->end;
}
/*
* ma_meta_gap() - Get the largest gap location of a node from the metadata
* @mn: The maple node
*/
static inline unsigned char ma_meta_gap(struct maple_node *mn)
{
return mn->ma64.meta.gap;
}
/*
* ma_set_meta_gap() - Set the largest gap location in a nodes metadata
* @mn: The maple node
* @mn: The maple node type
* @offset: The location of the largest gap.
*/
static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
unsigned char offset)
{
struct maple_metadata *meta = ma_meta(mn, mt);
meta->gap = offset;
}
/*
* mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
* @mat - the ma_topiary, a linked list of dead nodes.
* @dead_enode - the node to be marked as dead and added to the tail of the list
*
* Add the @dead_enode to the linked list in @mat.
*/
static inline void mat_add(struct ma_topiary *mat,
struct maple_enode *dead_enode)
{
mte_set_node_dead(dead_enode);
mte_to_mat(dead_enode)->next = NULL;
if (!mat->tail) {
mat->tail = mat->head = dead_enode;
return;
}
mte_to_mat(mat->tail)->next = dead_enode;
mat->tail = dead_enode;
}
static void mt_free_walk(struct rcu_head *head);
static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
bool free);
/*
* mas_mat_destroy() - Free all nodes and subtrees in a dead list.
* @mas - the maple state
* @mat - the ma_topiary linked list of dead nodes to free.
*
* Destroy walk a dead list.
*/
static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
{
struct maple_enode *next;
struct maple_node *node;
bool in_rcu = mt_in_rcu(mas->tree);
while (mat->head) {
next = mte_to_mat(mat->head)->next;
node = mte_to_node(mat->head);
mt_destroy_walk(mat->head, mas->tree, !in_rcu);
if (in_rcu)
call_rcu(&node->rcu, mt_free_walk);
mat->head = next;
}
}
/*
* mas_descend() - Descend into the slot stored in the ma_state.
* @mas - the maple state.
*
* Note: Not RCU safe, only use in write side or debug code.
*/
static inline void mas_descend(struct ma_state *mas)
{
enum maple_type type;
unsigned long *pivots;
struct maple_node *node;
void __rcu **slots;
node = mas_mn(mas);
type = mte_node_type(mas->node);
pivots = ma_pivots(node, type);
slots = ma_slots(node, type);
if (mas->offset)
mas->min = pivots[mas->offset - 1] + 1;
mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
mas->node = mas_slot(mas, slots, mas->offset);
}
/*
* mte_set_gap() - Set a maple node gap.
* @mn: The encoded maple node
* @gap: The offset of the gap to set
* @val: The gap value
*/
static inline void mte_set_gap(const struct maple_enode *mn,
unsigned char gap, unsigned long val)
{
switch (mte_node_type(mn)) {
default:
break;
case maple_arange_64:
mte_to_node(mn)->ma64.gap[gap] = val;
break;
}
}
/*
* mas_ascend() - Walk up a level of the tree.
* @mas: The maple state
*
* Sets the @mas->max and @mas->min to the correct values when walking up. This
* may cause several levels of walking up to find the correct min and max.
* May find a dead node which will cause a premature return.
* Return: 1 on dead node, 0 otherwise
*/
static int mas_ascend(struct ma_state *mas)
{
struct maple_enode *p_enode; /* parent enode. */
struct maple_enode *a_enode; /* ancestor enode. */
struct maple_node *a_node; /* ancestor node. */
struct maple_node *p_node; /* parent node. */
unsigned char a_slot;
enum maple_type a_type;
unsigned long min, max;
unsigned long *pivots;
bool set_max = false, set_min = false;
a_node = mas_mn(mas);
if (ma_is_root(a_node)) {
mas->offset = 0;
return 0;
}
p_node = mte_parent(mas->node);
if (unlikely(a_node == p_node))
return 1;
a_type = mas_parent_type(mas, mas->node);
mas->offset = mte_parent_slot(mas->node);
a_enode = mt_mk_node(p_node, a_type);
/* Check to make sure all parent information is still accurate */
if (p_node != mte_parent(mas->node))
return 1;
mas->node = a_enode;
if (mte_is_root(a_enode)) {
mas->max = ULONG_MAX;
mas->min = 0;
return 0;
}
min = 0;
max = ULONG_MAX;
if (!mas->offset) {
min = mas->min;
set_min = true;
}
if (mas->max == ULONG_MAX)
set_max = true;
do {
p_enode = a_enode;
a_type = mas_parent_type(mas, p_enode);
a_node = mte_parent(p_enode);
a_slot = mte_parent_slot(p_enode);
a_enode = mt_mk_node(a_node, a_type);
pivots = ma_pivots(a_node, a_type);
if (unlikely(ma_dead_node(a_node)))
return 1;
if (!set_min && a_slot) {
set_min = true;
min = pivots[a_slot - 1] + 1;
}
if (!set_max && a_slot < mt_pivots[a_type]) {
set_max = true;
max = pivots[a_slot];
}
if (unlikely(ma_dead_node(a_node)))
return 1;
if (unlikely(ma_is_root(a_node)))
break;
} while (!set_min || !set_max);
mas->max = max;
mas->min = min;
return 0;
}
/*
* mas_pop_node() - Get a previously allocated maple node from the maple state.
* @mas: The maple state
*
* Return: A pointer to a maple node.
*/
static inline struct maple_node *mas_pop_node(struct ma_state *mas)
{
struct maple_alloc *ret, *node = mas->alloc;
unsigned long total = mas_allocated(mas);
unsigned int req = mas_alloc_req(mas);
/* nothing or a request pending. */
if (WARN_ON(!total))
return NULL;
if (total == 1) {
/* single allocation in this ma_state */
mas->alloc = NULL;
ret = node;
goto single_node;
}
if (node->node_count == 1) {
/* Single allocation in this node. */
mas->alloc = node->slot[0];
mas->alloc->total = node->total - 1;
ret = node;
goto new_head;
}
node->total--;
ret = node->slot[--node->node_count];
node->slot[node->node_count] = NULL;
single_node:
new_head:
if (req) {
req++;
mas_set_alloc_req(mas, req);
}
memset(ret, 0, sizeof(*ret));
return (struct maple_node *)ret;
}
/*
* mas_push_node() - Push a node back on the maple state allocation.
* @mas: The maple state
* @used: The used maple node
*
* Stores the maple node back into @mas->alloc for reuse. Updates allocated and
* requested node count as necessary.
*/
static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
{
struct maple_alloc *reuse = (struct maple_alloc *)used;
struct maple_alloc *head = mas->alloc;
unsigned long count;
unsigned int requested = mas_alloc_req(mas);
count = mas_allocated(mas);
reuse->request_count = 0;
reuse->node_count = 0;
if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
head->slot[head->node_count++] = reuse;
head->total++;
goto done;
}
reuse->total = 1;
if ((head) && !((unsigned long)head & 0x1)) {
reuse->slot[0] = head;
reuse->node_count = 1;
reuse->total += head->total;
}
mas->alloc = reuse;
done:
if (requested > 1)
mas_set_alloc_req(mas, requested - 1);
}
/*
* mas_alloc_nodes() - Allocate nodes into a maple state
* @mas: The maple state
* @gfp: The GFP Flags
*/
static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
{
struct maple_alloc *node;
unsigned long allocated = mas_allocated(mas);
unsigned int requested = mas_alloc_req(mas);
unsigned int count;
void **slots = NULL;
unsigned int max_req = 0;
if (!requested)
return;
mas_set_alloc_req(mas, 0);
if (mas->mas_flags & MA_STATE_PREALLOC) {
if (allocated)
return;
BUG_ON(!allocated);
WARN_ON(!allocated);
}
if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
node = (struct maple_alloc *)mt_alloc_one(gfp);
if (!node)
goto nomem_one;
if (allocated) {
node->slot[0] = mas->alloc;
node->node_count = 1;
} else {
node->node_count = 0;
}
mas->alloc = node;
node->total = ++allocated;
requested--;
}
node = mas->alloc;
node->request_count = 0;
while (requested) {
max_req = MAPLE_ALLOC_SLOTS - node->node_count;
slots = (void **)&node->slot[node->node_count];
max_req = min(requested, max_req);
count = mt_alloc_bulk(gfp, max_req, slots);
if (!count)
goto nomem_bulk;
if (node->node_count == 0) {
node->slot[0]->node_count = 0;
node->slot[0]->request_count = 0;
}
node->node_count += count;
allocated += count;
node = node->slot[0];
requested -= count;
}
mas->alloc->total = allocated;
return;
nomem_bulk:
/* Clean up potential freed allocations on bulk failure */
memset(slots, 0, max_req * sizeof(unsigned long));
nomem_one:
mas_set_alloc_req(mas, requested);
if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
mas->alloc->total = allocated;
mas_set_err(mas, -ENOMEM);
}
/*
* mas_free() - Free an encoded maple node
* @mas: The maple state
* @used: The encoded maple node to free.
*
* Uses rcu free if necessary, pushes @used back on the maple state allocations
* otherwise.
*/
static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
{
struct maple_node *tmp = mte_to_node(used);
if (mt_in_rcu(mas->tree))
ma_free_rcu(tmp);
else
mas_push_node(mas, tmp);
}
/*
* mas_node_count_gfp() - Check if enough nodes are allocated and request more
* if there is not enough nodes.
* @mas: The maple state
* @count: The number of nodes needed
* @gfp: the gfp flags
*/
static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
{
unsigned long allocated = mas_allocated(mas);
if (allocated < count) {
mas_set_alloc_req(mas, count - allocated);
mas_alloc_nodes(mas, gfp);
}
}
/*
* mas_node_count() - Check if enough nodes are allocated and request more if
* there is not enough nodes.
* @mas: The maple state
* @count: The number of nodes needed
*
* Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
*/
static void mas_node_count(struct ma_state *mas, int count)
{
return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
}
/*
* mas_start() - Sets up maple state for operations.
* @mas: The maple state.
*
* If mas->status == mas_start, then set the min, max and depth to
* defaults.
*
* Return:
* - If mas->node is an error or not mas_start, return NULL.
* - If it's an empty tree: NULL & mas->status == ma_none
* - If it's a single entry: The entry & mas->status == mas_root
* - If it's a tree: NULL & mas->status == safe root node.
*/
static inline struct maple_enode *mas_start(struct ma_state *mas)
{
if (likely(mas_is_start(mas))) {
struct maple_enode *root;
mas->min = 0;
mas->max = ULONG_MAX;
retry:
mas->depth = 0;
root = mas_root(mas);
/* Tree with nodes */
if (likely(xa_is_node(root))) {
mas->depth = 1;
mas->status = ma_active;
mas->node = mte_safe_root(root);
mas->offset = 0;
if (mte_dead_node(mas->node))
goto retry;
return NULL;
}
/* empty tree */
if (unlikely(!root)) {
mas->node = NULL;
mas->status = ma_none;
mas->offset = MAPLE_NODE_SLOTS;
return NULL;
}
/* Single entry tree */
mas->status = ma_root;
mas->offset = MAPLE_NODE_SLOTS;
/* Single entry tree. */
if (mas->index > 0)
return NULL;
return root;
}
return NULL;
}
/*
* ma_data_end() - Find the end of the data in a node.
* @node: The maple node
* @type: The maple node type
* @pivots: The array of pivots in the node
* @max: The maximum value in the node
*
* Uses metadata to find the end of the data when possible.
* Return: The zero indexed last slot with data (may be null).
*/
static __always_inline unsigned char ma_data_end(struct maple_node *node,
enum maple_type type, unsigned long *pivots, unsigned long max)
{
unsigned char offset;
if (!pivots)
return 0;
if (type == maple_arange_64)
return ma_meta_end(node, type);
offset = mt_pivots[type] - 1;
if (likely(!pivots[offset]))
return ma_meta_end(node, type);
if (likely(pivots[offset] == max))
return offset;
return mt_pivots[type];
}
/*
* mas_data_end() - Find the end of the data (slot).
* @mas: the maple state
*
* This method is optimized to check the metadata of a node if the node type
* supports data end metadata.
*
* Return: The zero indexed last slot with data (may be null).
*/
static inline unsigned char mas_data_end(struct ma_state *mas)
{
enum maple_type type;
struct maple_node *node;
unsigned char offset;
unsigned long *pivots;
type = mte_node_type(mas->node);
node = mas_mn(mas);
if (type == maple_arange_64)
return ma_meta_end(node, type);
pivots = ma_pivots(node, type);
if (unlikely(ma_dead_node(node)))
return 0;
offset = mt_pivots[type] - 1;
if (likely(!pivots[offset]))
return ma_meta_end(node, type);
if (likely(pivots[offset] == mas->max))
return offset;
return mt_pivots[type];
}
/*
* mas_leaf_max_gap() - Returns the largest gap in a leaf node
* @mas - the maple state
*
* Return: The maximum gap in the leaf.
*/
static unsigned long mas_leaf_max_gap(struct ma_state *mas)
{
enum maple_type mt;
unsigned long pstart, gap, max_gap;
struct maple_node *mn;
unsigned long *pivots;
void __rcu **slots;
unsigned char i;
unsigned char max_piv;
mt = mte_node_type(mas->node);
mn = mas_mn(mas);
slots = ma_slots(mn, mt);
max_gap = 0;
if (unlikely(ma_is_dense(mt))) {
gap = 0;
for (i = 0; i < mt_slots[mt]; i++) {
if (slots[i]) {
if (gap > max_gap)
max_gap = gap;
gap = 0;
} else {
gap++;
}
}
if (gap > max_gap)
max_gap = gap;
return max_gap;
}
/*
* Check the first implied pivot optimizes the loop below and slot 1 may
* be skipped if there is a gap in slot 0.
*/
pivots = ma_pivots(mn, mt);
if (likely(!slots[0])) {
max_gap = pivots[0] - mas->min + 1;
i = 2;
} else {
i = 1;
}
/* reduce max_piv as the special case is checked before the loop */
max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
/*
* Check end implied pivot which can only be a gap on the right most
* node.
*/
if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
gap = ULONG_MAX - pivots[max_piv];
if (gap > max_gap)
max_gap = gap;
if (max_gap > pivots[max_piv] - mas->min)
return max_gap;
}
for (; i <= max_piv; i++) {
/* data == no gap. */
if (likely(slots[i]))
continue;
pstart = pivots[i - 1];
gap = pivots[i] - pstart;
if (gap > max_gap)
max_gap = gap;
/* There cannot be two gaps in a row. */
i++;
}
return max_gap;
}
/*
* ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
* @node: The maple node
* @gaps: The pointer to the gaps
* @mt: The maple node type
* @*off: Pointer to store the offset location of the gap.
*
* Uses the metadata data end to scan backwards across set gaps.
*
* Return: The maximum gap value
*/
static inline unsigned long
ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
unsigned char *off)
{
unsigned char offset, i;
unsigned long max_gap = 0;
i = offset = ma_meta_end(node, mt);
do {
if (gaps[i] > max_gap) {
max_gap = gaps[i];
offset = i;
}
} while (i--);
*off = offset;
return max_gap;
}
/*
* mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
* @mas: The maple state.
*
* Return: The gap value.
*/
static inline unsigned long mas_max_gap(struct ma_state *mas)
{
unsigned long *gaps;
unsigned char offset;
enum maple_type mt;
struct maple_node *node;
mt = mte_node_type(mas->node);
if (ma_is_leaf(mt))
return mas_leaf_max_gap(mas);
node = mas_mn(mas);
MAS_BUG_ON(mas, mt != maple_arange_64);
offset = ma_meta_gap(node);
gaps = ma_gaps(node, mt);
return gaps[offset];
}
/*
* mas_parent_gap() - Set the parent gap and any gaps above, as needed
* @mas: The maple state
* @offset: The gap offset in the parent to set
* @new: The new gap value.
*
* Set the parent gap then continue to set the gap upwards, using the metadata
* of the parent to see if it is necessary to check the node above.
*/
static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
unsigned long new)
{
unsigned long meta_gap = 0;
struct maple_node *pnode;
struct maple_enode *penode;
unsigned long *pgaps;
unsigned char meta_offset;
enum maple_type pmt;
pnode = mte_parent(mas->node);
pmt = mas_parent_type(mas, mas->node);
penode = mt_mk_node(pnode, pmt);
pgaps = ma_gaps(pnode, pmt);
ascend:
MAS_BUG_ON(mas, pmt != maple_arange_64);
meta_offset = ma_meta_gap(pnode);
meta_gap = pgaps[meta_offset];
pgaps[offset] = new;
if (meta_gap == new)
return;
if (offset != meta_offset) {
if (meta_gap > new)
return;
ma_set_meta_gap(pnode, pmt, offset);
} else if (new < meta_gap) {
new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
ma_set_meta_gap(pnode, pmt, meta_offset);
}
if (ma_is_root(pnode))
return;
/* Go to the parent node. */
pnode = mte_parent(penode);
pmt = mas_parent_type(mas, penode);
pgaps = ma_gaps(pnode, pmt);
offset = mte_parent_slot(penode);
penode = mt_mk_node(pnode, pmt);
goto ascend;
}
/*
* mas_update_gap() - Update a nodes gaps and propagate up if necessary.
* @mas - the maple state.
*/
static inline void mas_update_gap(struct ma_state *mas)
{
unsigned char pslot;
unsigned long p_gap;
unsigned long max_gap;
if (!mt_is_alloc(mas->tree))
return;
if (mte_is_root(mas->node))
return;
max_gap = mas_max_gap(mas);
pslot = mte_parent_slot(mas->node);
p_gap = ma_gaps(mte_parent(mas->node),
mas_parent_type(mas, mas->node))[pslot];
if (p_gap != max_gap)
mas_parent_gap(mas, pslot, max_gap);
}
/*
* mas_adopt_children() - Set the parent pointer of all nodes in @parent to
* @parent with the slot encoded.
* @mas - the maple state (for the tree)
* @parent - the maple encoded node containing the children.
*/
static inline void mas_adopt_children(struct ma_state *mas,
struct maple_enode *parent)
{
enum maple_type type = mte_node_type(parent);
struct maple_node *node = mte_to_node(parent);
void __rcu **slots = ma_slots(node, type);
unsigned long *pivots = ma_pivots(node, type);
struct maple_enode *child;
unsigned char offset;
offset = ma_data_end(node, type, pivots, mas->max);
do {
child = mas_slot_locked(mas, slots, offset);
mas_set_parent(mas, child, parent, offset);
} while (offset--);
}
/*
* mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
* node as dead.
* @mas - the maple state with the new node
* @old_enode - The old maple encoded node to replace.
*/
static inline void mas_put_in_tree(struct ma_state *mas,
struct maple_enode *old_enode)
__must_hold(mas->tree->ma_lock)
{
unsigned char offset;
void __rcu **slots;
if (mte_is_root(mas->node)) {
mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
mas_set_height(mas);
} else {
offset = mte_parent_slot(mas->node);
slots = ma_slots(mte_parent(mas->node),
mas_parent_type(mas, mas->node));
rcu_assign_pointer(slots[offset], mas->node);
}
mte_set_node_dead(old_enode);
}
/*
* mas_replace_node() - Replace a node by putting it in the tree, marking it
* dead, and freeing it.
* the parent encoding to locate the maple node in the tree.
* @mas - the ma_state with @mas->node pointing to the new node.
* @old_enode - The old maple encoded node.
*/
static inline void mas_replace_node(struct ma_state *mas,
struct maple_enode *old_enode)
__must_hold(mas->tree->ma_lock)
{
mas_put_in_tree(mas, old_enode);
mas_free(mas, old_enode);
}
/*
* mas_find_child() - Find a child who has the parent @mas->node.
* @mas: the maple state with the parent.
* @child: the maple state to store the child.
*/
static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
__must_hold(mas->tree->ma_lock)
{
enum maple_type mt;
unsigned char offset;
unsigned char end;
unsigned long *pivots;
struct maple_enode *entry;
struct maple_node *node;
void __rcu **slots;
mt = mte_node_type(mas->node);
node = mas_mn(mas);
slots = ma_slots(node, mt);
pivots = ma_pivots(node, mt);
end = ma_data_end(node, mt, pivots, mas->max);
for (offset = mas->offset; offset <= end; offset++) {
entry = mas_slot_locked(mas, slots, offset);
if (mte_parent(entry) == node) {
*child = *mas;
mas->offset = offset + 1;
child->offset = offset;
mas_descend(child);
child->offset = 0;
return true;
}
}
return false;
}
/*
* mab_shift_right() - Shift the data in mab right. Note, does not clean out the
* old data or set b_node->b_end.
* @b_node: the maple_big_node
* @shift: the shift count
*/
static inline void mab_shift_right(struct maple_big_node *b_node,
unsigned char shift)
{
unsigned long size = b_node->b_end * sizeof(unsigned long);
memmove(b_node->pivot + shift, b_node->pivot, size);
memmove(b_node->slot + shift, b_node->slot, size);
if (b_node->type == maple_arange_64)
memmove(b_node->gap + shift, b_node->gap, size);
}
/*
* mab_middle_node() - Check if a middle node is needed (unlikely)
* @b_node: the maple_big_node that contains the data.
* @size: the amount of data in the b_node
* @split: the potential split location
* @slot_count: the size that can be stored in a single node being considered.
*
* Return: true if a middle node is required.
*/
static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
unsigned char slot_count)
{
unsigned char size = b_node->b_end;
if (size >= 2 * slot_count)
return true;
if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
return true;
return false;
}
/*
* mab_no_null_split() - ensure the split doesn't fall on a NULL
* @b_node: the maple_big_node with the data
* @split: the suggested split location
* @slot_count: the number of slots in the node being considered.
*
* Return: the split location.
*/
static inline int mab_no_null_split(struct maple_big_node *b_node,
unsigned char split, unsigned char slot_count)
{
if (!b_node->slot[split]) {
/*
* If the split is less than the max slot && the right side will
* still be sufficient, then increment the split on NULL.
*/
if ((split < slot_count - 1) &&
(b_node->b_end - split) > (mt_min_slots[b_node->type]))
split++;
else
split--;
}
return split;
}
/*
* mab_calc_split() - Calculate the split location and if there needs to be two
* splits.
* @bn: The maple_big_node with the data
* @mid_split: The second split, if required. 0 otherwise.
*
* Return: The first split location. The middle split is set in @mid_split.
*/
static inline int mab_calc_split(struct ma_state *mas,
struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
{
unsigned char b_end = bn->b_end;
int split = b_end / 2; /* Assume equal split. */
unsigned char slot_min, slot_count = mt_slots[bn->type];
/*
* To support gap tracking, all NULL entries are kept together and a node cannot
* end on a NULL entry, with the exception of the left-most leaf. The
* limitation means that the split of a node must be checked for this condition
* and be able to put more data in one direction or the other.
*/
if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
*mid_split = 0;
split = b_end - mt_min_slots[bn->type];
if (!ma_is_leaf(bn->type))
return split;
mas->mas_flags |= MA_STATE_REBALANCE;
if (!bn->slot[split])
split--;
return split;
}
/*
* Although extremely rare, it is possible to enter what is known as the 3-way
* split scenario. The 3-way split comes about by means of a store of a range
* that overwrites the end and beginning of two full nodes. The result is a set
* of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
* also be located in different parent nodes which are also full. This can
* carry upwards all the way to the root in the worst case.
*/
if (unlikely(mab_middle_node(bn, split, slot_count))) {
split = b_end / 3;
*mid_split = split * 2;
} else {
slot_min = mt_min_slots[bn->type];
*mid_split = 0;
/*
* Avoid having a range less than the slot count unless it
* causes one node to be deficient.
* NOTE: mt_min_slots is 1 based, b_end and split are zero.
*/
while ((split < slot_count - 1) &&
((bn->pivot[split] - min) < slot_count - 1) &&
(b_end - split > slot_min))
split++;
}
/* Avoid ending a node on a NULL entry */
split = mab_no_null_split(bn, split, slot_count);
if (unlikely(*mid_split))
*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
return split;
}
/*
* mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
* and set @b_node->b_end to the next free slot.
* @mas: The maple state
* @mas_start: The starting slot to copy
* @mas_end: The end slot to copy (inclusively)
* @b_node: The maple_big_node to place the data
* @mab_start: The starting location in maple_big_node to store the data.
*/
static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
unsigned char mas_end, struct maple_big_node *b_node,
unsigned char mab_start)
{
enum maple_type mt;
struct maple_node *node;
void __rcu **slots;
unsigned long *pivots, *gaps;
int i = mas_start, j = mab_start;
unsigned char piv_end;
node = mas_mn(mas);
mt = mte_node_type(mas->node);
pivots = ma_pivots(node, mt);
if (!i) {
b_node->pivot[j] = pivots[i++];
if (unlikely(i > mas_end))
goto complete;
j++;
}
piv_end = min(mas_end, mt_pivots[mt]);
for (; i < piv_end; i++, j++) {
b_node->pivot[j] = pivots[i];
if (unlikely(!b_node->pivot[j]))
break;
if (unlikely(mas->max == b_node->pivot[j]))
goto complete;
}
if (likely(i <= mas_end))
b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
complete:
b_node->b_end = ++j;
j -= mab_start;
slots = ma_slots(node, mt);
memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
gaps = ma_gaps(node, mt);
memcpy(b_node->gap + mab_start, gaps + mas_start,
sizeof(unsigned long) * j);
}
}
/*
* mas_leaf_set_meta() - Set the metadata of a leaf if possible.
* @node: The maple node
* @mt: The maple type
* @end: The node end
*/
static inline void mas_leaf_set_meta(struct maple_node *node,
enum maple_type mt, unsigned char end)
{
if (end < mt_slots[mt] - 1)
ma_set_meta(node, mt, 0, end);
}
/*
* mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
* @b_node: the maple_big_node that has the data
* @mab_start: the start location in @b_node.
* @mab_end: The end location in @b_node (inclusively)
* @mas: The maple state with the maple encoded node.
*/
static inline void mab_mas_cp(struct maple_big_node *b_node,
unsigned char mab_start, unsigned char mab_end,
struct ma_state *mas, bool new_max)
{
int i, j = 0;
enum maple_type mt = mte_node_type(mas->node);
struct maple_node *node = mte_to_node(mas->node);
void __rcu **slots = ma_slots(node, mt);
unsigned long *pivots = ma_pivots(node, mt);
unsigned long *gaps = NULL;
unsigned char end;
if (mab_end - mab_start > mt_pivots[mt])
mab_end--;
if (!pivots[mt_pivots[mt] - 1])
slots[mt_pivots[mt]] = NULL;
i = mab_start;
do {
pivots[j++] = b_node->pivot[i++];
} while (i <= mab_end && likely(b_node->pivot[i]));
memcpy(slots, b_node->slot + mab_start,
sizeof(void *) * (i - mab_start));
if (new_max)
mas->max = b_node->pivot[i - 1];
end = j - 1;
if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
unsigned long max_gap = 0;
unsigned char offset = 0;
gaps = ma_gaps(node, mt);
do {
gaps[--j] = b_node->gap[--i];
if (gaps[j] > max_gap) {
offset = j;
max_gap = gaps[j];
}
} while (j);
ma_set_meta(node, mt, offset, end);
} else {
mas_leaf_set_meta(node, mt, end);
}
}
/*
* mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
* @mas: The maple state
* @end: The maple node end
* @mt: The maple node type
*/
static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
enum maple_type mt)
{
if (!(mas->mas_flags & MA_STATE_BULK))
return;
if (mte_is_root(mas->node))
return;
if (end > mt_min_slots[mt]) {
mas->mas_flags &= ~MA_STATE_REBALANCE;
return;
}
}
/*
* mas_store_b_node() - Store an @entry into the b_node while also copying the
* data from a maple encoded node.
* @wr_mas: the maple write state
* @b_node: the maple_big_node to fill with data
* @offset_end: the offset to end copying
*
* Return: The actual end of the data stored in @b_node
*/
static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
struct maple_big_node *b_node, unsigned char offset_end)
{
unsigned char slot;
unsigned char b_end;
/* Possible underflow of piv will wrap back to 0 before use. */
unsigned long piv;
struct ma_state *mas = wr_mas->mas;
b_node->type = wr_mas->type;
b_end = 0;
slot = mas->offset;
if (slot) {
/* Copy start data up to insert. */
mas_mab_cp(mas, 0, slot - 1, b_node, 0);
b_end = b_node->b_end;
piv = b_node->pivot[b_end - 1];
} else
piv = mas->min - 1;
if (piv + 1 < mas->index) {
/* Handle range starting after old range */
b_node->slot[b_end] = wr_mas->content;
if (!wr_mas->content)
b_node->gap[b_end] = mas->index - 1 - piv;
b_node->pivot[b_end++] = mas->index - 1;
}
/* Store the new entry. */
mas->offset = b_end;
b_node->slot[b_end] = wr_mas->entry;
b_node->pivot[b_end] = mas->last;
/* Appended. */
if (mas->last >= mas->max)
goto b_end;
/* Handle new range ending before old range ends */
piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
if (piv > mas->last) {
if (piv == ULONG_MAX)
mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
if (offset_end != slot)
wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
offset_end);
b_node->slot[++b_end] = wr_mas->content;
if (!wr_mas->content)
b_node->gap[b_end] = piv - mas->last + 1;
b_node->pivot[b_end] = piv;
}
slot = offset_end + 1;
if (slot > mas->end)
goto b_end;
/* Copy end data to the end of the node. */
mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
b_node->b_end--;
return;
b_end:
b_node->b_end = b_end;
}
/*
* mas_prev_sibling() - Find the previous node with the same parent.
* @mas: the maple state
*
* Return: True if there is a previous sibling, false otherwise.
*/
static inline bool mas_prev_sibling(struct ma_state *mas)
{
unsigned int p_slot = mte_parent_slot(mas->node);
if (mte_is_root(mas->node))
return false;
if (!p_slot)
return false;
mas_ascend(mas);
mas->offset = p_slot - 1;
mas_descend(mas);
return true;
}
/*
* mas_next_sibling() - Find the next node with the same parent.
* @mas: the maple state
*
* Return: true if there is a next sibling, false otherwise.
*/
static inline bool mas_next_sibling(struct ma_state *mas)
{
MA_STATE(parent, mas->tree, mas->index, mas->last);
if (mte_is_root(mas->node))
return false;
parent = *mas;
mas_ascend(&parent);
parent.offset = mte_parent_slot(mas->node) + 1;
if (parent.offset > mas_data_end(&parent))
return false;
*mas = parent;
mas_descend(mas);
return true;
}
/*
* mte_node_or_none() - Set the enode and state.
* @enode: The encoded maple node.
*
* Set the node to the enode and the status.
*/
static inline void mas_node_or_none(struct ma_state *mas,
struct maple_enode *enode)
{
if (enode) {
mas->node = enode;
mas->status = ma_active;
} else {
mas->node = NULL;
mas->status = ma_none;
}
}
/*
* mas_wr_node_walk() - Find the correct offset for the index in the @mas.
* @wr_mas: The maple write state
*
* Uses mas_slot_locked() and does not need to worry about dead nodes.
*/
static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
{
struct ma_state *mas = wr_mas->mas;
unsigned char count, offset;
if (unlikely(ma_is_dense(wr_mas->type))) {
wr_mas->r_max = wr_mas->r_min = mas->index;
mas->offset = mas->index = mas->min;
return;
}
wr_mas->node = mas_mn(wr_mas->mas);
wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
wr_mas->pivots, mas->max);
offset = mas->offset;
while (offset < count && mas->index > wr_mas->pivots[offset])
offset++;
wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
wr_mas->offset_end = mas->offset = offset;
}
/*
* mast_rebalance_next() - Rebalance against the next node
* @mast: The maple subtree state
* @old_r: The encoded maple node to the right (next node).
*/
static inline void mast_rebalance_next(struct maple_subtree_state *mast)
{
unsigned char b_end = mast->bn->b_end;
mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
mast->bn, b_end);
mast->orig_r->last = mast->orig_r->max;
}
/*
* mast_rebalance_prev() - Rebalance against the previous node
* @mast: The maple subtree state
* @old_l: The encoded maple node to the left (previous node)
*/
static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
{
unsigned char end = mas_data_end(mast->orig_l) + 1;
unsigned char b_end = mast->bn->b_end;
mab_shift_right(mast->bn, end);
mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
mast->l->min = mast->orig_l->min;
mast->orig_l->index = mast->orig_l->min;
mast->bn->b_end = end + b_end;
mast->l->offset += end;
}
/*
* mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
* the node to the right. Checking the nodes to the right then the left at each
* level upwards until root is reached.
* Data is copied into the @mast->bn.
* @mast: The maple_subtree_state.
*/
static inline
bool mast_spanning_rebalance(struct maple_subtree_state *mast)
{
struct ma_state r_tmp = *mast->orig_r;
struct ma_state l_tmp = *mast->orig_l;
unsigned char depth = 0;
do {
mas_ascend(mast->orig_r);
mas_ascend(mast->orig_l);
depth++;
if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
mast->orig_r->offset++;
do {
mas_descend(mast->orig_r);
mast->orig_r->offset = 0;
} while (--depth);
mast_rebalance_next(mast);
*mast->orig_l = l_tmp;
return true;
} else if (mast->orig_l->offset != 0) {
mast->orig_l->offset--;
do {
mas_descend(mast->orig_l);
mast->orig_l->offset =
mas_data_end(mast->orig_l);
} while (--depth);
mast_rebalance_prev(mast);
*mast->orig_r = r_tmp;
return true;
}
} while (!mte_is_root(mast->orig_r->node));
*mast->orig_r = r_tmp;
*mast->orig_l = l_tmp;
return false;
}
/*
* mast_ascend() - Ascend the original left and right maple states.
* @mast: the maple subtree state.
*
* Ascend the original left and right sides. Set the offsets to point to the
* data already in the new tree (@mast->l and @mast->r).
*/
static inline void mast_ascend(struct maple_subtree_state *mast)
{
MA_WR_STATE(wr_mas, mast->orig_r, NULL);
mas_ascend(mast->orig_l);
mas_ascend(mast->orig_r);
mast->orig_r->offset = 0;
mast->orig_r->index = mast->r->max;
/* last should be larger than or equal to index */
if (mast->orig_r->last < mast->orig_r->index)
mast->orig_r->last = mast->orig_r->index;
wr_mas.type = mte_node_type(mast->orig_r->node);
mas_wr_node_walk(&wr_mas);
/* Set up the left side of things */
mast->orig_l->offset = 0;
mast->orig_l->index = mast->l->min;
wr_mas.mas = mast->orig_l;
wr_mas.type = mte_node_type(mast->orig_l->node);
mas_wr_node_walk(&wr_mas);
mast->bn->type = wr_mas.type;
}
/*
* mas_new_ma_node() - Create and return a new maple node. Helper function.
* @mas: the maple state with the allocations.
* @b_node: the maple_big_node with the type encoding.
*
* Use the node type from the maple_big_node to allocate a new node from the
* ma_state. This function exists mainly for code readability.
*
* Return: A new maple encoded node
*/
static inline struct maple_enode
*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
{
return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
}
/*
* mas_mab_to_node() - Set up right and middle nodes
*
* @mas: the maple state that contains the allocations.
* @b_node: the node which contains the data.
* @left: The pointer which will have the left node
* @right: The pointer which may have the right node
* @middle: the pointer which may have the middle node (rare)
* @mid_split: the split location for the middle node
*
* Return: the split of left.
*/
static inline unsigned char mas_mab_to_node(struct ma_state *mas,
struct maple_big_node *b_node, struct maple_enode **left,
struct maple_enode **right, struct maple_enode **middle,
unsigned char *mid_split, unsigned long min)
{
unsigned char split = 0;
unsigned char slot_count = mt_slots[b_node->type];
*left = mas_new_ma_node(mas, b_node);
*right = NULL;
*middle = NULL;
*mid_split = 0;
if (b_node->b_end < slot_count) {
split = b_node->b_end;
} else {
split = mab_calc_split(mas, b_node, mid_split, min);
*right = mas_new_ma_node(mas, b_node);
}
if (*mid_split)
*middle = mas_new_ma_node(mas, b_node);
return split;
}
/*
* mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
* pointer.
* @b_node - the big node to add the entry
* @mas - the maple state to get the pivot (mas->max)
* @entry - the entry to add, if NULL nothing happens.
*/
static inline void mab_set_b_end(struct maple_big_node *b_node,
struct ma_state *mas,
void *entry)
{
if (!entry)
return;
b_node->slot[b_node->b_end] = entry;
if (mt_is_alloc(mas->tree))
b_node->gap[b_node->b_end] = mas_max_gap(mas);
b_node->pivot[b_node->b_end++] = mas->max;
}
/*
* mas_set_split_parent() - combine_then_separate helper function. Sets the parent
* of @mas->node to either @left or @right, depending on @slot and @split
*
* @mas - the maple state with the node that needs a parent
* @left - possible parent 1
* @right - possible parent 2
* @slot - the slot the mas->node was placed
* @split - the split location between @left and @right
*/
static inline void mas_set_split_parent(struct ma_state *mas,
struct maple_enode *left,
struct maple_enode *right,
unsigned char *slot, unsigned char split)
{
if (mas_is_none(mas))
return;
if ((*slot) <= split)
mas_set_parent(mas, mas->node, left, *slot);
else if (right)
mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
(*slot)++;
}
/*
* mte_mid_split_check() - Check if the next node passes the mid-split
* @**l: Pointer to left encoded maple node.
* @**m: Pointer to middle encoded maple node.
* @**r: Pointer to right encoded maple node.
* @slot: The offset
* @*split: The split location.
* @mid_split: The middle split.
*/
static inline void mte_mid_split_check(struct maple_enode **l,
struct maple_enode **r,
struct maple_enode *right,
unsigned char slot,
unsigned char *split,
unsigned char mid_split)
{
if (*r == right)
return;
if (slot < mid_split)
return;
*l = *r;
*r = right;
*split = mid_split;
}
/*
* mast_set_split_parents() - Helper function to set three nodes parents. Slot
* is taken from @mast->l.
* @mast - the maple subtree state
* @left - the left node
* @right - the right node
* @split - the split location.
*/
static inline void mast_set_split_parents(struct maple_subtree_state *mast,
struct maple_enode *left,
struct maple_enode *middle,
struct maple_enode *right,
unsigned char split,
unsigned char mid_split)
{
unsigned char slot;
struct maple_enode *l = left;
struct maple_enode *r = right;
if (mas_is_none(mast->l))
return;
if (middle)
r = middle;
slot = mast->l->offset;
mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
mas_set_split_parent(mast->l, l, r, &slot, split);
mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
mas_set_split_parent(mast->m, l, r, &slot, split);
mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
mas_set_split_parent(mast->r, l, r, &slot, split);
}
/*
* mas_topiary_node() - Dispose of a single node
* @mas: The maple state for pushing nodes
* @enode: The encoded maple node
* @in_rcu: If the tree is in rcu mode
*
* The node will either be RCU freed or pushed back on the maple state.
*/
static inline void mas_topiary_node(struct ma_state *mas,
struct ma_state *tmp_mas, bool in_rcu)
{
struct maple_node *tmp;
struct maple_enode *enode;
if (mas_is_none(tmp_mas))
return;
enode = tmp_mas->node;
tmp = mte_to_node(enode);
mte_set_node_dead(enode);
if (in_rcu)
ma_free_rcu(tmp);
else
mas_push_node(mas, tmp);
}
/*
* mas_topiary_replace() - Replace the data with new data, then repair the
* parent links within the new tree. Iterate over the dead sub-tree and collect
* the dead subtrees and topiary the nodes that are no longer of use.
*
* The new tree will have up to three children with the correct parent. Keep
* track of the new entries as they need to be followed to find the next level
* of new entries.
*
* The old tree will have up to three children with the old parent. Keep track
* of the old entries as they may have more nodes below replaced. Nodes within
* [index, last] are dead subtrees, others need to be freed and followed.
*
* @mas: The maple state pointing at the new data
* @old_enode: The maple encoded node being replaced
*
*/
static inline void mas_topiary_replace(struct ma_state *mas,
struct maple_enode *old_enode)
{
struct ma_state tmp[3], tmp_next[3];
MA_TOPIARY(subtrees, mas->tree);
bool in_rcu;
int i, n;
/* Place data in tree & then mark node as old */
mas_put_in_tree(mas, old_enode);
/* Update the parent pointers in the tree */
tmp[0] = *mas;
tmp[0].offset = 0;
tmp[1].status = ma_none;
tmp[2].status = ma_none;
while (!mte_is_leaf(tmp[0].node)) {
n = 0;
for (i = 0; i < 3; i++) {
if (mas_is_none(&tmp[i]))
continue;
while (n < 3) {
if (!mas_find_child(&tmp[i], &tmp_next[n]))
break;
n++;
}
mas_adopt_children(&tmp[i], tmp[i].node);
}
if (MAS_WARN_ON(mas, n == 0))
break;
while (n < 3)
tmp_next[n++].status = ma_none;
for (i = 0; i < 3; i++)
tmp[i] = tmp_next[i];
}
/* Collect the old nodes that need to be discarded */
if (mte_is_leaf(old_enode))
return mas_free(mas, old_enode);
tmp[0] = *mas;
tmp[0].offset = 0;
tmp[0].node = old_enode;
tmp[1].status = ma_none;
tmp[2].status = ma_none;
in_rcu = mt_in_rcu(mas->tree);
do {
n = 0;
for (i = 0; i < 3; i++) {
if (mas_is_none(&tmp[i]))
continue;
while (n < 3) {
if (!mas_find_child(&tmp[i], &tmp_next[n]))
break;
if ((tmp_next[n].min >= tmp_next->index) &&
(tmp_next[n].max <= tmp_next->last)) {
mat_add(&subtrees, tmp_next[n].node);
tmp_next[n].status = ma_none;
} else {
n++;
}
}
}
if (MAS_WARN_ON(mas, n == 0))
break;
while (n < 3)
tmp_next[n++].status = ma_none;
for (i = 0; i < 3; i++) {
mas_topiary_node(mas, &tmp[i], in_rcu);
tmp[i] = tmp_next[i];
}
} while (!mte_is_leaf(tmp[0].node));
for (i = 0; i < 3; i++)
mas_topiary_node(mas, &tmp[i], in_rcu);
mas_mat_destroy(mas, &subtrees);
}
/*
* mas_wmb_replace() - Write memory barrier and replace
* @mas: The maple state
* @old: The old maple encoded node that is being replaced.
*
* Updates gap as necessary.
*/
static inline void mas_wmb_replace(struct ma_state *mas,
struct maple_enode *old_enode)
{
/* Insert the new data in the tree */
mas_topiary_replace(mas, old_enode);
if (mte_is_leaf(mas->node))
return;
mas_update_gap(mas);
}
/*
* mast_cp_to_nodes() - Copy data out to nodes.
* @mast: The maple subtree state
* @left: The left encoded maple node
* @middle: The middle encoded maple node
* @right: The right encoded maple node
* @split: The location to split between left and (middle ? middle : right)
* @mid_split: The location to split between middle and right.
*/
static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
struct maple_enode *left, struct maple_enode *middle,
struct maple_enode *right, unsigned char split, unsigned char mid_split)
{
bool new_lmax = true;
mas_node_or_none(mast->l, left);
mas_node_or_none(mast->m, middle);
mas_node_or_none(mast->r, right);
mast->l->min = mast->orig_l->min;
if (split == mast->bn->b_end) {
mast->l->max = mast->orig_r->max;
new_lmax = false;
}
mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
if (middle) {
mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
mast->m->min = mast->bn->pivot[split] + 1;
split = mid_split;
}
mast->r->max = mast->orig_r->max;
if (right) {
mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
mast->r->min = mast->bn->pivot[split] + 1;
}
}
/*
* mast_combine_cp_left - Copy in the original left side of the tree into the
* combined data set in the maple subtree state big node.
* @mast: The maple subtree state
*/
static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
{
unsigned char l_slot = mast->orig_l->offset;
if (!l_slot)
return;
mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
}
/*
* mast_combine_cp_right: Copy in the original right side of the tree into the
* combined data set in the maple subtree state big node.
* @mast: The maple subtree state
*/
static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
{
if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
return;
mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
mt_slot_count(mast->orig_r->node), mast->bn,
mast->bn->b_end);
mast->orig_r->last = mast->orig_r->max;
}
/*
* mast_sufficient: Check if the maple subtree state has enough data in the big
* node to create at least one sufficient node
* @mast: the maple subtree state
*/
static inline bool mast_sufficient(struct maple_subtree_state *mast)
{
if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
return true;
return false;
}
/*
* mast_overflow: Check if there is too much data in the subtree state for a
* single node.
* @mast: The maple subtree state
*/
static inline bool mast_overflow(struct maple_subtree_state *mast)
{
if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
return true;
return false;
}
static inline void *mtree_range_walk(struct ma_state *mas)
{
unsigned long *pivots;
unsigned char offset;
struct maple_node *node;
struct maple_enode *next, *last;
enum maple_type type;
void __rcu **slots;
unsigned char end;
unsigned long max, min;
unsigned long prev_max, prev_min;
next = mas->node;
min = mas->min;
max = mas->max;
do {
last = next;
node = mte_to_node(next);
type = mte_node_type(next);
pivots = ma_pivots(node, type);
end = ma_data_end(node, type, pivots, max);
prev_min = min;
prev_max = max;
if (pivots[0] >= mas->index) {
offset = 0;
max = pivots[0];
goto next;
}
offset = 1;
while (offset < end) {
if (pivots[offset] >= mas->index) {
max = pivots[offset];
break;
}
offset++;
}
min = pivots[offset - 1] + 1;
next:
slots = ma_slots(node, type);
next = mt_slot(mas->tree, slots, offset);
if (unlikely(ma_dead_node(node)))
goto dead_node;
} while (!ma_is_leaf(type));
mas->end = end;
mas->offset = offset;
mas->index = min;
mas->last = max;
mas->min = prev_min;
mas->max = prev_max;
mas->node = last;
return (void *)next;
dead_node:
mas_reset(mas);
return NULL;
}
/*
* mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
* @mas: The starting maple state
* @mast: The maple_subtree_state, keeps track of 4 maple states.
* @count: The estimated count of iterations needed.
*
* Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
* is hit. First @b_node is split into two entries which are inserted into the
* next iteration of the loop. @b_node is returned populated with the final
* iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
* nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
* to account of what has been copied into the new sub-tree. The update of
* orig_l_mas->last is used in mas_consume to find the slots that will need to
* be either freed or destroyed. orig_l_mas->depth keeps track of the height of
* the new sub-tree in case the sub-tree becomes the full tree.
*
* Return: the number of elements in b_node during the last loop.
*/
static int mas_spanning_rebalance(struct ma_state *mas,
struct maple_subtree_state *mast, unsigned char count)
{
unsigned char split, mid_split;
unsigned char slot = 0;
struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
struct maple_enode *old_enode;
MA_STATE(l_mas, mas->tree, mas->index, mas->index);
MA_STATE(r_mas, mas->tree, mas->index, mas->last);
MA_STATE(m_mas, mas->tree, mas->index, mas->index);
/*
* The tree needs to be rebalanced and leaves need to be kept at the same level.
* Rebalancing is done by use of the ``struct maple_topiary``.
*/
mast->l = &l_mas;
mast->m = &m_mas;
mast->r = &r_mas;
l_mas.status = r_mas.status = m_mas.status = ma_none;
/* Check if this is not root and has sufficient data. */
if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
mast_spanning_rebalance(mast);
l_mas.depth = 0;
/*
* Each level of the tree is examined and balanced, pushing data to the left or
* right, or rebalancing against left or right nodes is employed to avoid
* rippling up the tree to limit the amount of churn. Once a new sub-section of
* the tree is created, there may be a mix of new and old nodes. The old nodes
* will have the incorrect parent pointers and currently be in two trees: the
* original tree and the partially new tree. To remedy the parent pointers in
* the old tree, the new data is swapped into the active tree and a walk down
* the tree is performed and the parent pointers are updated.
* See mas_topiary_replace() for more information.
*/
while (count--) {
mast->bn->b_end--;
mast->bn->type = mte_node_type(mast->orig_l->node);
split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
&mid_split, mast->orig_l->min);
mast_set_split_parents(mast, left, middle, right, split,
mid_split);
mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
/*
* Copy data from next level in the tree to mast->bn from next
* iteration
*/
memset(mast->bn, 0, sizeof(struct maple_big_node));
mast->bn->type = mte_node_type(left);
l_mas.depth++;
/* Root already stored in l->node. */
if (mas_is_root_limits(mast->l))
goto new_root;
mast_ascend(mast);
mast_combine_cp_left(mast);
l_mas.offset = mast->bn->b_end;
mab_set_b_end(mast->bn, &l_mas, left);
mab_set_b_end(mast->bn, &m_mas, middle);
mab_set_b_end(mast->bn, &r_mas, right);
/* Copy anything necessary out of the right node. */
mast_combine_cp_right(mast);
mast->orig_l->last = mast->orig_l->max;
if (mast_sufficient(mast))
continue;
if (mast_overflow(mast))
continue;
/* May be a new root stored in mast->bn */
if (mas_is_root_limits(mast->orig_l))
break;
mast_spanning_rebalance(mast);
/* rebalancing from other nodes may require another loop. */
if (!count)
count++;
}
l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
mte_node_type(mast->orig_l->node));
l_mas.depth++;
mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
mas_set_parent(mas, left, l_mas.node, slot);
if (middle)
mas_set_parent(mas, middle, l_mas.node, ++slot);
if (right)
mas_set_parent(mas, right, l_mas.node, ++slot);
if (mas_is_root_limits(mast->l)) {
new_root:
mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
while (!mte_is_root(mast->orig_l->node))
mast_ascend(mast);
} else {
mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
}
old_enode = mast->orig_l->node;
mas->depth = l_mas.depth;
mas->node = l_mas.node;
mas->min = l_mas.min;
mas->max = l_mas.max;
mas->offset = l_mas.offset;
mas_wmb_replace(mas, old_enode);
mtree_range_walk(mas);
return mast->bn->b_end;
}
/*
* mas_rebalance() - Rebalance a given node.
* @mas: The maple state
* @b_node: The big maple node.
*
* Rebalance two nodes into a single node or two new nodes that are sufficient.
* Continue upwards until tree is sufficient.
*
* Return: the number of elements in b_node during the last loop.
*/
static inline int mas_rebalance(struct ma_state *mas,
struct maple_big_node *b_node)
{
char empty_count = mas_mt_height(mas);
struct maple_subtree_state mast;
unsigned char shift, b_end = ++b_node->b_end;
MA_STATE(l_mas, mas->tree, mas->index, mas->last);
MA_STATE(r_mas, mas->tree, mas->index, mas->last);
trace_ma_op(__func__, mas);
/*
* Rebalancing occurs if a node is insufficient. Data is rebalanced
* against the node to the right if it exists, otherwise the node to the
* left of this node is rebalanced against this node. If rebalancing
* causes just one node to be produced instead of two, then the parent
* is also examined and rebalanced if it is insufficient. Every level
* tries to combine the data in the same way. If one node contains the
* entire range of the tree, then that node is used as a new root node.
*/
mas_node_count(mas, empty_count * 2 - 1);
if (mas_is_err(mas))
return 0;
mast.orig_l = &l_mas;
mast.orig_r = &r_mas;
mast.bn = b_node;
mast.bn->type = mte_node_type(mas->node);
l_mas = r_mas = *mas;
if (mas_next_sibling(&r_mas)) {
mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
r_mas.last = r_mas.index = r_mas.max;
} else {
mas_prev_sibling(&l_mas);
shift = mas_data_end(&l_mas) + 1;
mab_shift_right(b_node, shift);
mas->offset += shift;
mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
b_node->b_end = shift + b_end;
l_mas.index = l_mas.last = l_mas.min;
}
return mas_spanning_rebalance(mas, &mast, empty_count);
}
/*
* mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
* state.
* @mas: The maple state
* @end: The end of the left-most node.
*
* During a mass-insert event (such as forking), it may be necessary to
* rebalance the left-most node when it is not sufficient.
*/
static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
{
enum maple_type mt = mte_node_type(mas->node);
struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
struct maple_enode *eparent, *old_eparent;
unsigned char offset, tmp, split = mt_slots[mt] / 2;
void __rcu **l_slots, **slots;
unsigned long *l_pivs, *pivs, gap;
bool in_rcu = mt_in_rcu(mas->tree);
MA_STATE(l_mas, mas->tree, mas->index, mas->last);
l_mas = *mas;
mas_prev_sibling(&l_mas);
/* set up node. */
if (in_rcu) {
/* Allocate for both left and right as well as parent. */
mas_node_count(mas, 3);
if (mas_is_err(mas))
return;
newnode = mas_pop_node(mas);
} else {
newnode = &reuse;
}
node = mas_mn(mas);
newnode->parent = node->parent;
slots = ma_slots(newnode, mt);
pivs = ma_pivots(newnode, mt);
left = mas_mn(&l_mas);
l_slots = ma_slots(left, mt);
l_pivs = ma_pivots(left, mt);
if (!l_slots[split])
split++;
tmp = mas_data_end(&l_mas) - split;
memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
pivs[tmp] = l_mas.max;
memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
l_mas.max = l_pivs[split];
mas->min = l_mas.max + 1;
old_eparent = mt_mk_node(mte_parent(l_mas.node),
mas_parent_type(&l_mas, l_mas.node));
tmp += end;
if (!in_rcu) {
unsigned char max_p = mt_pivots[mt];
unsigned char max_s = mt_slots[mt];
if (tmp < max_p)
memset(pivs + tmp, 0,
sizeof(unsigned long) * (max_p - tmp));
if (tmp < mt_slots[mt])
memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
memcpy(node, newnode, sizeof(struct maple_node));
ma_set_meta(node, mt, 0, tmp - 1);
mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
l_pivs[split]);
/* Remove data from l_pivs. */
tmp = split + 1;
memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
ma_set_meta(left, mt, 0, split);
eparent = old_eparent;
goto done;
}
/* RCU requires replacing both l_mas, mas, and parent. */
mas->node = mt_mk_node(newnode, mt);
ma_set_meta(newnode, mt, 0, tmp);
new_left = mas_pop_node(mas);
new_left->parent = left->parent;
mt = mte_node_type(l_mas.node);
slots = ma_slots(new_left, mt);
pivs = ma_pivots(new_left, mt);
memcpy(slots, l_slots, sizeof(void *) * split);
memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
ma_set_meta(new_left, mt, 0, split);
l_mas.node = mt_mk_node(new_left, mt);
/* replace parent. */
offset = mte_parent_slot(mas->node);
mt = mas_parent_type(&l_mas, l_mas.node);
parent = mas_pop_node(mas);
slots = ma_slots(parent, mt);
pivs = ma_pivots(parent, mt);
memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
rcu_assign_pointer(slots[offset], mas->node);
rcu_assign_pointer(slots[offset - 1], l_mas.node);
pivs[offset - 1] = l_mas.max;
eparent = mt_mk_node(parent, mt);
done:
gap = mas_leaf_max_gap(mas);
mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
gap = mas_leaf_max_gap(&l_mas);
mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
mas_ascend(mas);
if (in_rcu) {
mas_replace_node(mas, old_eparent);
mas_adopt_children(mas, mas->node);
}
mas_update_gap(mas);
}
/*
* mas_split_final_node() - Split the final node in a subtree operation.
* @mast: the maple subtree state
* @mas: The maple state
* @height: The height of the tree in case it's a new root.
*/
static inline void mas_split_final_node(struct maple_subtree_state *mast,
struct ma_state *mas, int height)
{
struct maple_enode *ancestor;
if (mte_is_root(mas->node)) {
if (mt_is_alloc(mas->tree))
mast->bn->type = maple_arange_64;
else
mast->bn->type = maple_range_64;
mas->depth = height;
}
/*
* Only a single node is used here, could be root.
* The Big_node data should just fit in a single node.
*/
ancestor = mas_new_ma_node(mas, mast->bn);
mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
mast->l->node = ancestor;
mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
mas->offset = mast->bn->b_end - 1;
}
/*
* mast_fill_bnode() - Copy data into the big node in the subtree state
* @mast: The maple subtree state
* @mas: the maple state
* @skip: The number of entries to skip for new nodes insertion.
*/
static inline void mast_fill_bnode(struct maple_subtree_state *mast,
struct ma_state *mas,
unsigned char skip)
{
bool cp = true;
unsigned char split;
memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
mast->bn->b_end = 0;
if (mte_is_root(mas->node)) {
cp = false;
} else {
mas_ascend(mas);
mas->offset = mte_parent_slot(mas->node);
}
if (cp && mast->l->offset)
mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
split = mast->bn->b_end;
mab_set_b_end(mast->bn, mast->l, mast->l->node);
mast->r->offset = mast->bn->b_end;
mab_set_b_end(mast->bn, mast->r, mast->r->node);
if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
cp = false;
if (cp)
mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
mast->bn, mast->bn->b_end);
mast->bn->b_end--;
mast->bn->type = mte_node_type(mas->node);
}
/*
* mast_split_data() - Split the data in the subtree state big node into regular
* nodes.
* @mast: The maple subtree state
* @mas: The maple state
* @split: The location to split the big node
*/
static inline void mast_split_data(struct maple_subtree_state *mast,
struct ma_state *mas, unsigned char split)
{
unsigned char p_slot;
mab_mas_cp(mast->bn, 0, split, mast->l, true);
mte_set_pivot(mast->r->node, 0, mast->r->max);
mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
mast->l->offset = mte_parent_slot(mas->node);
mast->l->max = mast->bn->pivot[split];
mast->r->min = mast->l->max + 1;
if (mte_is_leaf(mas->node))
return;
p_slot = mast->orig_l->offset;
mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
&p_slot, split);
mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
&p_slot, split);
}
/*
* mas_push_data() - Instead of splitting a node, it is beneficial to push the
* data to the right or left node if there is room.
* @mas: The maple state
* @height: The current height of the maple state
* @mast: The maple subtree state
* @left: Push left or not.
*
* Keeping the height of the tree low means faster lookups.
*
* Return: True if pushed, false otherwise.
*/
static inline bool mas_push_data(struct ma_state *mas, int height,
struct maple_subtree_state *mast, bool left)
{
unsigned char slot_total = mast->bn->b_end;
unsigned char end, space, split;
MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
tmp_mas = *mas;
tmp_mas.depth = mast->l->depth;
if (left && !mas_prev_sibling(&tmp_mas))
return false;
else if (!left && !mas_next_sibling(&tmp_mas))
return false;
end = mas_data_end(&tmp_mas);
slot_total += end;
space = 2 * mt_slot_count(mas->node) - 2;
/* -2 instead of -1 to ensure there isn't a triple split */
if (ma_is_leaf(mast->bn->type))
space--;
if (mas->max == ULONG_MAX)
space--;
if (slot_total >= space)
return false;
/* Get the data; Fill mast->bn */
mast->bn->b_end++;
if (left) {
mab_shift_right(mast->bn, end + 1);
mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
mast->bn->b_end = slot_total + 1;
} else {
mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
}
/* Configure mast for splitting of mast->bn */
split = mt_slots[mast->bn->type] - 2;
if (left) {
/* Switch mas to prev node */
*mas = tmp_mas;
/* Start using mast->l for the left side. */
tmp_mas.node = mast->l->node;
*mast->l = tmp_mas;
} else {
tmp_mas.node = mast->r->node;
*mast->r = tmp_mas;
split = slot_total - split;
}
split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
/* Update parent slot for split calculation. */
if (left)
mast->orig_l->offset += end + 1;
mast_split_data(mast, mas, split);
mast_fill_bnode(mast, mas, 2);
mas_split_final_node(mast, mas, height + 1);
return true;
}
/*
* mas_split() - Split data that is too big for one node into two.
* @mas: The maple state
* @b_node: The maple big node
* Return: 1 on success, 0 on failure.
*/
static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
{
struct maple_subtree_state mast;
int height = 0;
unsigned char mid_split, split = 0;
struct maple_enode *old;
/*
* Splitting is handled differently from any other B-tree; the Maple
* Tree splits upwards. Splitting up means that the split operation
* occurs when the walk of the tree hits the leaves and not on the way
* down. The reason for splitting up is that it is impossible to know
* how much space will be needed until the leaf is (or leaves are)
* reached. Since overwriting data is allowed and a range could
* overwrite more than one range or result in changing one entry into 3
* entries, it is impossible to know if a split is required until the
* data is examined.
*
* Splitting is a balancing act between keeping allocations to a minimum
* and avoiding a 'jitter' event where a tree is expanded to make room
* for an entry followed by a contraction when the entry is removed. To
* accomplish the balance, there are empty slots remaining in both left
* and right nodes after a split.
*/
MA_STATE(l_mas, mas->tree, mas->index, mas->last);
MA_STATE(r_mas, mas->tree, mas->index, mas->last);
MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
trace_ma_op(__func__, mas);
mas->depth = mas_mt_height(mas);
/* Allocation failures will happen early. */
mas_node_count(mas, 1 + mas->depth * 2);
if (mas_is_err(mas))
return 0;
mast.l = &l_mas;
mast.r = &r_mas;
mast.orig_l = &prev_l_mas;
mast.orig_r = &prev_r_mas;
mast.bn = b_node;
while (height++ <= mas->depth) {
if (mt_slots[b_node->type] > b_node->b_end) {
mas_split_final_node(&mast, mas, height);
break;
}
l_mas = r_mas = *mas;
l_mas.node = mas_new_ma_node(mas, b_node);
r_mas.node = mas_new_ma_node(mas, b_node);
/*
* Another way that 'jitter' is avoided is to terminate a split up early if the
* left or right node has space to spare. This is referred to as "pushing left"
* or "pushing right" and is similar to the B* tree, except the nodes left or
* right can rarely be reused due to RCU, but the ripple upwards is halted which
* is a significant savings.
*/
/* Try to push left. */
if (mas_push_data(mas, height, &mast, true))
break;
/* Try to push right. */
if (mas_push_data(mas, height, &mast, false))
break;
split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
mast_split_data(&mast, mas, split);
/*
* Usually correct, mab_mas_cp in the above call overwrites
* r->max.
*/
mast.r->max = mas->max;
mast_fill_bnode(&mast, mas, 1);
prev_l_mas = *mast.l;
prev_r_mas = *mast.r;
}
/* Set the original node as dead */
old = mas->node;
mas->node = l_mas.node;
mas_wmb_replace(mas, old);
mtree_range_walk(mas);
return 1;
}
/*
* mas_reuse_node() - Reuse the node to store the data.
* @wr_mas: The maple write state
* @bn: The maple big node
* @end: The end of the data.
*
* Will always return false in RCU mode.
*
* Return: True if node was reused, false otherwise.
*/
static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
struct maple_big_node *bn, unsigned char end)
{
/* Need to be rcu safe. */
if (mt_in_rcu(wr_mas->mas->tree))
return false;
if (end > bn->b_end) {
int clear = mt_slots[wr_mas->type] - bn->b_end;
memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
}
mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
return true;
}
/*
* mas_commit_b_node() - Commit the big node into the tree.
* @wr_mas: The maple write state
* @b_node: The maple big node
* @end: The end of the data.
*/
static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
struct maple_big_node *b_node, unsigned char end)
{
struct maple_node *node;
struct maple_enode *old_enode;
unsigned char b_end = b_node->b_end;
enum maple_type b_type = b_node->type;
old_enode = wr_mas->mas->node;
if ((b_end < mt_min_slots[b_type]) &&
(!mte_is_root(old_enode)) &&
(mas_mt_height(wr_mas->mas) > 1))
return mas_rebalance(wr_mas->mas, b_node);
if (b_end >= mt_slots[b_type])
return mas_split(wr_mas->mas, b_node);
if (mas_reuse_node(wr_mas, b_node, end))
goto reuse_node;
mas_node_count(wr_mas->mas, 1);
if (mas_is_err(wr_mas->mas))
return 0;
node = mas_pop_node(wr_mas->mas);
node->parent = mas_mn(wr_mas->mas)->parent;
wr_mas->mas->node = mt_mk_node(node, b_type);
mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
mas_replace_node(wr_mas->mas, old_enode);
reuse_node:
mas_update_gap(wr_mas->mas);
wr_mas->mas->end = b_end;
return 1;
}
/*
* mas_root_expand() - Expand a root to a node
* @mas: The maple state
* @entry: The entry to store into the tree
*/
static inline int mas_root_expand(struct ma_state *mas, void *entry)
{
void *contents = mas_root_locked(mas);
enum maple_type type = maple_leaf_64;
struct maple_node *node;
void __rcu **slots;
unsigned long *pivots;
int slot = 0;
mas_node_count(mas, 1);
if (unlikely(mas_is_err(mas)))
return 0;
node = mas_pop_node(mas);
pivots = ma_pivots(node, type);
slots = ma_slots(node, type);
node->parent = ma_parent_ptr(mas_tree_parent(mas));
mas->node = mt_mk_node(node, type);
mas->status = ma_active;
if (mas->index) {
if (contents) {
rcu_assign_pointer(slots[slot], contents);
if (likely(mas->index > 1))
slot++;
}
pivots[slot++] = mas->index - 1;
}
rcu_assign_pointer(slots[slot], entry);
mas->offset = slot;
pivots[slot] = mas->last;
if (mas->last != ULONG_MAX)
pivots[++slot] = ULONG_MAX;
mas->depth = 1;
mas_set_height(mas);
ma_set_meta(node, maple_leaf_64, 0, slot);
/* swap the new root into the tree */
rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
return slot;
}
static inline void mas_store_root(struct ma_state *mas, void *entry)
{
if (likely((mas->last != 0) || (mas->index != 0)))
mas_root_expand(mas, entry);
else if (((unsigned long) (entry) & 3) == 2)
mas_root_expand(mas, entry);
else {
rcu_assign_pointer(mas->tree->ma_root, entry);
mas->status = ma_start;
}
}
/*
* mas_is_span_wr() - Check if the write needs to be treated as a write that
* spans the node.
* @mas: The maple state
* @piv: The pivot value being written
* @type: The maple node type
* @entry: The data to write
*
* Spanning writes are writes that start in one node and end in another OR if
* the write of a %NULL will cause the node to end with a %NULL.
*
* Return: True if this is a spanning write, false otherwise.
*/
static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
{
unsigned long max = wr_mas->r_max;
unsigned long last = wr_mas->mas->last;
enum maple_type type = wr_mas->type;
void *entry = wr_mas->entry;
/* Contained in this pivot, fast path */
if (last < max)
return false;
if (ma_is_leaf(type)) {
max = wr_mas->mas->max;
if (last < max)
return false;
}
if (last == max) {
/*
* The last entry of leaf node cannot be NULL unless it is the
* rightmost node (writing ULONG_MAX), otherwise it spans slots.
*/
if (entry || last == ULONG_MAX)
return false;
}
trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
return true;
}
static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
{
wr_mas->type = mte_node_type(wr_mas->mas->node);
mas_wr_node_walk(wr_mas);
wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
}
static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
{
wr_mas->mas->max = wr_mas->r_max;
wr_mas->mas->min = wr_mas->r_min;
wr_mas->mas->node = wr_mas->content;
wr_mas->mas->offset = 0;
wr_mas->mas->depth++;
}
/*
* mas_wr_walk() - Walk the tree for a write.
* @wr_mas: The maple write state
*
* Uses mas_slot_locked() and does not need to worry about dead nodes.
*
* Return: True if it's contained in a node, false on spanning write.
*/
static bool mas_wr_walk(struct ma_wr_state *wr_mas)
{
struct ma_state *mas = wr_mas->mas;
while (true) {
mas_wr_walk_descend(wr_mas);
if (unlikely(mas_is_span_wr(wr_mas)))
return false;
wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
mas->offset);
if (ma_is_leaf(wr_mas->type))
return true;
mas_wr_walk_traverse(wr_mas);
}
return true;
}
static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
{
struct ma_state *mas = wr_mas->mas;
while (true) {
mas_wr_walk_descend(wr_mas);
wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
mas->offset);
if (ma_is_leaf(wr_mas->type))
return true;
mas_wr_walk_traverse(wr_mas);
}
return true;
}
/*
* mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
* @l_wr_mas: The left maple write state
* @r_wr_mas: The right maple write state
*/
static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
struct ma_wr_state *r_wr_mas)
{
struct ma_state *r_mas = r_wr_mas->mas;
struct ma_state *l_mas = l_wr_mas->mas;
unsigned char l_slot;
l_slot = l_mas->offset;
if (!l_wr_mas->content)
l_mas->index = l_wr_mas->r_min;
if ((l_mas->index == l_wr_mas->r_min) &&
(l_slot &&
!mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
if (l_slot > 1)
l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
else
l_mas->index = l_mas->min;
l_mas->offset = l_slot - 1;
}
if (!r_wr_mas->content) {
if (r_mas->last < r_wr_mas->r_max)
r_mas->last = r_wr_mas->r_max;
r_mas->offset++;
} else if ((r_mas->last == r_wr_mas->r_max) &&
(r_mas->last < r_mas->max) &&
!mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
r_wr_mas->type, r_mas->offset + 1);
r_mas->offset++;
}
}
static inline void *mas_state_walk(struct ma_state *mas)
{
void *entry;
entry = mas_start(mas);
if (mas_is_none(mas))
return NULL;
if (mas_is_ptr(mas))
return entry;
return mtree_range_walk(mas);
}
/*
* mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
* to date.
*
* @mas: The maple state.
*
* Note: Leaves mas in undesirable state.
* Return: The entry for @mas->index or %NULL on dead node.
*/
static inline void *mtree_lookup_walk(struct ma_state *mas)
{
unsigned long *pivots;
unsigned char offset;
struct maple_node *node;
struct maple_enode *next;
enum maple_type type;
void __rcu **slots;
unsigned char end;
next = mas->node;
do {
node = mte_to_node(next);
type = mte_node_type(next);
pivots = ma_pivots(node, type);
end = mt_pivots[type];
offset = 0;
do {
if (pivots[offset] >= mas->index)
break;
} while (++offset < end);
slots = ma_slots(node, type);
next = mt_slot(mas->tree, slots, offset);
if (unlikely(ma_dead_node(node)))
goto dead_node;
} while (!ma_is_leaf(type));
return (void *)next;
dead_node:
mas_reset(mas);
return NULL;
}
static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
/*
* mas_new_root() - Create a new root node that only contains the entry passed
* in.
* @mas: The maple state
* @entry: The entry to store.
*
* Only valid when the index == 0 and the last == ULONG_MAX
*
* Return 0 on error, 1 on success.
*/
static inline int mas_new_root(struct ma_state *mas, void *entry)
{
struct maple_enode *root = mas_root_locked(mas);
enum maple_type type = maple_leaf_64;
struct maple_node *node;
void __rcu **slots;
unsigned long *pivots;
if (!entry && !mas->index && mas->last == ULONG_MAX) {
mas->depth = 0;
mas_set_height(mas);
rcu_assign_pointer(mas->tree->ma_root, entry);
mas->status = ma_start;
goto done;
}
mas_node_count(mas, 1);
if (mas_is_err(mas))
return 0;
node = mas_pop_node(mas);
pivots = ma_pivots(node, type);
slots = ma_slots(node, type);
node->parent = ma_parent_ptr(mas_tree_parent(mas));
mas->node = mt_mk_node(node, type);
mas->status = ma_active;
rcu_assign_pointer(slots[0], entry);
pivots[0] = mas->last;
mas->depth = 1;
mas_set_height(mas);
rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
done:
if (xa_is_node(root))
mte_destroy_walk(root, mas->tree);
return 1;
}
/*
* mas_wr_spanning_store() - Create a subtree with the store operation completed
* and new nodes where necessary, then place the sub-tree in the actual tree.
* Note that mas is expected to point to the node which caused the store to
* span.
* @wr_mas: The maple write state
*
* Return: 0 on error, positive on success.
*/
static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
{
struct maple_subtree_state mast;
struct maple_big_node b_node;
struct ma_state *mas;
unsigned char height;
/* Left and Right side of spanning store */
MA_STATE(l_mas, NULL, 0, 0);
MA_STATE(r_mas, NULL, 0, 0);
MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
/*
* A store operation that spans multiple nodes is called a spanning
* store and is handled early in the store call stack by the function
* mas_is_span_wr(). When a spanning store is identified, the maple
* state is duplicated. The first maple state walks the left tree path
* to ``index``, the duplicate walks the right tree path to ``last``.
* The data in the two nodes are combined into a single node, two nodes,
* or possibly three nodes (see the 3-way split above). A ``NULL``
* written to the last entry of a node is considered a spanning store as
* a rebalance is required for the operation to complete and an overflow
* of data may happen.
*/
mas = wr_mas->mas;
trace_ma_op(__func__, mas);
if (unlikely(!mas->index && mas->last == ULONG_MAX))
return mas_new_root(mas, wr_mas->entry);
/*
* Node rebalancing may occur due to this store, so there may be three new
* entries per level plus a new root.
*/
height = mas_mt_height(mas);
mas_node_count(mas, 1 + height * 3);
if (mas_is_err(mas))
return 0;
/*
* Set up right side. Need to get to the next offset after the spanning
* store to ensure it's not NULL and to combine both the next node and
* the node with the start together.
*/
r_mas = *mas;
/* Avoid overflow, walk to next slot in the tree. */
if (r_mas.last + 1)
r_mas.last++;
r_mas.index = r_mas.last;
mas_wr_walk_index(&r_wr_mas);
r_mas.last = r_mas.index = mas->last;
/* Set up left side. */
l_mas = *mas;
mas_wr_walk_index(&l_wr_mas);
if (!wr_mas->entry) {
mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
mas->offset = l_mas.offset;
mas->index = l_mas.index;
mas->last = l_mas.last = r_mas.last;
}
/* expanding NULLs may make this cover the entire range */
if (!l_mas.index && r_mas.last == ULONG_MAX) {
mas_set_range(mas, 0, ULONG_MAX);
return mas_new_root(mas, wr_mas->entry);
}
memset(&b_node, 0, sizeof(struct maple_big_node));
/* Copy l_mas and store the value in b_node. */
mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
/* Copy r_mas into b_node. */
if (r_mas.offset <= r_mas.end)
mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
&b_node, b_node.b_end + 1);
else
b_node.b_end++;
/* Stop spanning searches by searching for just index. */
l_mas.index = l_mas.last = mas->index;
mast.bn = &b_node;
mast.orig_l = &l_mas;
mast.orig_r = &r_mas;
/* Combine l_mas and r_mas and split them up evenly again. */
return mas_spanning_rebalance(mas, &mast, height + 1);
}
/*
* mas_wr_node_store() - Attempt to store the value in a node
* @wr_mas: The maple write state
*
* Attempts to reuse the node, but may allocate.
*
* Return: True if stored, false otherwise
*/
static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
unsigned char new_end)
{
struct ma_state *mas = wr_mas->mas;
void __rcu **dst_slots;
unsigned long *dst_pivots;
unsigned char dst_offset, offset_end = wr_mas->offset_end;
struct maple_node reuse, *newnode;
unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
bool in_rcu = mt_in_rcu(mas->tree);
/* Check if there is enough data. The room is enough. */
if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
!(mas->mas_flags & MA_STATE_BULK))
return false;
if (mas->last == wr_mas->end_piv)
offset_end++; /* don't copy this offset */
else if (unlikely(wr_mas->r_max == ULONG_MAX))
mas_bulk_rebalance(mas, mas->end, wr_mas->type);
/* set up node. */
if (in_rcu) {
mas_node_count(mas, 1);
if (mas_is_err(mas))
return false;
newnode = mas_pop_node(mas);
} else {
memset(&reuse, 0, sizeof(struct maple_node));
newnode = &reuse;
}
newnode->parent = mas_mn(mas)->parent;
dst_pivots = ma_pivots(newnode, wr_mas->type);
dst_slots = ma_slots(newnode, wr_mas->type);
/* Copy from start to insert point */
memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
/* Handle insert of new range starting after old range */
if (wr_mas->r_min < mas->index) {
rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
dst_pivots[mas->offset++] = mas->index - 1;
}
/* Store the new entry and range end. */
if (mas->offset < node_pivots)
dst_pivots[mas->offset] = mas->last;
rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
/*
* this range wrote to the end of the node or it overwrote the rest of
* the data
*/
if (offset_end > mas->end)
goto done;
dst_offset = mas->offset + 1;
/* Copy to the end of node if necessary. */
copy_size = mas->end - offset_end + 1;
memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
sizeof(void *) * copy_size);
memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
sizeof(unsigned long) * (copy_size - 1));
if (new_end < node_pivots)
dst_pivots[new_end] = mas->max;
done:
mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
if (in_rcu) {
struct maple_enode *old_enode = mas->node;
mas->node = mt_mk_node(newnode, wr_mas->type);
mas_replace_node(mas, old_enode);
} else {
memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
}
trace_ma_write(__func__, mas, 0, wr_mas->entry);
mas_update_gap(mas);
mas->end = new_end;
return true;
}
/*
* mas_wr_slot_store: Attempt to store a value in a slot.
* @wr_mas: the maple write state
*
* Return: True if stored, false otherwise
*/
static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
{
struct ma_state *mas = wr_mas->mas;
unsigned char offset = mas->offset;
void __rcu **slots = wr_mas->slots;
bool gap = false;
gap |= !mt_slot_locked(mas->tree, slots, offset);
gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
if (wr_mas->offset_end - offset == 1) {
if (mas->index == wr_mas->r_min) {
/* Overwriting the range and a part of the next one */
rcu_assign_pointer(slots[offset], wr_mas->entry);
wr_mas->pivots[offset] = mas->last;
} else {
/* Overwriting a part of the range and the next one */
rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
wr_mas->pivots[offset] = mas->index - 1;
mas->offset++; /* Keep mas accurate. */
}
} else if (!mt_in_rcu(mas->tree)) {
/*
* Expand the range, only partially overwriting the previous and
* next ranges
*/
gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
wr_mas->pivots[offset] = mas->index - 1;
wr_mas->pivots[offset + 1] = mas->last;
mas->offset++; /* Keep mas accurate. */
} else {
return false;
}
trace_ma_write(__func__, mas, 0, wr_mas->entry);
/*
* Only update gap when the new entry is empty or there is an empty
* entry in the original two ranges.
*/
if (!wr_mas->entry || gap)
mas_update_gap(mas);
return true;
}
static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
{
struct ma_state *mas = wr_mas->mas;
if (!wr_mas->slots[wr_mas->offset_end]) {
/* If this one is null, the next and prev are not */
mas->last = wr_mas->end_piv;
} else {
/* Check next slot(s) if we are overwriting the end */
if ((mas->last == wr_mas->end_piv) &&
(mas->end != wr_mas->offset_end) &&
!wr_mas->slots[wr_mas->offset_end + 1]) {
wr_mas->offset_end++;
if (wr_mas->offset_end == mas->end)
mas->last = mas->max;
else
mas->last = wr_mas->pivots[wr_mas->offset_end];
wr_mas->end_piv = mas->last;
}
}
if (!wr_mas->content) {
/* If this one is null, the next and prev are not */
mas->index = wr_mas->r_min;
} else {
/* Check prev slot if we are overwriting the start */
if (mas->index == wr_mas->r_min && mas->offset &&
!wr_mas->slots[mas->offset - 1]) {
mas->offset--;
wr_mas->r_min = mas->index =
mas_safe_min(mas, wr_mas->pivots, mas->offset);
wr_mas->r_max = wr_mas->pivots[mas->offset];
}
}
}
static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
{
while ((wr_mas->offset_end < wr_mas->mas->end) &&
(wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
wr_mas->offset_end++;
if (wr_mas->offset_end < wr_mas->mas->end)
wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
else
wr_mas->end_piv = wr_mas->mas->max;
if (!wr_mas->entry)
mas_wr_extend_null(wr_mas);
}
static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
{
struct ma_state *mas = wr_mas->mas;
unsigned char new_end = mas->end + 2;
new_end -= wr_mas->offset_end - mas->offset;
if (wr_mas->r_min == mas->index)
new_end--;
if (wr_mas->end_piv == mas->last)
new_end--;
return new_end;
}
/*
* mas_wr_append: Attempt to append
* @wr_mas: the maple write state
* @new_end: The end of the node after the modification
*
* This is currently unsafe in rcu mode since the end of the node may be cached
* by readers while the node contents may be updated which could result in
* inaccurate information.
*
* Return: True if appended, false otherwise
*/
static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
unsigned char new_end)
{
struct ma_state *mas;
void __rcu **slots;
unsigned char end;
mas = wr_mas->mas;
if (mt_in_rcu(mas->tree))
return false;
end = mas->end;
if (mas->offset != end)
return false;
if (new_end < mt_pivots[wr_mas->type]) {
wr_mas->pivots[new_end] = wr_mas->pivots[end];
ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
}
slots = wr_mas->slots;
if (new_end == end + 1) {
if (mas->last == wr_mas->r_max) {
/* Append to end of range */
rcu_assign_pointer(slots[new_end], wr_mas->entry);
wr_mas->pivots[end] = mas->index - 1;
mas->offset = new_end;
} else {
/* Append to start of range */
rcu_assign_pointer(slots[new_end], wr_mas->content);
wr_mas->pivots[end] = mas->last;
rcu_assign_pointer(slots[end], wr_mas->entry);
}
} else {
/* Append to the range without touching any boundaries. */
rcu_assign_pointer(slots[new_end], wr_mas->content);
wr_mas->pivots[end + 1] = mas->last;
rcu_assign_pointer(slots[end + 1], wr_mas->entry);
wr_mas->pivots[end] = mas->index - 1;
mas->offset = end + 1;
}
if (!wr_mas->content || !wr_mas->entry)
mas_update_gap(mas);
mas->end = new_end;
trace_ma_write(__func__, mas, new_end, wr_mas->entry);
return true;
}
/*
* mas_wr_bnode() - Slow path for a modification.
* @wr_mas: The write maple state
*
* This is where split, rebalance end up.
*/
static void mas_wr_bnode(struct ma_wr_state *wr_mas)
{
struct maple_big_node b_node;
trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
memset(&b_node, 0, sizeof(struct maple_big_node));
mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
mas_commit_b_node(wr_mas, &b_node, wr_mas->mas->end);
}
static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
{
struct ma_state *mas = wr_mas->mas;
unsigned char new_end;
/* Direct replacement */
if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
if (!!wr_mas->entry ^ !!wr_mas->content)
mas_update_gap(mas);
return;
}
/*
* new_end exceeds the size of the maple node and cannot enter the fast
* path.
*/
new_end = mas_wr_new_end(wr_mas);
if (new_end >= mt_slots[wr_mas->type])
goto slow_path;
/* Attempt to append */
if (mas_wr_append(wr_mas, new_end))
return;
if (new_end == mas->end && mas_wr_slot_store(wr_mas))
return;
if (mas_wr_node_store(wr_mas, new_end))
return;
if (mas_is_err(mas))
return;
slow_path:
mas_wr_bnode(wr_mas);
}
/*
* mas_wr_store_entry() - Internal call to store a value
* @mas: The maple state
* @entry: The entry to store.
*
* Return: The contents that was stored at the index.
*/
static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
{
struct ma_state *mas = wr_mas->mas;
wr_mas->content = mas_start(mas);
if (mas_is_none(mas) || mas_is_ptr(mas)) {
mas_store_root(mas, wr_mas->entry);
return wr_mas->content;
}
if (unlikely(!mas_wr_walk(wr_mas))) {
mas_wr_spanning_store(wr_mas);
return wr_mas->content;
}
/* At this point, we are at the leaf node that needs to be altered. */
mas_wr_end_piv(wr_mas);
/* New root for a single pointer */
if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
mas_new_root(mas, wr_mas->entry);
return wr_mas->content;
}
mas_wr_modify(wr_mas);
return wr_mas->content;
}
/**
* mas_insert() - Internal call to insert a value
* @mas: The maple state
* @entry: The entry to store
*
* Return: %NULL or the contents that already exists at the requested index
* otherwise. The maple state needs to be checked for error conditions.
*/
static inline void *mas_insert(struct ma_state *mas, void *entry)
{
MA_WR_STATE(wr_mas, mas, entry);
/*
* Inserting a new range inserts either 0, 1, or 2 pivots within the
* tree. If the insert fits exactly into an existing gap with a value
* of NULL, then the slot only needs to be written with the new value.
* If the range being inserted is adjacent to another range, then only a
* single pivot needs to be inserted (as well as writing the entry). If
* the new range is within a gap but does not touch any other ranges,
* then two pivots need to be inserted: the start - 1, and the end. As
* usual, the entry must be written. Most operations require a new node
* to be allocated and replace an existing node to ensure RCU safety,
* when in RCU mode. The exception to requiring a newly allocated node
* is when inserting at the end of a node (appending). When done
* carefully, appending can reuse the node in place.
*/
wr_mas.content = mas_start(mas);
if (wr_mas.content)
goto exists;
if (mas_is_none(mas) || mas_is_ptr(mas)) {
mas_store_root(mas, entry);
return NULL;
}
/* spanning writes always overwrite something */
if (!mas_wr_walk(&wr_mas))
goto exists;
/* At this point, we are at the leaf node that needs to be altered. */
wr_mas.offset_end = mas->offset;
wr_mas.end_piv = wr_mas.r_max;
if (wr_mas.content || (mas->last > wr_mas.r_max))
goto exists;
if (!entry)
return NULL;
mas_wr_modify(&wr_mas);
return wr_mas.content;
exists:
mas_set_err(mas, -EEXIST);
return wr_mas.content;
}
/**
* mas_alloc_cyclic() - Internal call to find somewhere to store an entry
* @mas: The maple state.
* @startp: Pointer to ID.
* @range_lo: Lower bound of range to search.
* @range_hi: Upper bound of range to search.
* @entry: The entry to store.
* @next: Pointer to next ID to allocate.
* @gfp: The GFP_FLAGS to use for allocations.
*
* Return: 0 if the allocation succeeded without wrapping, 1 if the
* allocation succeeded after wrapping, or -EBUSY if there are no
* free entries.
*/
int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
void *entry, unsigned long range_lo, unsigned long range_hi,
unsigned long *next, gfp_t gfp)
{
unsigned long min = range_lo;
int ret = 0;
range_lo = max(min, *next);
ret = mas_empty_area(mas, range_lo, range_hi, 1);
if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
ret = 1;
}
if (ret < 0 && range_lo > min) {
ret = mas_empty_area(mas, min, range_hi, 1);
if (ret == 0)
ret = 1;
}
if (ret < 0)
return ret;
do {
mas_insert(mas, entry);
} while (mas_nomem(mas, gfp));
if (mas_is_err(mas))
return xa_err(mas->node);
*startp = mas->index;
*next = *startp + 1;
if (*next == 0)
mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
return ret;
}
EXPORT_SYMBOL(mas_alloc_cyclic);
static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
{
retry:
mas_set(mas, index);
mas_state_walk(mas);
if (mas_is_start(mas))
goto retry;
}
static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
struct maple_node *node, const unsigned long index)
{
if (unlikely(ma_dead_node(node))) {
mas_rewalk(mas, index);
return true;
}
return false;
}
/*
* mas_prev_node() - Find the prev non-null entry at the same level in the
* tree. The prev value will be mas->node[mas->offset] or the status will be
* ma_none.
* @mas: The maple state
* @min: The lower limit to search
*
* The prev node value will be mas->node[mas->offset] or the status will be
* ma_none.
* Return: 1 if the node is dead, 0 otherwise.
*/
static int mas_prev_node(struct ma_state *mas, unsigned long min)
{
enum maple_type mt;
int offset, level;
void __rcu **slots;
struct maple_node *node;
unsigned long *pivots;
unsigned long max;
node = mas_mn(mas);
if (!mas->min)
goto no_entry;
max = mas->min - 1;
if (max < min)
goto no_entry;
level = 0;
do {
if (ma_is_root(node))
goto no_entry;
/* Walk up. */
if (unlikely(mas_ascend(mas)))
return 1;
offset = mas->offset;
level++;
node = mas_mn(mas);
} while (!offset);
offset--;
mt = mte_node_type(mas->node);
while (level > 1) {
level--;
slots = ma_slots(node, mt);
mas->node = mas_slot(mas, slots, offset);
if (unlikely(ma_dead_node(node)))
return 1;
mt = mte_node_type(mas->node);
node = mas_mn(mas);
pivots = ma_pivots(node, mt);
offset = ma_data_end(node, mt, pivots, max);
if (unlikely(ma_dead_node(node)))
return 1;
}
slots = ma_slots(node, mt);
mas->node = mas_slot(mas, slots, offset);
pivots = ma_pivots(node, mt);
if (unlikely(ma_dead_node(node)))
return 1;
if (likely(offset))
mas->min = pivots[offset - 1] + 1;
mas->max = max;
mas->offset = mas_data_end(mas);
if (unlikely(mte_dead_node(mas->node)))
return 1;
mas->end = mas->offset;
return 0;
no_entry:
if (unlikely(ma_dead_node(node)))
return 1;
mas->status = ma_underflow;
return 0;
}
/*
* mas_prev_slot() - Get the entry in the previous slot
*
* @mas: The maple state
* @max: The minimum starting range
* @empty: Can be empty
* @set_underflow: Set the @mas->node to underflow state on limit.
*
* Return: The entry in the previous slot which is possibly NULL
*/
static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
{
void *entry;
void __rcu **slots;
unsigned long pivot;
enum maple_type type;
unsigned long *pivots;
struct maple_node *node;
unsigned long save_point = mas->index;
retry:
node = mas_mn(mas);
type = mte_node_type(mas->node);
pivots = ma_pivots(node, type);
if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
goto retry;
if (mas->min <= min) {
pivot = mas_safe_min(mas, pivots, mas->offset);
if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
goto retry;
if (pivot <= min)
goto underflow;
}
again:
if (likely(mas->offset)) {
mas->offset--;
mas->last = mas->index - 1;
mas->index = mas_safe_min(mas, pivots, mas->offset);
} else {
if (mas->index <= min)
goto underflow;
if (mas_prev_node(mas, min)) {
mas_rewalk(mas, save_point);
goto retry;
}
if (WARN_ON_ONCE(mas_is_underflow(mas)))
return NULL;
mas->last = mas->max;
node = mas_mn(mas);
type = mte_node_type(mas->node);
pivots = ma_pivots(node, type);
mas->index = pivots[mas->offset - 1] + 1;
}
slots = ma_slots(node, type);
entry = mas_slot(mas, slots, mas->offset);
if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
goto retry;
if (likely(entry))
return entry;
if (!empty) {
if (mas->index <= min) {
mas->status = ma_underflow;
return NULL;
}
goto again;
}
return entry;
underflow:
mas->status = ma_underflow;
return NULL;
}
/*
* mas_next_node() - Get the next node at the same level in the tree.
* @mas: The maple state
* @max: The maximum pivot value to check.
*
* The next value will be mas->node[mas->offset] or the status will have
* overflowed.
* Return: 1 on dead node, 0 otherwise.
*/
static int mas_next_node(struct ma_state *mas, struct maple_node *node,
unsigned long max)
{
unsigned long min;
unsigned long *pivots;
struct maple_enode *enode;
struct maple_node *tmp;
int level = 0;
unsigned char node_end;
enum maple_type mt;
void __rcu **slots;
if (mas->max >= max)
goto overflow;
min = mas->max + 1;
level = 0;
do {
if (ma_is_root(node))
goto overflow;
/* Walk up. */
if (unlikely(mas_ascend(mas)))
return 1;
level++;
node = mas_mn(mas);
mt = mte_node_type(mas->node);
pivots = ma_pivots(node, mt);
node_end = ma_data_end(node, mt, pivots, mas->max);
if (unlikely(ma_dead_node(node)))
return 1;
} while (unlikely(mas->offset == node_end));
slots = ma_slots(node, mt);
mas->offset++;
enode = mas_slot(mas, slots, mas->offset);
if (unlikely(ma_dead_node(node)))
return 1;
if (level > 1)
mas->offset = 0;
while (unlikely(level > 1)) {
level--;
mas->node = enode;
node = mas_mn(mas);
mt = mte_node_type(mas->node);
slots = ma_slots(node, mt);
enode = mas_slot(mas, slots, 0);
if (unlikely(ma_dead_node(node)))
return 1;
}
if (!mas->offset)
pivots = ma_pivots(node, mt);
mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
tmp = mte_to_node(enode);
mt = mte_node_type(enode);
pivots = ma_pivots(tmp, mt);
mas->end = ma_data_end(tmp, mt, pivots, mas->max);
if (unlikely(ma_dead_node(node)))
return 1;
mas->node = enode;
mas->min = min;
return 0;
overflow:
if (unlikely(ma_dead_node(node)))
return 1;
mas->status = ma_overflow;
return 0;
}
/*
* mas_next_slot() - Get the entry in the next slot
*
* @mas: The maple state
* @max: The maximum starting range
* @empty: Can be empty
* @set_overflow: Should @mas->node be set to overflow when the limit is
* reached.
*
* Return: The entry in the next slot which is possibly NULL
*/
static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
{
void __rcu **slots;
unsigned long *pivots;
unsigned long pivot;
enum maple_type type;
struct maple_node *node;
unsigned long save_point = mas->last;
void *entry;
retry:
node = mas_mn(mas);
type = mte_node_type(mas->node);
pivots = ma_pivots(node, type);
if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
goto retry;
if (mas->max >= max) {
if (likely(mas->offset < mas->end))
pivot = pivots[mas->offset];
else
pivot = mas->max;
if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
goto retry;
if (pivot >= max) { /* Was at the limit, next will extend beyond */
mas->status = ma_overflow;
return NULL;
}
}
if (likely(mas->offset < mas->end)) {
mas->index = pivots[mas->offset] + 1;
again:
mas->offset++;
if (likely(mas->offset < mas->end))
mas->last = pivots[mas->offset];
else
mas->last = mas->max;
} else {
if (mas->last >= max) {
mas->status = ma_overflow;
return NULL;
}
if (mas_next_node(mas, node, max)) {
mas_rewalk(mas, save_point);
goto retry;
}
if (WARN_ON_ONCE(mas_is_overflow(mas)))
return NULL;
mas->offset = 0;
mas->index = mas->min;
node = mas_mn(mas);
type = mte_node_type(mas->node);
pivots = ma_pivots(node, type);
mas->last = pivots[0];
}
slots = ma_slots(node, type);
entry = mt_slot(mas->tree, slots, mas->offset);
if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
goto retry;
if (entry)
return entry;
if (!empty) {
if (mas->last >= max) {
mas->status = ma_overflow;
return NULL;
}
mas->index = mas->last + 1;
goto again;
}
return entry;
}
/*
* mas_next_entry() - Internal function to get the next entry.
* @mas: The maple state
* @limit: The maximum range start.
*
* Set the @mas->node to the next entry and the range_start to
* the beginning value for the entry. Does not check beyond @limit.
* Sets @mas->index and @mas->last to the range, Does not update @mas->index and
* @mas->last on overflow.
* Restarts on dead nodes.
*
* Return: the next entry or %NULL.
*/
static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
{
if (mas->last >= limit) {
mas->status = ma_overflow;
return NULL;
}
return mas_next_slot(mas, limit, false);
}
/*
* mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
* highest gap address of a given size in a given node and descend.
* @mas: The maple state
* @size: The needed size.
*
* Return: True if found in a leaf, false otherwise.
*
*/
static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
unsigned long *gap_min, unsigned long *gap_max)
{
enum maple_type type = mte_node_type(mas->node);
struct maple_node *node = mas_mn(mas);
unsigned long *pivots, *gaps;
void __rcu **slots;
unsigned long gap = 0;
unsigned long max, min;
unsigned char offset;
if (unlikely(mas_is_err(mas)))
return true;
if (ma_is_dense(type)) {
/* dense nodes. */
mas->offset = (unsigned char)(mas->index - mas->min);
return true;
}
pivots = ma_pivots(node, type);
slots = ma_slots(node, type);
gaps = ma_gaps(node, type);
offset = mas->offset;
min = mas_safe_min(mas, pivots, offset);
/* Skip out of bounds. */
while (mas->last < min)
min = mas_safe_min(mas, pivots, --offset);
max = mas_safe_pivot(mas, pivots, offset, type);
while (mas->index <= max) {
gap = 0;
if (gaps)
gap = gaps[offset];
else if (!mas_slot(mas, slots, offset))
gap = max - min + 1;
if (gap) {
if ((size <= gap) && (size <= mas->last - min + 1))
break;
if (!gaps) {
/* Skip the next slot, it cannot be a gap. */
if (offset < 2)
goto ascend;
offset -= 2;
max = pivots[offset];
min = mas_safe_min(mas, pivots, offset);
continue;
}
}
if (!offset)
goto ascend;
offset--;
max = min - 1;
min = mas_safe_min(mas, pivots, offset);
}
if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
goto no_space;
if (unlikely(ma_is_leaf(type))) {
mas->offset = offset;
*gap_min = min;
*gap_max = min + gap - 1;
return true;
}
/* descend, only happens under lock. */
mas->node = mas_slot(mas, slots, offset);
mas->min = min;
mas->max = max;
mas->offset = mas_data_end(mas);
return false;
ascend:
if (!mte_is_root(mas->node))
return false;
no_space:
mas_set_err(mas, -EBUSY);
return false;
}
static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
{
enum maple_type type = mte_node_type(mas->node);
unsigned long pivot, min, gap = 0;
unsigned char offset, data_end;
unsigned long *gaps, *pivots;
void __rcu **slots;
struct maple_node *node;
bool found = false;
if (ma_is_dense(type)) {
mas->offset = (unsigned char)(mas->index - mas->min);
return true;
}
node = mas_mn(mas);
pivots = ma_pivots(node, type);
slots = ma_slots(node, type);
gaps = ma_gaps(node, type);
offset = mas->offset;
min = mas_safe_min(mas, pivots, offset);
data_end = ma_data_end(node, type, pivots, mas->max);
for (; offset <= data_end; offset++) {
pivot = mas_safe_pivot(mas, pivots, offset, type);
/* Not within lower bounds */
if (mas->index > pivot)
goto next_slot;
if (gaps)
gap = gaps[offset];
else if (!mas_slot(mas, slots, offset))
gap = min(pivot, mas->last) - max(mas->index, min) + 1;
else
goto next_slot;
if (gap >= size) {
if (ma_is_leaf(type)) {
found = true;
goto done;
}
if (mas->index <= pivot) {
mas->node = mas_slot(mas, slots, offset);
mas->min = min;
mas->max = pivot;
offset = 0;
break;
}
}
next_slot:
min = pivot + 1;
if (mas->last <= pivot) {
mas_set_err(mas, -EBUSY);
return true;
}
}
if (mte_is_root(mas->node))
found = true;
done:
mas->offset = offset;
return found;
}
/**
* mas_walk() - Search for @mas->index in the tree.
* @mas: The maple state.
*
* mas->index and mas->last will be set to the range if there is a value. If
* mas->status is ma_none, reset to ma_start
*
* Return: the entry at the location or %NULL.
*/
void *mas_walk(struct ma_state *mas)
{
void *entry;
if (!mas_is_active(mas) || !mas_is_start(mas))
mas->status = ma_start;
retry:
entry = mas_state_walk(mas);
if (mas_is_start(mas)) {
goto retry;
} else if (mas_is_none(mas)) {
mas->index = 0;
mas->last = ULONG_MAX;
} else if (mas_is_ptr(mas)) {
if (!mas->index) {
mas->last = 0;
return entry;
}
mas->index = 1;
mas->last = ULONG_MAX;
mas->status = ma_none;
return NULL;
}
return entry;
}
EXPORT_SYMBOL_GPL(mas_walk);
static inline bool mas_rewind_node(struct ma_state *mas)
{
unsigned char slot;
do {
if (mte_is_root(mas->node)) {
slot = mas->offset;
if (!slot)
return false;
} else {
mas_ascend(mas);
slot = mas->offset;
}
} while (!slot);
mas->offset = --slot;
return true;
}
/*
* mas_skip_node() - Internal function. Skip over a node.
* @mas: The maple state.
*
* Return: true if there is another node, false otherwise.
*/
static inline bool mas_skip_node(struct ma_state *mas)
{
if (mas_is_err(mas))
return false;
do {
if (mte_is_root(mas->node)) {
if (mas->offset >= mas_data_end(mas)) {
mas_set_err(mas, -EBUSY);
return false;
}
} else {
mas_ascend(mas);
}
} while (mas->offset >= mas_data_end(mas));
mas->offset++;
return true;
}
/*
* mas_awalk() - Allocation walk. Search from low address to high, for a gap of
* @size
* @mas: The maple state
* @size: The size of the gap required
*
* Search between @mas->index and @mas->last for a gap of @size.
*/
static inline void mas_awalk(struct ma_state *mas, unsigned long size)
{
struct maple_enode *last = NULL;
/*
* There are 4 options:
* go to child (descend)
* go back to parent (ascend)
* no gap found. (return, slot == MAPLE_NODE_SLOTS)
* found the gap. (return, slot != MAPLE_NODE_SLOTS)
*/
while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
if (last == mas->node)
mas_skip_node(mas);
else
last = mas->node;
}
}
/*
* mas_sparse_area() - Internal function. Return upper or lower limit when
* searching for a gap in an empty tree.
* @mas: The maple state
* @min: the minimum range
* @max: The maximum range
* @size: The size of the gap
* @fwd: Searching forward or back
*/
static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
unsigned long max, unsigned long size, bool fwd)
{
if (!unlikely(mas_is_none(mas)) && min == 0) {
min++;
/*
* At this time, min is increased, we need to recheck whether
* the size is satisfied.
*/
if (min > max || max - min + 1 < size)
return -EBUSY;
}
/* mas_is_ptr */
if (fwd) {
mas->index = min;
mas->last = min + size - 1;
} else {
mas->last = max;
mas->index = max - size + 1;
}
return 0;
}
/*
* mas_empty_area() - Get the lowest address within the range that is
* sufficient for the size requested.
* @mas: The maple state
* @min: The lowest value of the range
* @max: The highest value of the range
* @size: The size needed
*/
int mas_empty_area(struct ma_state *mas, unsigned long min,
unsigned long max, unsigned long size)
{
unsigned char offset;
unsigned long *pivots;
enum maple_type mt;
struct maple_node *node;
if (min > max)
return -EINVAL;
if (size == 0 || max - min < size - 1)
return -EINVAL;
if (mas_is_start(mas))
mas_start(mas);
else if (mas->offset >= 2)
mas->offset -= 2;
else if (!mas_skip_node(mas))
return -EBUSY;
/* Empty set */
if (mas_is_none(mas) || mas_is_ptr(mas))
return mas_sparse_area(mas, min, max, size, true);
/* The start of the window can only be within these values */
mas->index = min;
mas->last = max;
mas_awalk(mas, size);
if (unlikely(mas_is_err(mas)))
return xa_err(mas->node);
offset = mas->offset;
if (unlikely(offset == MAPLE_NODE_SLOTS))
return -EBUSY;
node = mas_mn(mas);
mt = mte_node_type(mas->node);
pivots = ma_pivots(node, mt);
min = mas_safe_min(mas, pivots, offset);
if (mas->index < min)
mas->index = min;
mas->last = mas->index + size - 1;
mas->end = ma_data_end(node, mt, pivots, mas->max);
return 0;
}
EXPORT_SYMBOL_GPL(mas_empty_area);
/*
* mas_empty_area_rev() - Get the highest address within the range that is
* sufficient for the size requested.
* @mas: The maple state
* @min: The lowest value of the range
* @max: The highest value of the range
* @size: The size needed
*/
int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
unsigned long max, unsigned long size)
{
struct maple_enode *last = mas->node;
if (min > max)
return -EINVAL;
if (size == 0 || max - min < size - 1)
return -EINVAL;
if (mas_is_start(mas))
mas_start(mas);
else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
return -EBUSY;
if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
return mas_sparse_area(mas, min, max, size, false);
else if (mas->offset >= 2)
mas->offset -= 2;
else
mas->offset = mas_data_end(mas);
/* The start of the window can only be within these values. */
mas->index = min;
mas->last = max;
while (!mas_rev_awalk(mas, size, &min, &max)) {
if (last == mas->node) {
if (!mas_rewind_node(mas))
return -EBUSY;
} else {
last = mas->node;
}
}
if (mas_is_err(mas))
return xa_err(mas->node);
if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
return -EBUSY;
/* Trim the upper limit to the max. */
if (max < mas->last)
mas->last = max;
mas->index = mas->last - size + 1;
mas->end = mas_data_end(mas);
return 0;
}
EXPORT_SYMBOL_GPL(mas_empty_area_rev);
/*
* mte_dead_leaves() - Mark all leaves of a node as dead.
* @mas: The maple state
* @slots: Pointer to the slot array
* @type: The maple node type
*
* Must hold the write lock.
*
* Return: The number of leaves marked as dead.
*/
static inline
unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
void __rcu **slots)
{
struct maple_node *node;
enum maple_type type;
void *entry;
int offset;
for (offset = 0; offset < mt_slot_count(enode); offset++) {
entry = mt_slot(mt, slots, offset);
type = mte_node_type(entry);
node = mte_to_node(entry);
/* Use both node and type to catch LE & BE metadata */
if (!node || !type)
break;
mte_set_node_dead(entry);
node->type = type;
rcu_assign_pointer(slots[offset], node);
}
return offset;
}
/**
* mte_dead_walk() - Walk down a dead tree to just before the leaves
* @enode: The maple encoded node
* @offset: The starting offset
*
* Note: This can only be used from the RCU callback context.
*/
static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
{
struct maple_node *node, *next;
void __rcu **slots = NULL;
next = mte_to_node(*enode);
do {
*enode = ma_enode_ptr(next);
node = mte_to_node(*enode);
slots = ma_slots(node, node->type);
next = rcu_dereference_protected(slots[offset],
lock_is_held(&rcu_callback_map));
offset = 0;
} while (!ma_is_leaf(next->type));
return slots;
}
/**
* mt_free_walk() - Walk & free a tree in the RCU callback context
* @head: The RCU head that's within the node.
*
* Note: This can only be used from the RCU callback context.
*/
static void mt_free_walk(struct rcu_head *head)
{
void __rcu **slots;
struct maple_node *node, *start;
struct maple_enode *enode;
unsigned char offset;
enum maple_type type;
node = container_of(head, struct maple_node, rcu);
if (ma_is_leaf(node->type))
goto free_leaf;
start = node;
enode = mt_mk_node(node, node->type);
slots = mte_dead_walk(&enode, 0);
node = mte_to_node(enode);
do {
mt_free_bulk(node->slot_len, slots);
offset = node->parent_slot + 1;
enode = node->piv_parent;
if (mte_to_node(enode) == node)
goto free_leaf;
type = mte_node_type(enode);
slots = ma_slots(mte_to_node(enode), type);
if ((offset < mt_slots[type]) &&
rcu_dereference_protected(slots[offset],
lock_is_held(&rcu_callback_map)))
slots = mte_dead_walk(&enode, offset);
node = mte_to_node(enode);
} while ((node != start) || (node->slot_len < offset));
slots = ma_slots(node, node->type);
mt_free_bulk(node->slot_len, slots);
free_leaf:
mt_free_rcu(&node->rcu);
}
static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
{
struct maple_node *node;
struct maple_enode *next = *enode;
void __rcu **slots = NULL;
enum maple_type type;
unsigned char next_offset = 0;
do {
*enode = next;
node = mte_to_node(*enode);
type = mte_node_type(*enode);
slots = ma_slots(node, type);
next = mt_slot_locked(mt, slots, next_offset);
if ((mte_dead_node(next)))
next = mt_slot_locked(mt, slots, ++next_offset);
mte_set_node_dead(*enode);
node->type = type;
node->piv_parent = prev;
node->parent_slot = offset;
offset = next_offset;
next_offset = 0;
prev = *enode;
} while (!mte_is_leaf(next));
return slots;
}
static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
bool free)
{
void __rcu **slots;
struct maple_node *node = mte_to_node(enode);
struct maple_enode *start;
if (mte_is_leaf(enode)) {
node->type = mte_node_type(enode);
goto free_leaf;
}
start = enode;
slots = mte_destroy_descend(&enode, mt, start, 0);
node = mte_to_node(enode); // Updated in the above call.
do {
enum maple_type type;
unsigned char offset;
struct maple_enode *parent, *tmp;
node->slot_len = mte_dead_leaves(enode, mt, slots);
if (free)
mt_free_bulk(node->slot_len, slots);
offset = node->parent_slot + 1;
enode = node->piv_parent;
if (mte_to_node(enode) == node)
goto free_leaf;
type = mte_node_type(enode);
slots = ma_slots(mte_to_node(enode), type);
if (offset >= mt_slots[type])
goto next;
tmp = mt_slot_locked(mt, slots, offset);
if (mte_node_type(tmp) && mte_to_node(tmp)) {
parent = enode;
enode = tmp;
slots = mte_destroy_descend(&enode, mt, parent, offset);
}
next:
node = mte_to_node(enode);
} while (start != enode);
node = mte_to_node(enode);
node->slot_len = mte_dead_leaves(enode, mt, slots);
if (free)
mt_free_bulk(node->slot_len, slots);
free_leaf:
if (free)
mt_free_rcu(&node->rcu);
else
mt_clear_meta(mt, node, node->type);
}
/*
* mte_destroy_walk() - Free a tree or sub-tree.
* @enode: the encoded maple node (maple_enode) to start
* @mt: the tree to free - needed for node types.
*
* Must hold the write lock.
*/
static inline void mte_destroy_walk(struct maple_enode *enode,
struct maple_tree *mt)
{
struct maple_node *node = mte_to_node(enode);
if (mt_in_rcu(mt)) {
mt_destroy_walk(enode, mt, false);
call_rcu(&node->rcu, mt_free_walk);
} else {
mt_destroy_walk(enode, mt, true);
}
}
static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
{
if (!mas_is_active(wr_mas->mas)) {
if (mas_is_start(wr_mas->mas))
return;
if (unlikely(mas_is_paused(wr_mas->mas)))
goto reset;
if (unlikely(mas_is_none(wr_mas->mas)))
goto reset;
if (unlikely(mas_is_overflow(wr_mas->mas)))
goto reset;
if (unlikely(mas_is_underflow(wr_mas->mas)))
goto reset;
}
/*
* A less strict version of mas_is_span_wr() where we allow spanning
* writes within this node. This is to stop partial walks in
* mas_prealloc() from being reset.
*/
if (wr_mas->mas->last > wr_mas->mas->max)
goto reset;
if (wr_mas->entry)
return;
if (mte_is_leaf(wr_mas->mas->node) &&
wr_mas->mas->last == wr_mas->mas->max)
goto reset;
return;
reset:
mas_reset(wr_mas->mas);
}
/* Interface */
/**
* mas_store() - Store an @entry.
* @mas: The maple state.
* @entry: The entry to store.
*
* The @mas->index and @mas->last is used to set the range for the @entry.
* Note: The @mas should have pre-allocated entries to ensure there is memory to
* store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
*
* Return: the first entry between mas->index and mas->last or %NULL.
*/
void *mas_store(struct ma_state *mas, void *entry)
{
MA_WR_STATE(wr_mas, mas, entry);
trace_ma_write(__func__, mas, 0, entry);
#ifdef CONFIG_DEBUG_MAPLE_TREE
if (MAS_WARN_ON(mas, mas->index > mas->last))
pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
if (mas->index > mas->last) {
mas_set_err(mas, -EINVAL);
return NULL;
}
#endif
/*
* Storing is the same operation as insert with the added caveat that it
* can overwrite entries. Although this seems simple enough, one may
* want to examine what happens if a single store operation was to
* overwrite multiple entries within a self-balancing B-Tree.
*/
mas_wr_store_setup(&wr_mas);
mas_wr_store_entry(&wr_mas);
return wr_mas.content;
}
EXPORT_SYMBOL_GPL(mas_store);
/**
* mas_store_gfp() - Store a value into the tree.
* @mas: The maple state
* @entry: The entry to store
* @gfp: The GFP_FLAGS to use for allocations if necessary.
*
* Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
* be allocated.
*/
int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
{
MA_WR_STATE(wr_mas, mas, entry);
mas_wr_store_setup(&wr_mas);
trace_ma_write(__func__, mas, 0, entry);
retry:
mas_wr_store_entry(&wr_mas);
if (unlikely(mas_nomem(mas, gfp)))
goto retry;
if (unlikely(mas_is_err(mas)))
return xa_err(mas->node);
return 0;
}
EXPORT_SYMBOL_GPL(mas_store_gfp);
/**
* mas_store_prealloc() - Store a value into the tree using memory
* preallocated in the maple state.
* @mas: The maple state
* @entry: The entry to store.
*/
void mas_store_prealloc(struct ma_state *mas, void *entry)
{
MA_WR_STATE(wr_mas, mas, entry);
mas_wr_store_setup(&wr_mas);
trace_ma_write(__func__, mas, 0, entry);
mas_wr_store_entry(&wr_mas);
MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
mas_destroy(mas);
}
EXPORT_SYMBOL_GPL(mas_store_prealloc);
/**
* mas_preallocate() - Preallocate enough nodes for a store operation
* @mas: The maple state
* @entry: The entry that will be stored
* @gfp: The GFP_FLAGS to use for allocations.
*
* Return: 0 on success, -ENOMEM if memory could not be allocated.
*/
int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
{
MA_WR_STATE(wr_mas, mas, entry);
unsigned char node_size;
int request = 1;
int ret;
if (unlikely(!mas->index && mas->last == ULONG_MAX))
goto ask_now;
mas_wr_store_setup(&wr_mas);
wr_mas.content = mas_start(mas);
/* Root expand */
if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
goto ask_now;
if (unlikely(!mas_wr_walk(&wr_mas))) {
/* Spanning store, use worst case for now */
request = 1 + mas_mt_height(mas) * 3;
goto ask_now;
}
/* At this point, we are at the leaf node that needs to be altered. */
/* Exact fit, no nodes needed. */
if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last)
return 0;
mas_wr_end_piv(&wr_mas);
node_size = mas_wr_new_end(&wr_mas);
/* Slot store, does not require additional nodes */
if (node_size == mas->end) {
/* reuse node */
if (!mt_in_rcu(mas->tree))
return 0;
/* shifting boundary */
if (wr_mas.offset_end - mas->offset == 1)
return 0;
}
if (node_size >= mt_slots[wr_mas.type]) {
/* Split, worst case for now. */
request = 1 + mas_mt_height(mas) * 2;
goto ask_now;
}
/* New root needs a single node */
if (unlikely(mte_is_root(mas->node)))
goto ask_now;
/* Potential spanning rebalance collapsing a node, use worst-case */
if (node_size - 1 <= mt_min_slots[wr_mas.type])
request = mas_mt_height(mas) * 2 - 1;
/* node store, slot store needs one node */
ask_now:
mas_node_count_gfp(mas, request, gfp);
mas->mas_flags |= MA_STATE_PREALLOC;
if (likely(!mas_is_err(mas)))
return 0;
mas_set_alloc_req(mas, 0);
ret = xa_err(mas->node);
mas_reset(mas);
mas_destroy(mas);
mas_reset(mas);
return ret;
}
EXPORT_SYMBOL_GPL(mas_preallocate);
/*
* mas_destroy() - destroy a maple state.
* @mas: The maple state
*
* Upon completion, check the left-most node and rebalance against the node to
* the right if necessary. Frees any allocated nodes associated with this maple
* state.
*/
void mas_destroy(struct ma_state *mas)
{
struct maple_alloc *node;
unsigned long total;
/*
* When using mas_for_each() to insert an expected number of elements,
* it is possible that the number inserted is less than the expected
* number. To fix an invalid final node, a check is performed here to
* rebalance the previous node with the final node.
*/
if (mas->mas_flags & MA_STATE_REBALANCE) {
unsigned char end;
mas_start(mas);
mtree_range_walk(mas);
end = mas->end + 1;
if (end < mt_min_slot_count(mas->node) - 1)
mas_destroy_rebalance(mas, end);
mas->mas_flags &= ~MA_STATE_REBALANCE;
}
mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
total = mas_allocated(mas);
while (total) {
node = mas->alloc;
mas->alloc = node->slot[0];
if (node->node_count > 1) {
size_t count = node->node_count - 1;
mt_free_bulk(count, (void __rcu **)&node->slot[1]);
total -= count;
}
mt_free_one(ma_mnode_ptr(node));
total--;
}
mas->alloc = NULL;
}
EXPORT_SYMBOL_GPL(mas_destroy);
/*
* mas_expected_entries() - Set the expected number of entries that will be inserted.
* @mas: The maple state
* @nr_entries: The number of expected entries.
*
* This will attempt to pre-allocate enough nodes to store the expected number
* of entries. The allocations will occur using the bulk allocator interface
* for speed. Please call mas_destroy() on the @mas after inserting the entries
* to ensure any unused nodes are freed.
*
* Return: 0 on success, -ENOMEM if memory could not be allocated.
*/
int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
{
int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
struct maple_enode *enode = mas->node;
int nr_nodes;
int ret;
/*
* Sometimes it is necessary to duplicate a tree to a new tree, such as
* forking a process and duplicating the VMAs from one tree to a new
* tree. When such a situation arises, it is known that the new tree is
* not going to be used until the entire tree is populated. For
* performance reasons, it is best to use a bulk load with RCU disabled.
* This allows for optimistic splitting that favours the left and reuse
* of nodes during the operation.
*/
/* Optimize splitting for bulk insert in-order */
mas->mas_flags |= MA_STATE_BULK;
/*
* Avoid overflow, assume a gap between each entry and a trailing null.
* If this is wrong, it just means allocation can happen during
* insertion of entries.
*/
nr_nodes = max(nr_entries, nr_entries * 2 + 1);
if (!mt_is_alloc(mas->tree))
nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
/* Leaves; reduce slots to keep space for expansion */
nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
/* Internal nodes */
nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
/* Add working room for split (2 nodes) + new parents */
mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
/* Detect if allocations run out */
mas->mas_flags |= MA_STATE_PREALLOC;
if (!mas_is_err(mas))
return 0;
ret = xa_err(mas->node);
mas->node = enode;
mas_destroy(mas);
return ret;
}
EXPORT_SYMBOL_GPL(mas_expected_entries);
static bool mas_next_setup(struct ma_state *mas, unsigned long max,
void **entry)
{
bool was_none = mas_is_none(mas);
if (unlikely(mas->last >= max)) {
mas->status = ma_overflow;
return true;
}
switch (mas->status) {
case ma_active:
return false;
case ma_none:
fallthrough;
case ma_pause:
mas->status = ma_start;
fallthrough;
case ma_start:
mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
break;
case ma_overflow:
/* Overflowed before, but the max changed */
mas->status = ma_active;
break;
case ma_underflow:
/* The user expects the mas to be one before where it is */
mas->status = ma_active;
*entry = mas_walk(mas);
if (*entry)
return true;
break;
case ma_root:
break;
case ma_error:
return true;
}
if (likely(mas_is_active(mas))) /* Fast path */
return false;
if (mas_is_ptr(mas)) {
*entry = NULL;
if (was_none && mas->index == 0) {
mas->index = mas->last = 0;
return true;
}
mas->index = 1;
mas->last = ULONG_MAX;
mas->status = ma_none;
return true;
}
if (mas_is_none(mas))
return true;
return false;
}
/**
* mas_next() - Get the next entry.
* @mas: The maple state
* @max: The maximum index to check.
*
* Returns the next entry after @mas->index.
* Must hold rcu_read_lock or the write lock.
* Can return the zero entry.
*
* Return: The next entry or %NULL
*/
void *mas_next(struct ma_state *mas, unsigned long max)
{
void *entry = NULL;
if (mas_next_setup(mas, max, &entry))
return entry;
/* Retries on dead nodes handled by mas_next_slot */
return mas_next_slot(mas, max, false);
}
EXPORT_SYMBOL_GPL(mas_next);
/**
* mas_next_range() - Advance the maple state to the next range
* @mas: The maple state
* @max: The maximum index to check.
*
* Sets @mas->index and @mas->last to the range.
* Must hold rcu_read_lock or the write lock.
* Can return the zero entry.
*
* Return: The next entry or %NULL
*/
void *mas_next_range(struct ma_state *mas, unsigned long max)
{
void *entry = NULL;
if (mas_next_setup(mas, max, &entry))
return entry;
/* Retries on dead nodes handled by mas_next_slot */
return mas_next_slot(mas, max, true);
}
EXPORT_SYMBOL_GPL(mas_next_range);
/**
* mt_next() - get the next value in the maple tree
* @mt: The maple tree
* @index: The start index
* @max: The maximum index to check
*
* Takes RCU read lock internally to protect the search, which does not
* protect the returned pointer after dropping RCU read lock.
* See also: Documentation/core-api/maple_tree.rst
*
* Return: The entry higher than @index or %NULL if nothing is found.
*/
void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
{
void *entry = NULL;
MA_STATE(mas, mt, index, index);
rcu_read_lock();
entry = mas_next(&mas, max);
rcu_read_unlock();
return entry;
}
EXPORT_SYMBOL_GPL(mt_next);
static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
{
if (unlikely(mas->index <= min)) {
mas->status = ma_underflow;
return true;
}
switch (mas->status) {
case ma_active:
return false;
case ma_start:
break;
case ma_none:
fallthrough;
case ma_pause:
mas->status = ma_start;
break;
case ma_underflow:
/* underflowed before but the min changed */
mas->status = ma_active;
break;
case ma_overflow:
/* User expects mas to be one after where it is */
mas->status = ma_active;
*entry = mas_walk(mas);
if (*entry)
return true;
break;
case ma_root:
break;
case ma_error:
return true;
}
if (mas_is_start(mas))
mas_walk(mas);
if (unlikely(mas_is_ptr(mas))) {
if (!mas->index) {
mas->status = ma_none;
return true;
}
mas->index = mas->last = 0;
*entry = mas_root(mas);
return true;
}
if (mas_is_none(mas)) {
if (mas->index) {
/* Walked to out-of-range pointer? */
mas->index = mas->last = 0;
mas->status = ma_root;
*entry = mas_root(mas);
return true;
}
return true;
}
return false;
}
/**
* mas_prev() - Get the previous entry
* @mas: The maple state
* @min: The minimum value to check.
*
* Must hold rcu_read_lock or the write lock.
* Will reset mas to ma_start if the status is ma_none. Will stop on not
* searchable nodes.
*
* Return: the previous value or %NULL.
*/
void *mas_prev(struct ma_state *mas, unsigned long min)
{
void *entry = NULL;
if (mas_prev_setup(mas, min, &entry))
return entry;
return mas_prev_slot(mas, min, false);
}
EXPORT_SYMBOL_GPL(mas_prev);
/**
* mas_prev_range() - Advance to the previous range
* @mas: The maple state
* @min: The minimum value to check.
*
* Sets @mas->index and @mas->last to the range.
* Must hold rcu_read_lock or the write lock.
* Will reset mas to ma_start if the node is ma_none. Will stop on not
* searchable nodes.
*
* Return: the previous value or %NULL.
*/
void *mas_prev_range(struct ma_state *mas, unsigned long min)
{
void *entry = NULL;
if (mas_prev_setup(mas, min, &entry))
return entry;
return mas_prev_slot(mas, min, true);
}
EXPORT_SYMBOL_GPL(mas_prev_range);
/**
* mt_prev() - get the previous value in the maple tree
* @mt: The maple tree
* @index: The start index
* @min: The minimum index to check
*
* Takes RCU read lock internally to protect the search, which does not
* protect the returned pointer after dropping RCU read lock.
* See also: Documentation/core-api/maple_tree.rst
*
* Return: The entry before @index or %NULL if nothing is found.
*/
void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
{
void *entry = NULL;
MA_STATE(mas, mt, index, index);
rcu_read_lock();
entry = mas_prev(&mas, min);
rcu_read_unlock();
return entry;
}
EXPORT_SYMBOL_GPL(mt_prev);
/**
* mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
* @mas: The maple state to pause
*
* Some users need to pause a walk and drop the lock they're holding in
* order to yield to a higher priority thread or carry out an operation
* on an entry. Those users should call this function before they drop
* the lock. It resets the @mas to be suitable for the next iteration
* of the loop after the user has reacquired the lock. If most entries
* found during a walk require you to call mas_pause(), the mt_for_each()
* iterator may be more appropriate.
*
*/
void mas_pause(struct ma_state *mas)
{
mas->status = ma_pause;
mas->node = NULL;
}
EXPORT_SYMBOL_GPL(mas_pause);
/**
* mas_find_setup() - Internal function to set up mas_find*().
* @mas: The maple state
* @max: The maximum index
* @entry: Pointer to the entry
*
* Returns: True if entry is the answer, false otherwise.
*/
static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
{
switch (mas->status) {
case ma_active:
if (mas->last < max)
return false;
return true;
case ma_start:
break;
case ma_pause:
if (unlikely(mas->last >= max))
return true;
mas->index = ++mas->last;
mas->status = ma_start;
break;
case ma_none:
if (unlikely(mas->last >= max))
return true;
mas->index = mas->last;
mas->status = ma_start;
break;
case ma_underflow:
/* mas is pointing at entry before unable to go lower */
if (unlikely(mas->index >= max)) {
mas->status = ma_overflow;
return true;
}
mas->status = ma_active;
*entry = mas_walk(mas);
if (*entry)
return true;
break;
case ma_overflow:
if (unlikely(mas->last >= max))
return true;
mas->status = ma_active;
*entry = mas_walk(mas);
if (*entry)
return true;
break;
case ma_root:
break;
case ma_error:
return true;
}
if (mas_is_start(mas)) {
/* First run or continue */
if (mas->index > max)
return true;
*entry = mas_walk(mas);
if (*entry)
return true;
}
if (unlikely(mas_is_ptr(mas)))
goto ptr_out_of_range;
if (unlikely(mas_is_none(mas)))
return true;
if (mas->index == max)
return true;
return false;
ptr_out_of_range:
mas->status = ma_none;
mas->index = 1;
mas->last = ULONG_MAX;
return true;
}
/**
* mas_find() - On the first call, find the entry at or after mas->index up to
* %max. Otherwise, find the entry after mas->index.
* @mas: The maple state
* @max: The maximum value to check.
*
* Must hold rcu_read_lock or the write lock.
* If an entry exists, last and index are updated accordingly.
* May set @mas->status to ma_overflow.
*
* Return: The entry or %NULL.
*/
void *mas_find(struct ma_state *mas, unsigned long max)
{
void *entry = NULL;
if (mas_find_setup(mas, max, &entry))
return entry;
/* Retries on dead nodes handled by mas_next_slot */
entry = mas_next_slot(mas, max, false);
/* Ignore overflow */
mas->status = ma_active;
return entry;
}
EXPORT_SYMBOL_GPL(mas_find);
/**
* mas_find_range() - On the first call, find the entry at or after
* mas->index up to %max. Otherwise, advance to the next slot mas->index.
* @mas: The maple state
* @max: The maximum value to check.
*
* Must hold rcu_read_lock or the write lock.
* If an entry exists, last and index are updated accordingly.
* May set @mas->status to ma_overflow.
*
* Return: The entry or %NULL.
*/
void *mas_find_range(struct ma_state *mas, unsigned long max)
{
void *entry = NULL;
if (mas_find_setup(mas, max, &entry))
return entry;
/* Retries on dead nodes handled by mas_next_slot */
return mas_next_slot(mas, max, true);
}
EXPORT_SYMBOL_GPL(mas_find_range);
/**
* mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
* @mas: The maple state
* @min: The minimum index
* @entry: Pointer to the entry
*
* Returns: True if entry is the answer, false otherwise.
*/
static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
void **entry)
{
switch (mas->status) {
case ma_active:
goto active;
case ma_start:
break;
case ma_pause:
if (unlikely(mas->index <= min)) {
mas->status = ma_underflow;
return true;
}
mas->last = --mas->index;
mas->status = ma_start;
break;
case ma_none:
if (mas->index <= min)
goto none;
mas->last = mas->index;
mas->status = ma_start;
break;
case ma_overflow: /* user expects the mas to be one after where it is */
if (unlikely(mas->index <= min)) {
mas->status = ma_underflow;
return true;
}
mas->status = ma_active;
break;
case ma_underflow: /* user expects the mas to be one before where it is */
if (unlikely(mas->index <= min))
return true;
mas->status = ma_active;
break;
case ma_root:
break;
case ma_error:
return true;
}
if (mas_is_start(mas)) {
/* First run or continue */
if (mas->index < min)
return true;
*entry = mas_walk(mas);
if (*entry)
return true;
}
if (unlikely(mas_is_ptr(mas)))
goto none;
if (unlikely(mas_is_none(mas))) {
/*
* Walked to the location, and there was nothing so the previous
* location is 0.
*/
mas->last = mas->index = 0;
mas->status = ma_root;
*entry = mas_root(mas);
return true;
}
active:
if (mas->index < min)
return true;
return false;
none:
mas->status = ma_none;
return true;
}
/**
* mas_find_rev: On the first call, find the first non-null entry at or below
* mas->index down to %min. Otherwise find the first non-null entry below
* mas->index down to %min.
* @mas: The maple state
* @min: The minimum value to check.
*
* Must hold rcu_read_lock or the write lock.
* If an entry exists, last and index are updated accordingly.
* May set @mas->status to ma_underflow.
*
* Return: The entry or %NULL.
*/
void *mas_find_rev(struct ma_state *mas, unsigned long min)
{
void *entry = NULL;
if (mas_find_rev_setup(mas, min, &entry))
return entry;
/* Retries on dead nodes handled by mas_prev_slot */
return mas_prev_slot(mas, min, false);
}
EXPORT_SYMBOL_GPL(mas_find_rev);
/**
* mas_find_range_rev: On the first call, find the first non-null entry at or
* below mas->index down to %min. Otherwise advance to the previous slot after
* mas->index down to %min.
* @mas: The maple state
* @min: The minimum value to check.
*
* Must hold rcu_read_lock or the write lock.
* If an entry exists, last and index are updated accordingly.
* May set @mas->status to ma_underflow.
*
* Return: The entry or %NULL.
*/
void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
{
void *entry = NULL;
if (mas_find_rev_setup(mas, min, &entry))
return entry;
/* Retries on dead nodes handled by mas_prev_slot */
return mas_prev_slot(mas, min, true);
}
EXPORT_SYMBOL_GPL(mas_find_range_rev);
/**
* mas_erase() - Find the range in which index resides and erase the entire
* range.
* @mas: The maple state
*
* Must hold the write lock.
* Searches for @mas->index, sets @mas->index and @mas->last to the range and
* erases that range.
*
* Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
*/
void *mas_erase(struct ma_state *mas)
{
void *entry;
MA_WR_STATE(wr_mas, mas, NULL);
if (!mas_is_active(mas) || !mas_is_start(mas))
mas->status = ma_start;
/* Retry unnecessary when holding the write lock. */
entry = mas_state_walk(mas);
if (!entry)
return NULL;
write_retry:
/* Must reset to ensure spanning writes of last slot are detected */
mas_reset(mas);
mas_wr_store_setup(&wr_mas);
mas_wr_store_entry(&wr_mas);
if (mas_nomem(mas, GFP_KERNEL))
goto write_retry;
return entry;
}
EXPORT_SYMBOL_GPL(mas_erase);
/**
* mas_nomem() - Check if there was an error allocating and do the allocation
* if necessary If there are allocations, then free them.
* @mas: The maple state
* @gfp: The GFP_FLAGS to use for allocations
* Return: true on allocation, false otherwise.
*/
bool mas_nomem(struct ma_state *mas, gfp_t gfp)
__must_hold(mas->tree->ma_lock)
{
if (likely(mas->node != MA_ERROR(-ENOMEM))) {
mas_destroy(mas);
return false;
}
if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
mtree_unlock(mas->tree);
mas_alloc_nodes(mas, gfp);
mtree_lock(mas->tree);
} else {
mas_alloc_nodes(mas, gfp);
}
if (!mas_allocated(mas))
return false;
mas->status = ma_start;
return true;
}
void __init maple_tree_init(void)
{
maple_node_cache = kmem_cache_create("maple_node",
sizeof(struct maple_node), sizeof(struct maple_node),
SLAB_PANIC, NULL);
}
/**
* mtree_load() - Load a value stored in a maple tree
* @mt: The maple tree
* @index: The index to load
*
* Return: the entry or %NULL
*/
void *mtree_load(struct maple_tree *mt, unsigned long index)
{
MA_STATE(mas, mt, index, index);
void *entry;
trace_ma_read(__func__, &mas);
rcu_read_lock();
retry:
entry = mas_start(&mas);
if (unlikely(mas_is_none(&mas)))
goto unlock;
if (unlikely(mas_is_ptr(&mas))) {
if (index)
entry = NULL;
goto unlock;
}
entry = mtree_lookup_walk(&mas);
if (!entry && unlikely(mas_is_start(&mas)))
goto retry;
unlock:
rcu_read_unlock();
if (xa_is_zero(entry))
return NULL;
return entry;
}
EXPORT_SYMBOL(mtree_load);
/**
* mtree_store_range() - Store an entry at a given range.
* @mt: The maple tree
* @index: The start of the range
* @last: The end of the range
* @entry: The entry to store
* @gfp: The GFP_FLAGS to use for allocations
*
* Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
* be allocated.
*/
int mtree_store_range(struct maple_tree *mt, unsigned long index,
unsigned long last, void *entry, gfp_t gfp)
{
MA_STATE(mas, mt, index, last);
MA_WR_STATE(wr_mas, &mas, entry);
trace_ma_write(__func__, &mas, 0, entry);
if (WARN_ON_ONCE(xa_is_advanced(entry)))
return -EINVAL;
if (index > last)
return -EINVAL;
mtree_lock(mt);
retry:
mas_wr_store_entry(&wr_mas);
if (mas_nomem(&mas, gfp))
goto retry;
mtree_unlock(mt);
if (mas_is_err(&mas))
return xa_err(mas.node);
return 0;
}
EXPORT_SYMBOL(mtree_store_range);
/**
* mtree_store() - Store an entry at a given index.
* @mt: The maple tree
* @index: The index to store the value
* @entry: The entry to store
* @gfp: The GFP_FLAGS to use for allocations
*
* Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
* be allocated.
*/
int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
gfp_t gfp)
{
return mtree_store_range(mt, index, index, entry, gfp);
}
EXPORT_SYMBOL(mtree_store);
/**
* mtree_insert_range() - Insert an entry at a given range if there is no value.
* @mt: The maple tree
* @first: The start of the range
* @last: The end of the range
* @entry: The entry to store
* @gfp: The GFP_FLAGS to use for allocations.
*
* Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
* request, -ENOMEM if memory could not be allocated.
*/
int mtree_insert_range(struct maple_tree *mt, unsigned long first,
unsigned long last, void *entry, gfp_t gfp)
{
MA_STATE(ms, mt, first, last);
if (WARN_ON_ONCE(xa_is_advanced(entry)))
return -EINVAL;
if (first > last)
return -EINVAL;
mtree_lock(mt);
retry:
mas_insert(&ms, entry);
if (mas_nomem(&ms, gfp))
goto retry;
mtree_unlock(mt);
if (mas_is_err(&ms))
return xa_err(ms.node);
return 0;
}
EXPORT_SYMBOL(mtree_insert_range);
/**
* mtree_insert() - Insert an entry at a given index if there is no value.
* @mt: The maple tree
* @index : The index to store the value
* @entry: The entry to store
* @gfp: The GFP_FLAGS to use for allocations.
*
* Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
* request, -ENOMEM if memory could not be allocated.
*/
int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
gfp_t gfp)
{
return mtree_insert_range(mt, index, index, entry, gfp);
}
EXPORT_SYMBOL(mtree_insert);
int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
void *entry, unsigned long size, unsigned long min,
unsigned long max, gfp_t gfp)
{
int ret = 0;
MA_STATE(mas, mt, 0, 0);
if (!mt_is_alloc(mt))
return -EINVAL;
if (WARN_ON_ONCE(mt_is_reserved(entry)))
return -EINVAL;
mtree_lock(mt);
retry:
ret = mas_empty_area(&mas, min, max, size);
if (ret)
goto unlock;
mas_insert(&mas, entry);
/*
* mas_nomem() may release the lock, causing the allocated area
* to be unavailable, so try to allocate a free area again.
*/
if (mas_nomem(&mas, gfp))
goto retry;
if (mas_is_err(&mas))
ret = xa_err(mas.node);
else
*startp = mas.index;
unlock:
mtree_unlock(mt);
return ret;
}
EXPORT_SYMBOL(mtree_alloc_range);
/**
* mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
* @mt: The maple tree.
* @startp: Pointer to ID.
* @range_lo: Lower bound of range to search.
* @range_hi: Upper bound of range to search.
* @entry: The entry to store.
* @next: Pointer to next ID to allocate.
* @gfp: The GFP_FLAGS to use for allocations.
*
* Finds an empty entry in @mt after @next, stores the new index into
* the @id pointer, stores the entry at that index, then updates @next.
*
* @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
*
* Context: Any context. Takes and releases the mt.lock. May sleep if
* the @gfp flags permit.
*
* Return: 0 if the allocation succeeded without wrapping, 1 if the
* allocation succeeded after wrapping, -ENOMEM if memory could not be
* allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
* free entries.
*/
int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
void *entry, unsigned long range_lo, unsigned long range_hi,
unsigned long *next, gfp_t gfp)
{
int ret;
MA_STATE(mas, mt, 0, 0);
if (!mt_is_alloc(mt))
return -EINVAL;
if (WARN_ON_ONCE(mt_is_reserved(entry)))
return -EINVAL;
mtree_lock(mt);
ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
next, gfp);
mtree_unlock(mt);
return ret;
}
EXPORT_SYMBOL(mtree_alloc_cyclic);
int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
void *entry, unsigned long size, unsigned long min,
unsigned long max, gfp_t gfp)
{
int ret = 0;
MA_STATE(mas, mt, 0, 0);
if (!mt_is_alloc(mt))
return -EINVAL;
if (WARN_ON_ONCE(mt_is_reserved(entry)))
return -EINVAL;
mtree_lock(mt);
retry:
ret = mas_empty_area_rev(&mas, min, max, size);
if (ret)
goto unlock;
mas_insert(&mas, entry);
/*
* mas_nomem() may release the lock, causing the allocated area
* to be unavailable, so try to allocate a free area again.
*/
if (mas_nomem(&mas, gfp))
goto retry;
if (mas_is_err(&mas))
ret = xa_err(mas.node);
else
*startp = mas.index;
unlock:
mtree_unlock(mt);
return ret;
}
EXPORT_SYMBOL(mtree_alloc_rrange);
/**
* mtree_erase() - Find an index and erase the entire range.
* @mt: The maple tree
* @index: The index to erase
*
* Erasing is the same as a walk to an entry then a store of a NULL to that
* ENTIRE range. In fact, it is implemented as such using the advanced API.
*
* Return: The entry stored at the @index or %NULL
*/
void *mtree_erase(struct maple_tree *mt, unsigned long index)
{
void *entry = NULL;
MA_STATE(mas, mt, index, index);
trace_ma_op(__func__, &mas);
mtree_lock(mt);
entry = mas_erase(&mas);
mtree_unlock(mt);
return entry;
}
EXPORT_SYMBOL(mtree_erase);
/*
* mas_dup_free() - Free an incomplete duplication of a tree.
* @mas: The maple state of a incomplete tree.
*
* The parameter @mas->node passed in indicates that the allocation failed on
* this node. This function frees all nodes starting from @mas->node in the
* reverse order of mas_dup_build(). There is no need to hold the source tree
* lock at this time.
*/
static void mas_dup_free(struct ma_state *mas)
{
struct maple_node *node;
enum maple_type type;
void __rcu **slots;
unsigned char count, i;
/* Maybe the first node allocation failed. */
if (mas_is_none(mas))
return;
while (!mte_is_root(mas->node)) {
mas_ascend(mas);
if (mas->offset) {
mas->offset--;
do {
mas_descend(mas);
mas->offset = mas_data_end(mas);
} while (!mte_is_leaf(mas->node));
mas_ascend(mas);
}
node = mte_to_node(mas->node);
type = mte_node_type(mas->node);
slots = ma_slots(node, type);
count = mas_data_end(mas) + 1;
for (i = 0; i < count; i++)
((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
mt_free_bulk(count, slots);
}
node = mte_to_node(mas->node);
mt_free_one(node);
}
/*
* mas_copy_node() - Copy a maple node and replace the parent.
* @mas: The maple state of source tree.
* @new_mas: The maple state of new tree.
* @parent: The parent of the new node.
*
* Copy @mas->node to @new_mas->node, set @parent to be the parent of
* @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
*/
static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
struct maple_pnode *parent)
{
struct maple_node *node = mte_to_node(mas->node);
struct maple_node *new_node = mte_to_node(new_mas->node);
unsigned long val;
/* Copy the node completely. */
memcpy(new_node, node, sizeof(struct maple_node));
/* Update the parent node pointer. */
val = (unsigned long)node->parent & MAPLE_NODE_MASK;
new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
}
/*
* mas_dup_alloc() - Allocate child nodes for a maple node.
* @mas: The maple state of source tree.
* @new_mas: The maple state of new tree.
* @gfp: The GFP_FLAGS to use for allocations.
*
* This function allocates child nodes for @new_mas->node during the duplication
* process. If memory allocation fails, @mas is set to -ENOMEM.
*/
static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
gfp_t gfp)
{
struct maple_node *node = mte_to_node(mas->node);
struct maple_node *new_node = mte_to_node(new_mas->node);
enum maple_type type;
unsigned char request, count, i;
void __rcu **slots;
void __rcu **new_slots;
unsigned long val;
/* Allocate memory for child nodes. */
type = mte_node_type(mas->node);
new_slots = ma_slots(new_node, type);
request = mas_data_end(mas) + 1;
count = mt_alloc_bulk(gfp, request, (void **)new_slots);
if (unlikely(count < request)) {
memset(new_slots, 0, request * sizeof(void *));
mas_set_err(mas, -ENOMEM);
return;
}
/* Restore node type information in slots. */
slots = ma_slots(node, type);
for (i = 0; i < count; i++) {
val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
val &= MAPLE_NODE_MASK;
((unsigned long *)new_slots)[i] |= val;
}
}
/*
* mas_dup_build() - Build a new maple tree from a source tree
* @mas: The maple state of source tree, need to be in MAS_START state.
* @new_mas: The maple state of new tree, need to be in MAS_START state.
* @gfp: The GFP_FLAGS to use for allocations.
*
* This function builds a new tree in DFS preorder. If the memory allocation
* fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
* last node. mas_dup_free() will free the incomplete duplication of a tree.
*
* Note that the attributes of the two trees need to be exactly the same, and the
* new tree needs to be empty, otherwise -EINVAL will be set in @mas.
*/
static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
gfp_t gfp)
{
struct maple_node *node;
struct maple_pnode *parent = NULL;
struct maple_enode *root;
enum maple_type type;
if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
unlikely(!mtree_empty(new_mas->tree))) {
mas_set_err(mas, -EINVAL);
return;
}
root = mas_start(mas);
if (mas_is_ptr(mas) || mas_is_none(mas))
goto set_new_tree;
node = mt_alloc_one(gfp);
if (!node) {
new_mas->status = ma_none;
mas_set_err(mas, -ENOMEM);
return;
}
type = mte_node_type(mas->node);
root = mt_mk_node(node, type);
new_mas->node = root;
new_mas->min = 0;
new_mas->max = ULONG_MAX;
root = mte_mk_root(root);
while (1) {
mas_copy_node(mas, new_mas, parent);
if (!mte_is_leaf(mas->node)) {
/* Only allocate child nodes for non-leaf nodes. */
mas_dup_alloc(mas, new_mas, gfp);
if (unlikely(mas_is_err(mas)))
return;
} else {
/*
* This is the last leaf node and duplication is
* completed.
*/
if (mas->max == ULONG_MAX)
goto done;
/* This is not the last leaf node and needs to go up. */
do {
mas_ascend(mas);
mas_ascend(new_mas);
} while (mas->offset == mas_data_end(mas));
/* Move to the next subtree. */
mas->offset++;
new_mas->offset++;
}
mas_descend(mas);
parent = ma_parent_ptr(mte_to_node(new_mas->node));
mas_descend(new_mas);
mas->offset = 0;
new_mas->offset = 0;
}
done:
/* Specially handle the parent of the root node. */
mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
set_new_tree:
/* Make them the same height */
new_mas->tree->ma_flags = mas->tree->ma_flags;
rcu_assign_pointer(new_mas->tree->ma_root, root);
}
/**
* __mt_dup(): Duplicate an entire maple tree
* @mt: The source maple tree
* @new: The new maple tree
* @gfp: The GFP_FLAGS to use for allocations
*
* This function duplicates a maple tree in Depth-First Search (DFS) pre-order
* traversal. It uses memcpy() to copy nodes in the source tree and allocate
* new child nodes in non-leaf nodes. The new node is exactly the same as the
* source node except for all the addresses stored in it. It will be faster than
* traversing all elements in the source tree and inserting them one by one into
* the new tree.
* The user needs to ensure that the attributes of the source tree and the new
* tree are the same, and the new tree needs to be an empty tree, otherwise
* -EINVAL will be returned.
* Note that the user needs to manually lock the source tree and the new tree.
*
* Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
* the attributes of the two trees are different or the new tree is not an empty
* tree.
*/
int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
{
int ret = 0;
MA_STATE(mas, mt, 0, 0);
MA_STATE(new_mas, new, 0, 0);
mas_dup_build(&mas, &new_mas, gfp);
if (unlikely(mas_is_err(&mas))) {
ret = xa_err(mas.node);
if (ret == -ENOMEM)
mas_dup_free(&new_mas);
}
return ret;
}
EXPORT_SYMBOL(__mt_dup);
/**
* mtree_dup(): Duplicate an entire maple tree
* @mt: The source maple tree
* @new: The new maple tree
* @gfp: The GFP_FLAGS to use for allocations
*
* This function duplicates a maple tree in Depth-First Search (DFS) pre-order
* traversal. It uses memcpy() to copy nodes in the source tree and allocate
* new child nodes in non-leaf nodes. The new node is exactly the same as the
* source node except for all the addresses stored in it. It will be faster than
* traversing all elements in the source tree and inserting them one by one into
* the new tree.
* The user needs to ensure that the attributes of the source tree and the new
* tree are the same, and the new tree needs to be an empty tree, otherwise
* -EINVAL will be returned.
*
* Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
* the attributes of the two trees are different or the new tree is not an empty
* tree.
*/
int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
{
int ret = 0;
MA_STATE(mas, mt, 0, 0);
MA_STATE(new_mas, new, 0, 0);
mas_lock(&new_mas);
mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
mas_dup_build(&mas, &new_mas, gfp);
mas_unlock(&mas);
if (unlikely(mas_is_err(&mas))) {
ret = xa_err(mas.node);
if (ret == -ENOMEM)
mas_dup_free(&new_mas);
}
mas_unlock(&new_mas);
return ret;
}
EXPORT_SYMBOL(mtree_dup);
/**
* __mt_destroy() - Walk and free all nodes of a locked maple tree.
* @mt: The maple tree
*
* Note: Does not handle locking.
*/
void __mt_destroy(struct maple_tree *mt)
{
void *root = mt_root_locked(mt);
rcu_assign_pointer(mt->ma_root, NULL);
if (xa_is_node(root))
mte_destroy_walk(root, mt);
mt->ma_flags = mt_attr(mt);
}
EXPORT_SYMBOL_GPL(__mt_destroy);
/**
* mtree_destroy() - Destroy a maple tree
* @mt: The maple tree
*
* Frees all resources used by the tree. Handles locking.
*/
void mtree_destroy(struct maple_tree *mt)
{
mtree_lock(mt);
__mt_destroy(mt);
mtree_unlock(mt);
}
EXPORT_SYMBOL(mtree_destroy);
/**
* mt_find() - Search from the start up until an entry is found.
* @mt: The maple tree
* @index: Pointer which contains the start location of the search
* @max: The maximum value of the search range
*
* Takes RCU read lock internally to protect the search, which does not
* protect the returned pointer after dropping RCU read lock.
* See also: Documentation/core-api/maple_tree.rst
*
* In case that an entry is found @index is updated to point to the next
* possible entry independent whether the found entry is occupying a
* single index or a range if indices.
*
* Return: The entry at or after the @index or %NULL
*/
void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
{
MA_STATE(mas, mt, *index, *index);
void *entry;
#ifdef CONFIG_DEBUG_MAPLE_TREE
unsigned long copy = *index;
#endif
trace_ma_read(__func__, &mas);
if ((*index) > max)
return NULL;
rcu_read_lock();
retry:
entry = mas_state_walk(&mas);
if (mas_is_start(&mas))
goto retry;
if (unlikely(xa_is_zero(entry)))
entry = NULL;
if (entry)
goto unlock;
while (mas_is_active(&mas) && (mas.last < max)) {
entry = mas_next_entry(&mas, max);
if (likely(entry && !xa_is_zero(entry)))
break;
}
if (unlikely(xa_is_zero(entry)))
entry = NULL;
unlock:
rcu_read_unlock();
if (likely(entry)) {
*index = mas.last + 1;
#ifdef CONFIG_DEBUG_MAPLE_TREE
if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
pr_err("index not increased! %lx <= %lx\n",
*index, copy);
#endif
}
return entry;
}
EXPORT_SYMBOL(mt_find);
/**
* mt_find_after() - Search from the start up until an entry is found.
* @mt: The maple tree
* @index: Pointer which contains the start location of the search
* @max: The maximum value to check
*
* Same as mt_find() except that it checks @index for 0 before
* searching. If @index == 0, the search is aborted. This covers a wrap
* around of @index to 0 in an iterator loop.
*
* Return: The entry at or after the @index or %NULL
*/
void *mt_find_after(struct maple_tree *mt, unsigned long *index,
unsigned long max)
{
if (!(*index))
return NULL;
return mt_find(mt, index, max);
}
EXPORT_SYMBOL(mt_find_after);
#ifdef CONFIG_DEBUG_MAPLE_TREE
atomic_t maple_tree_tests_run;
EXPORT_SYMBOL_GPL(maple_tree_tests_run);
atomic_t maple_tree_tests_passed;
EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
#ifndef __KERNEL__
extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
void mt_set_non_kernel(unsigned int val)
{
kmem_cache_set_non_kernel(maple_node_cache, val);
}
extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
unsigned long mt_get_alloc_size(void)
{
return kmem_cache_get_alloc(maple_node_cache);
}
extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
void mt_zero_nr_tallocated(void)
{
kmem_cache_zero_nr_tallocated(maple_node_cache);
}
extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
unsigned int mt_nr_tallocated(void)
{
return kmem_cache_nr_tallocated(maple_node_cache);
}
extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
unsigned int mt_nr_allocated(void)
{
return kmem_cache_nr_allocated(maple_node_cache);
}
void mt_cache_shrink(void)
{
}
#else
/*
* mt_cache_shrink() - For testing, don't use this.
*
* Certain testcases can trigger an OOM when combined with other memory
* debugging configuration options. This function is used to reduce the
* possibility of an out of memory even due to kmem_cache objects remaining
* around for longer than usual.
*/
void mt_cache_shrink(void)
{
kmem_cache_shrink(maple_node_cache);
}
EXPORT_SYMBOL_GPL(mt_cache_shrink);
#endif /* not defined __KERNEL__ */
/*
* mas_get_slot() - Get the entry in the maple state node stored at @offset.
* @mas: The maple state
* @offset: The offset into the slot array to fetch.
*
* Return: The entry stored at @offset.
*/
static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
unsigned char offset)
{
return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
offset);
}
/* Depth first search, post-order */
static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
{
struct maple_enode *p, *mn = mas->node;
unsigned long p_min, p_max;
mas_next_node(mas, mas_mn(mas), max);
if (!mas_is_overflow(mas))
return;
if (mte_is_root(mn))
return;
mas->node = mn;
mas_ascend(mas);
do {
p = mas->node;
p_min = mas->min;
p_max = mas->max;
mas_prev_node(mas, 0);
} while (!mas_is_underflow(mas));
mas->node = p;
mas->max = p_max;
mas->min = p_min;
}
/* Tree validations */
static void mt_dump_node(const struct maple_tree *mt, void *entry,
unsigned long min, unsigned long max, unsigned int depth,
enum mt_dump_format format);
static void mt_dump_range(unsigned long min, unsigned long max,
unsigned int depth, enum mt_dump_format format)
{
static const char spaces[] = " ";
switch(format) {
case mt_dump_hex:
if (min == max)
pr_info("%.*s%lx: ", depth * 2, spaces, min);
else
pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
break;
case mt_dump_dec:
if (min == max)
pr_info("%.*s%lu: ", depth * 2, spaces, min);
else
pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
}
}
static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
unsigned int depth, enum mt_dump_format format)
{
mt_dump_range(min, max, depth, format);
if (xa_is_value(entry))
pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
xa_to_value(entry), entry);
else if (xa_is_zero(entry))
pr_cont("zero (%ld)\n", xa_to_internal(entry));
else if (mt_is_reserved(entry))
pr_cont("UNKNOWN ENTRY (%p)\n", entry);
else
pr_cont("%p\n", entry);
}
static void mt_dump_range64(const struct maple_tree *mt, void *entry,
unsigned long min, unsigned long max, unsigned int depth,
enum mt_dump_format format)
{
struct maple_range_64 *node = &mte_to_node(entry)->mr64;
bool leaf = mte_is_leaf(entry);
unsigned long first = min;
int i;
pr_cont(" contents: ");
for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
switch(format) {
case mt_dump_hex:
pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
break;
case mt_dump_dec:
pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
}
}
pr_cont("%p\n", node->slot[i]);
for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
unsigned long last = max;
if (i < (MAPLE_RANGE64_SLOTS - 1))
last = node->pivot[i];
else if (!node->slot[i] && max != mt_node_max(entry))
break;
if (last == 0 && i > 0)
break;
if (leaf)
mt_dump_entry(mt_slot(mt, node->slot, i),
first, last, depth + 1, format);
else if (node->slot[i])
mt_dump_node(mt, mt_slot(mt, node->slot, i),
first, last, depth + 1, format);
if (last == max)
break;
if (last > max) {
switch(format) {
case mt_dump_hex:
pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
node, last, max, i);
break;
case mt_dump_dec:
pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
node, last, max, i);
}
}
first = last + 1;
}
}
static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
unsigned long min, unsigned long max, unsigned int depth,
enum mt_dump_format format)
{
struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
bool leaf = mte_is_leaf(entry);
unsigned long first = min;
int i;
pr_cont(" contents: ");
for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
switch (format) {
case mt_dump_hex:
pr_cont("%lx ", node->gap[i]);
break;
case mt_dump_dec:
pr_cont("%lu ", node->gap[i]);
}
}
pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
switch (format) {
case mt_dump_hex:
pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
break;
case mt_dump_dec:
pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
}
}
pr_cont("%p\n", node->slot[i]);
for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
unsigned long last = max;
if (i < (MAPLE_ARANGE64_SLOTS - 1))
last = node->pivot[i];
else if (!node->slot[i])
break;
if (last == 0 && i > 0)
break;
if (leaf)
mt_dump_entry(mt_slot(mt, node->slot, i),
first, last, depth + 1, format);
else if (node->slot[i])
mt_dump_node(mt, mt_slot(mt, node->slot, i),
first, last, depth + 1, format);
if (last == max)
break;
if (last > max) {
pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
node, last, max, i);
break;
}
first = last + 1;
}
}
static void mt_dump_node(const struct maple_tree *mt, void *entry,
unsigned long min, unsigned long max, unsigned int depth,
enum mt_dump_format format)
{
struct maple_node *node = mte_to_node(entry);
unsigned int type = mte_node_type(entry);
unsigned int i;
mt_dump_range(min, max, depth, format);
pr_cont("node %p depth %d type %d parent %p", node, depth, type,
node ? node->parent : NULL);
switch (type) {
case maple_dense:
pr_cont("\n");
for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
if (min + i > max)
pr_cont("OUT OF RANGE: ");
mt_dump_entry(mt_slot(mt, node->slot, i),
min + i, min + i, depth, format);
}
break;
case maple_leaf_64:
case maple_range_64:
mt_dump_range64(mt, entry, min, max, depth, format);
break;
case maple_arange_64:
mt_dump_arange64(mt, entry, min, max, depth, format);
break;
default:
pr_cont(" UNKNOWN TYPE\n");
}
}
void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
{
void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
pr_info("maple_tree(%p) flags %X, height %u root %p\n",
mt, mt->ma_flags, mt_height(mt), entry);
if (!xa_is_node(entry))
mt_dump_entry(entry, 0, 0, 0, format);
else if (entry)
mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
}
EXPORT_SYMBOL_GPL(mt_dump);
/*
* Calculate the maximum gap in a node and check if that's what is reported in
* the parent (unless root).
*/
static void mas_validate_gaps(struct ma_state *mas)
{
struct maple_enode *mte = mas->node;
struct maple_node *p_mn, *node = mte_to_node(mte);
enum maple_type mt = mte_node_type(mas->node);
unsigned long gap = 0, max_gap = 0;
unsigned long p_end, p_start = mas->min;
unsigned char p_slot, offset;
unsigned long *gaps = NULL;
unsigned long *pivots = ma_pivots(node, mt);
unsigned int i;
if (ma_is_dense(mt)) {
for (i = 0; i < mt_slot_count(mte); i++) {
if (mas_get_slot(mas, i)) {
if (gap > max_gap)
max_gap = gap;
gap = 0;
continue;
}
gap++;
}
goto counted;
}
gaps = ma_gaps(node, mt);
for (i = 0; i < mt_slot_count(mte); i++) {
p_end = mas_safe_pivot(mas, pivots, i, mt);
if (!gaps) {
if (!mas_get_slot(mas, i))
gap = p_end - p_start + 1;
} else {
void *entry = mas_get_slot(mas, i);
gap = gaps[i];
MT_BUG_ON(mas->tree, !entry);
if (gap > p_end - p_start + 1) {
pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
mas_mn(mas), i, gap, p_end, p_start,
p_end - p_start + 1);
MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
}
}
if (gap > max_gap)
max_gap = gap;
p_start = p_end + 1;
if (p_end >= mas->max)
break;
}
counted:
if (mt == maple_arange_64) {
MT_BUG_ON(mas->tree, !gaps);
offset = ma_meta_gap(node);
if (offset > i) {
pr_err("gap offset %p[%u] is invalid\n", node, offset);
MT_BUG_ON(mas->tree, 1);
}
if (gaps[offset] != max_gap) {
pr_err("gap %p[%u] is not the largest gap %lu\n",
node, offset, max_gap);
MT_BUG_ON(mas->tree, 1);
}
for (i++ ; i < mt_slot_count(mte); i++) {
if (gaps[i] != 0) {
pr_err("gap %p[%u] beyond node limit != 0\n",
node, i);
MT_BUG_ON(mas->tree, 1);
}
}
}
if (mte_is_root(mte))
return;
p_slot = mte_parent_slot(mas->node);
p_mn = mte_parent(mte);
MT_BUG_ON(mas->tree, max_gap > mas->max);
if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
mt_dump(mas->tree, mt_dump_hex);
MT_BUG_ON(mas->tree, 1);
}
}
static void mas_validate_parent_slot(struct ma_state *mas)
{
struct maple_node *parent;
struct maple_enode *node;
enum maple_type p_type;
unsigned char p_slot;
void __rcu **slots;
int i;
if (mte_is_root(mas->node))
return;
p_slot = mte_parent_slot(mas->node);
p_type = mas_parent_type(mas, mas->node);
parent = mte_parent(mas->node);
slots = ma_slots(parent, p_type);
MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
/* Check prev/next parent slot for duplicate node entry */
for (i = 0; i < mt_slots[p_type]; i++) {
node = mas_slot(mas, slots, i);
if (i == p_slot) {
if (node != mas->node)
pr_err("parent %p[%u] does not have %p\n",
parent, i, mas_mn(mas));
MT_BUG_ON(mas->tree, node != mas->node);
} else if (node == mas->node) {
pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
mas_mn(mas), parent, i, p_slot);
MT_BUG_ON(mas->tree, node == mas->node);
}
}
}
static void mas_validate_child_slot(struct ma_state *mas)
{
enum maple_type type = mte_node_type(mas->node);
void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
struct maple_enode *child;
unsigned char i;
if (mte_is_leaf(mas->node))
return;
for (i = 0; i < mt_slots[type]; i++) {
child = mas_slot(mas, slots, i);
if (!child) {
pr_err("Non-leaf node lacks child at %p[%u]\n",
mas_mn(mas), i);
MT_BUG_ON(mas->tree, 1);
}
if (mte_parent_slot(child) != i) {
pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
mas_mn(mas), i, mte_to_node(child),
mte_parent_slot(child));
MT_BUG_ON(mas->tree, 1);
}
if (mte_parent(child) != mte_to_node(mas->node)) {
pr_err("child %p has parent %p not %p\n",
mte_to_node(child), mte_parent(child),
mte_to_node(mas->node));
MT_BUG_ON(mas->tree, 1);
}
if (i < mt_pivots[type] && pivots[i] == mas->max)
break;
}
}
/*
* Validate all pivots are within mas->min and mas->max, check metadata ends
* where the maximum ends and ensure there is no slots or pivots set outside of
* the end of the data.
*/
static void mas_validate_limits(struct ma_state *mas)
{
int i;
unsigned long prev_piv = 0;
enum maple_type type = mte_node_type(mas->node);
void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
unsigned long *pivots = ma_pivots(mas_mn(mas), type);
for (i = 0; i < mt_slots[type]; i++) {
unsigned long piv;
piv = mas_safe_pivot(mas, pivots, i, type);
if (!piv && (i != 0)) {
pr_err("Missing node limit pivot at %p[%u]",
mas_mn(mas), i);
MAS_WARN_ON(mas, 1);
}
if (prev_piv > piv) {
pr_err("%p[%u] piv %lu < prev_piv %lu\n",
mas_mn(mas), i, piv, prev_piv);
MAS_WARN_ON(mas, piv < prev_piv);
}
if (piv < mas->min) {
pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
piv, mas->min);
MAS_WARN_ON(mas, piv < mas->min);
}
if (piv > mas->max) {
pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
piv, mas->max);
MAS_WARN_ON(mas, piv > mas->max);
}
prev_piv = piv;
if (piv == mas->max)
break;
}
if (mas_data_end(mas) != i) {
pr_err("node%p: data_end %u != the last slot offset %u\n",
mas_mn(mas), mas_data_end(mas), i);
MT_BUG_ON(mas->tree, 1);
}
for (i += 1; i < mt_slots[type]; i++) {
void *entry = mas_slot(mas, slots, i);
if (entry && (i != mt_slots[type] - 1)) {
pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
i, entry);
MT_BUG_ON(mas->tree, entry != NULL);
}
if (i < mt_pivots[type]) {
unsigned long piv = pivots[i];
if (!piv)
continue;
pr_err("%p[%u] should not have piv %lu\n",
mas_mn(mas), i, piv);
MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
}
}
}
static void mt_validate_nulls(struct maple_tree *mt)
{
void *entry, *last = (void *)1;
unsigned char offset = 0;
void __rcu **slots;
MA_STATE(mas, mt, 0, 0);
mas_start(&mas);
if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
return;
while (!mte_is_leaf(mas.node))
mas_descend(&mas);
slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
do {
entry = mas_slot(&mas, slots, offset);
if (!last && !entry) {
pr_err("Sequential nulls end at %p[%u]\n",
mas_mn(&mas), offset);
}
MT_BUG_ON(mt, !last && !entry);
last = entry;
if (offset == mas_data_end(&mas)) {
mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
if (mas_is_overflow(&mas))
return;
offset = 0;
slots = ma_slots(mte_to_node(mas.node),
mte_node_type(mas.node));
} else {
offset++;
}
} while (!mas_is_overflow(&mas));
}
/*
* validate a maple tree by checking:
* 1. The limits (pivots are within mas->min to mas->max)
* 2. The gap is correctly set in the parents
*/
void mt_validate(struct maple_tree *mt)
{
unsigned char end;
MA_STATE(mas, mt, 0, 0);
rcu_read_lock();
mas_start(&mas);
if (!mas_is_active(&mas))
goto done;
while (!mte_is_leaf(mas.node))
mas_descend(&mas);
while (!mas_is_overflow(&mas)) {
MAS_WARN_ON(&mas, mte_dead_node(mas.node));
end = mas_data_end(&mas);
if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
(mas.max != ULONG_MAX))) {
pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
}
mas_validate_parent_slot(&mas);
mas_validate_limits(&mas);
mas_validate_child_slot(&mas);
if (mt_is_alloc(mt))
mas_validate_gaps(&mas);
mas_dfs_postorder(&mas, ULONG_MAX);
}
mt_validate_nulls(mt);
done:
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(mt_validate);
void mas_dump(const struct ma_state *mas)
{
pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
switch (mas->status) {
case ma_active:
pr_err("(ma_active)");
break;
case ma_none:
pr_err("(ma_none)");
break;
case ma_root:
pr_err("(ma_root)");
break;
case ma_start:
pr_err("(ma_start) ");
break;
case ma_pause:
pr_err("(ma_pause) ");
break;
case ma_overflow:
pr_err("(ma_overflow) ");
break;
case ma_underflow:
pr_err("(ma_underflow) ");
break;
case ma_error:
pr_err("(ma_error) ");
break;
}
pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
mas->index, mas->last);
pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
if (mas->index > mas->last)
pr_err("Check index & last\n");
}
EXPORT_SYMBOL_GPL(mas_dump);
void mas_wr_dump(const struct ma_wr_state *wr_mas)
{
pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
wr_mas->node, wr_mas->r_min, wr_mas->r_max);
pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
wr_mas->end_piv);
}
EXPORT_SYMBOL_GPL(mas_wr_dump);
#endif /* CONFIG_DEBUG_MAPLE_TREE */