linux-stable/drivers/gpu/drm/drm_gpuvm.c
Dave Airlie 22a2decedf Merge tag 'drm-msm-next-2023-12-15' of https://gitlab.freedesktop.org/drm/msm into drm-next
Updates for v6.8:

Core:
- Add support for SDM670, SM8650
- Handle the CFG interconnect to fix the obscure hangs / timeouts
  on register write
- Kconfig fix for QMP dependency
- DT schema fixes

DPU:
- Add support for SDM670, SM8650
- Enable SmartDMA on SM8350 and SM8450
- Correct UBWC settings for SC8280XP
- Fix catalog settings for SC8180X
- Actually make use of the version to switch between QSEED3/3LITE/4
  scalers
- Use devres-managed and drm-managed allocations where appropriate
- misc other fixes
- Enabled YUV writeback on SC7280, SM8250
- Enabled writeback on SM8350, SM8450
- CRC fix when encoder is selected as the input source
- other misc fixes

MDP4:
- Use devres-managed and drm-managed allocations where appropriate
- flush vblank event on CRTC disable

MDP5:
- Use devres-managed and drm-managed allocations where appropriate

DP:
- Add support for SM8650
- Enable PM runtime support
- Merge msm-specific debugfs dir with the generic one
- Described DisplayPort on SM8150 in DeviceTree bindings
- Moved dp_display_get_next_bridge() to probe()

DSI:
- Add support for SM8650
- Enable PM runtime support

GPU/GEM:
- demote userspace triggerable warnings to debug
- add GEM object metadata UAPI
- move GPU devcoredumps to GPU device
- fix hangcheck to skip retired submits
- expose UBWC config to userspace
- fix a680 chip-id
- drm_exec conversion
- drm/ci: remove rebase-merge directory (to unblock CI)

[airlied: fix drm_exec/amd interaction]
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Rob Clark <robdclark@gmail.com>
Link: https://patchwork.freedesktop.org/patch/msgid/CAF6AEGs9auYqmo-7NSd9FsbNBCDf7aBevd=4xkcF3A5G_OGvMQ@mail.gmail.com
2023-12-20 07:54:03 +10:00

2753 lines
78 KiB
C

// SPDX-License-Identifier: GPL-2.0-only OR MIT
/*
* Copyright (c) 2022 Red Hat.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Danilo Krummrich <dakr@redhat.com>
*
*/
#include <drm/drm_gpuvm.h>
#include <linux/interval_tree_generic.h>
#include <linux/mm.h>
/**
* DOC: Overview
*
* The DRM GPU VA Manager, represented by struct drm_gpuvm keeps track of a
* GPU's virtual address (VA) space and manages the corresponding virtual
* mappings represented by &drm_gpuva objects. It also keeps track of the
* mapping's backing &drm_gem_object buffers.
*
* &drm_gem_object buffers maintain a list of &drm_gpuva objects representing
* all existent GPU VA mappings using this &drm_gem_object as backing buffer.
*
* GPU VAs can be flagged as sparse, such that drivers may use GPU VAs to also
* keep track of sparse PTEs in order to support Vulkan 'Sparse Resources'.
*
* The GPU VA manager internally uses a rb-tree to manage the
* &drm_gpuva mappings within a GPU's virtual address space.
*
* The &drm_gpuvm structure contains a special &drm_gpuva representing the
* portion of VA space reserved by the kernel. This node is initialized together
* with the GPU VA manager instance and removed when the GPU VA manager is
* destroyed.
*
* In a typical application drivers would embed struct drm_gpuvm and
* struct drm_gpuva within their own driver specific structures, there won't be
* any memory allocations of its own nor memory allocations of &drm_gpuva
* entries.
*
* The data structures needed to store &drm_gpuvas within the &drm_gpuvm are
* contained within struct drm_gpuva already. Hence, for inserting &drm_gpuva
* entries from within dma-fence signalling critical sections it is enough to
* pre-allocate the &drm_gpuva structures.
*
* &drm_gem_objects which are private to a single VM can share a common
* &dma_resv in order to improve locking efficiency (e.g. with &drm_exec).
* For this purpose drivers must pass a &drm_gem_object to drm_gpuvm_init(), in
* the following called 'resv object', which serves as the container of the
* GPUVM's shared &dma_resv. This resv object can be a driver specific
* &drm_gem_object, such as the &drm_gem_object containing the root page table,
* but it can also be a 'dummy' object, which can be allocated with
* drm_gpuvm_resv_object_alloc().
*
* In order to connect a struct drm_gpuva its backing &drm_gem_object each
* &drm_gem_object maintains a list of &drm_gpuvm_bo structures, and each
* &drm_gpuvm_bo contains a list of &drm_gpuva structures.
*
* A &drm_gpuvm_bo is an abstraction that represents a combination of a
* &drm_gpuvm and a &drm_gem_object. Every such combination should be unique.
* This is ensured by the API through drm_gpuvm_bo_obtain() and
* drm_gpuvm_bo_obtain_prealloc() which first look into the corresponding
* &drm_gem_object list of &drm_gpuvm_bos for an existing instance of this
* particular combination. If not existent a new instance is created and linked
* to the &drm_gem_object.
*
* &drm_gpuvm_bo structures, since unique for a given &drm_gpuvm, are also used
* as entry for the &drm_gpuvm's lists of external and evicted objects. Those
* lists are maintained in order to accelerate locking of dma-resv locks and
* validation of evicted objects bound in a &drm_gpuvm. For instance, all
* &drm_gem_object's &dma_resv of a given &drm_gpuvm can be locked by calling
* drm_gpuvm_exec_lock(). Once locked drivers can call drm_gpuvm_validate() in
* order to validate all evicted &drm_gem_objects. It is also possible to lock
* additional &drm_gem_objects by providing the corresponding parameters to
* drm_gpuvm_exec_lock() as well as open code the &drm_exec loop while making
* use of helper functions such as drm_gpuvm_prepare_range() or
* drm_gpuvm_prepare_objects().
*
* Every bound &drm_gem_object is treated as external object when its &dma_resv
* structure is different than the &drm_gpuvm's common &dma_resv structure.
*/
/**
* DOC: Split and Merge
*
* Besides its capability to manage and represent a GPU VA space, the
* GPU VA manager also provides functions to let the &drm_gpuvm calculate a
* sequence of operations to satisfy a given map or unmap request.
*
* Therefore the DRM GPU VA manager provides an algorithm implementing splitting
* and merging of existent GPU VA mappings with the ones that are requested to
* be mapped or unmapped. This feature is required by the Vulkan API to
* implement Vulkan 'Sparse Memory Bindings' - drivers UAPIs often refer to this
* as VM BIND.
*
* Drivers can call drm_gpuvm_sm_map() to receive a sequence of callbacks
* containing map, unmap and remap operations for a given newly requested
* mapping. The sequence of callbacks represents the set of operations to
* execute in order to integrate the new mapping cleanly into the current state
* of the GPU VA space.
*
* Depending on how the new GPU VA mapping intersects with the existent mappings
* of the GPU VA space the &drm_gpuvm_ops callbacks contain an arbitrary amount
* of unmap operations, a maximum of two remap operations and a single map
* operation. The caller might receive no callback at all if no operation is
* required, e.g. if the requested mapping already exists in the exact same way.
*
* The single map operation represents the original map operation requested by
* the caller.
*
* &drm_gpuva_op_unmap contains a 'keep' field, which indicates whether the
* &drm_gpuva to unmap is physically contiguous with the original mapping
* request. Optionally, if 'keep' is set, drivers may keep the actual page table
* entries for this &drm_gpuva, adding the missing page table entries only and
* update the &drm_gpuvm's view of things accordingly.
*
* Drivers may do the same optimization, namely delta page table updates, also
* for remap operations. This is possible since &drm_gpuva_op_remap consists of
* one unmap operation and one or two map operations, such that drivers can
* derive the page table update delta accordingly.
*
* Note that there can't be more than two existent mappings to split up, one at
* the beginning and one at the end of the new mapping, hence there is a
* maximum of two remap operations.
*
* Analogous to drm_gpuvm_sm_map() drm_gpuvm_sm_unmap() uses &drm_gpuvm_ops to
* call back into the driver in order to unmap a range of GPU VA space. The
* logic behind this function is way simpler though: For all existent mappings
* enclosed by the given range unmap operations are created. For mappings which
* are only partically located within the given range, remap operations are
* created such that those mappings are split up and re-mapped partically.
*
* As an alternative to drm_gpuvm_sm_map() and drm_gpuvm_sm_unmap(),
* drm_gpuvm_sm_map_ops_create() and drm_gpuvm_sm_unmap_ops_create() can be used
* to directly obtain an instance of struct drm_gpuva_ops containing a list of
* &drm_gpuva_op, which can be iterated with drm_gpuva_for_each_op(). This list
* contains the &drm_gpuva_ops analogous to the callbacks one would receive when
* calling drm_gpuvm_sm_map() or drm_gpuvm_sm_unmap(). While this way requires
* more memory (to allocate the &drm_gpuva_ops), it provides drivers a way to
* iterate the &drm_gpuva_op multiple times, e.g. once in a context where memory
* allocations are possible (e.g. to allocate GPU page tables) and once in the
* dma-fence signalling critical path.
*
* To update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert() and
* drm_gpuva_remove() may be used. These functions can safely be used from
* &drm_gpuvm_ops callbacks originating from drm_gpuvm_sm_map() or
* drm_gpuvm_sm_unmap(). However, it might be more convenient to use the
* provided helper functions drm_gpuva_map(), drm_gpuva_remap() and
* drm_gpuva_unmap() instead.
*
* The following diagram depicts the basic relationships of existent GPU VA
* mappings, a newly requested mapping and the resulting mappings as implemented
* by drm_gpuvm_sm_map() - it doesn't cover any arbitrary combinations of these.
*
* 1) Requested mapping is identical. Replace it, but indicate the backing PTEs
* could be kept.
*
* ::
*
* 0 a 1
* old: |-----------| (bo_offset=n)
*
* 0 a 1
* req: |-----------| (bo_offset=n)
*
* 0 a 1
* new: |-----------| (bo_offset=n)
*
*
* 2) Requested mapping is identical, except for the BO offset, hence replace
* the mapping.
*
* ::
*
* 0 a 1
* old: |-----------| (bo_offset=n)
*
* 0 a 1
* req: |-----------| (bo_offset=m)
*
* 0 a 1
* new: |-----------| (bo_offset=m)
*
*
* 3) Requested mapping is identical, except for the backing BO, hence replace
* the mapping.
*
* ::
*
* 0 a 1
* old: |-----------| (bo_offset=n)
*
* 0 b 1
* req: |-----------| (bo_offset=n)
*
* 0 b 1
* new: |-----------| (bo_offset=n)
*
*
* 4) Existent mapping is a left aligned subset of the requested one, hence
* replace the existent one.
*
* ::
*
* 0 a 1
* old: |-----| (bo_offset=n)
*
* 0 a 2
* req: |-----------| (bo_offset=n)
*
* 0 a 2
* new: |-----------| (bo_offset=n)
*
* .. note::
* We expect to see the same result for a request with a different BO
* and/or non-contiguous BO offset.
*
*
* 5) Requested mapping's range is a left aligned subset of the existent one,
* but backed by a different BO. Hence, map the requested mapping and split
* the existent one adjusting its BO offset.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 0 b 1
* req: |-----| (bo_offset=n)
*
* 0 b 1 a' 2
* new: |-----|-----| (b.bo_offset=n, a.bo_offset=n+1)
*
* .. note::
* We expect to see the same result for a request with a different BO
* and/or non-contiguous BO offset.
*
*
* 6) Existent mapping is a superset of the requested mapping. Split it up, but
* indicate that the backing PTEs could be kept.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 0 a 1
* req: |-----| (bo_offset=n)
*
* 0 a 1 a' 2
* new: |-----|-----| (a.bo_offset=n, a'.bo_offset=n+1)
*
*
* 7) Requested mapping's range is a right aligned subset of the existent one,
* but backed by a different BO. Hence, map the requested mapping and split
* the existent one, without adjusting the BO offset.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 1 b 2
* req: |-----| (bo_offset=m)
*
* 0 a 1 b 2
* new: |-----|-----| (a.bo_offset=n,b.bo_offset=m)
*
*
* 8) Existent mapping is a superset of the requested mapping. Split it up, but
* indicate that the backing PTEs could be kept.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 1 a 2
* req: |-----| (bo_offset=n+1)
*
* 0 a' 1 a 2
* new: |-----|-----| (a'.bo_offset=n, a.bo_offset=n+1)
*
*
* 9) Existent mapping is overlapped at the end by the requested mapping backed
* by a different BO. Hence, map the requested mapping and split up the
* existent one, without adjusting the BO offset.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 1 b 3
* req: |-----------| (bo_offset=m)
*
* 0 a 1 b 3
* new: |-----|-----------| (a.bo_offset=n,b.bo_offset=m)
*
*
* 10) Existent mapping is overlapped by the requested mapping, both having the
* same backing BO with a contiguous offset. Indicate the backing PTEs of
* the old mapping could be kept.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 1 a 3
* req: |-----------| (bo_offset=n+1)
*
* 0 a' 1 a 3
* new: |-----|-----------| (a'.bo_offset=n, a.bo_offset=n+1)
*
*
* 11) Requested mapping's range is a centered subset of the existent one
* having a different backing BO. Hence, map the requested mapping and split
* up the existent one in two mappings, adjusting the BO offset of the right
* one accordingly.
*
* ::
*
* 0 a 3
* old: |-----------------| (bo_offset=n)
*
* 1 b 2
* req: |-----| (bo_offset=m)
*
* 0 a 1 b 2 a' 3
* new: |-----|-----|-----| (a.bo_offset=n,b.bo_offset=m,a'.bo_offset=n+2)
*
*
* 12) Requested mapping is a contiguous subset of the existent one. Split it
* up, but indicate that the backing PTEs could be kept.
*
* ::
*
* 0 a 3
* old: |-----------------| (bo_offset=n)
*
* 1 a 2
* req: |-----| (bo_offset=n+1)
*
* 0 a' 1 a 2 a'' 3
* old: |-----|-----|-----| (a'.bo_offset=n, a.bo_offset=n+1, a''.bo_offset=n+2)
*
*
* 13) Existent mapping is a right aligned subset of the requested one, hence
* replace the existent one.
*
* ::
*
* 1 a 2
* old: |-----| (bo_offset=n+1)
*
* 0 a 2
* req: |-----------| (bo_offset=n)
*
* 0 a 2
* new: |-----------| (bo_offset=n)
*
* .. note::
* We expect to see the same result for a request with a different bo
* and/or non-contiguous bo_offset.
*
*
* 14) Existent mapping is a centered subset of the requested one, hence
* replace the existent one.
*
* ::
*
* 1 a 2
* old: |-----| (bo_offset=n+1)
*
* 0 a 3
* req: |----------------| (bo_offset=n)
*
* 0 a 3
* new: |----------------| (bo_offset=n)
*
* .. note::
* We expect to see the same result for a request with a different bo
* and/or non-contiguous bo_offset.
*
*
* 15) Existent mappings is overlapped at the beginning by the requested mapping
* backed by a different BO. Hence, map the requested mapping and split up
* the existent one, adjusting its BO offset accordingly.
*
* ::
*
* 1 a 3
* old: |-----------| (bo_offset=n)
*
* 0 b 2
* req: |-----------| (bo_offset=m)
*
* 0 b 2 a' 3
* new: |-----------|-----| (b.bo_offset=m,a.bo_offset=n+2)
*/
/**
* DOC: Locking
*
* In terms of managing &drm_gpuva entries DRM GPUVM does not take care of
* locking itself, it is the drivers responsibility to take care about locking.
* Drivers might want to protect the following operations: inserting, removing
* and iterating &drm_gpuva objects as well as generating all kinds of
* operations, such as split / merge or prefetch.
*
* DRM GPUVM also does not take care of the locking of the backing
* &drm_gem_object buffers GPU VA lists and &drm_gpuvm_bo abstractions by
* itself; drivers are responsible to enforce mutual exclusion using either the
* GEMs dma_resv lock or alternatively a driver specific external lock. For the
* latter see also drm_gem_gpuva_set_lock().
*
* However, DRM GPUVM contains lockdep checks to ensure callers of its API hold
* the corresponding lock whenever the &drm_gem_objects GPU VA list is accessed
* by functions such as drm_gpuva_link() or drm_gpuva_unlink(), but also
* drm_gpuvm_bo_obtain() and drm_gpuvm_bo_put().
*
* The latter is required since on creation and destruction of a &drm_gpuvm_bo
* the &drm_gpuvm_bo is attached / removed from the &drm_gem_objects gpuva list.
* Subsequent calls to drm_gpuvm_bo_obtain() for the same &drm_gpuvm and
* &drm_gem_object must be able to observe previous creations and destructions
* of &drm_gpuvm_bos in order to keep instances unique.
*
* The &drm_gpuvm's lists for keeping track of external and evicted objects are
* protected against concurrent insertion / removal and iteration internally.
*
* However, drivers still need ensure to protect concurrent calls to functions
* iterating those lists, namely drm_gpuvm_prepare_objects() and
* drm_gpuvm_validate().
*
* Alternatively, drivers can set the &DRM_GPUVM_RESV_PROTECTED flag to indicate
* that the corresponding &dma_resv locks are held in order to protect the
* lists. If &DRM_GPUVM_RESV_PROTECTED is set, internal locking is disabled and
* the corresponding lockdep checks are enabled. This is an optimization for
* drivers which are capable of taking the corresponding &dma_resv locks and
* hence do not require internal locking.
*/
/**
* DOC: Examples
*
* This section gives two examples on how to let the DRM GPUVA Manager generate
* &drm_gpuva_op in order to satisfy a given map or unmap request and how to
* make use of them.
*
* The below code is strictly limited to illustrate the generic usage pattern.
* To maintain simplicitly, it doesn't make use of any abstractions for common
* code, different (asyncronous) stages with fence signalling critical paths,
* any other helpers or error handling in terms of freeing memory and dropping
* previously taken locks.
*
* 1) Obtain a list of &drm_gpuva_op to create a new mapping::
*
* // Allocates a new &drm_gpuva.
* struct drm_gpuva * driver_gpuva_alloc(void);
*
* // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva
* // structure in individual driver structures and lock the dma-resv with
* // drm_exec or similar helpers.
* int driver_mapping_create(struct drm_gpuvm *gpuvm,
* u64 addr, u64 range,
* struct drm_gem_object *obj, u64 offset)
* {
* struct drm_gpuva_ops *ops;
* struct drm_gpuva_op *op
* struct drm_gpuvm_bo *vm_bo;
*
* driver_lock_va_space();
* ops = drm_gpuvm_sm_map_ops_create(gpuvm, addr, range,
* obj, offset);
* if (IS_ERR(ops))
* return PTR_ERR(ops);
*
* vm_bo = drm_gpuvm_bo_obtain(gpuvm, obj);
* if (IS_ERR(vm_bo))
* return PTR_ERR(vm_bo);
*
* drm_gpuva_for_each_op(op, ops) {
* struct drm_gpuva *va;
*
* switch (op->op) {
* case DRM_GPUVA_OP_MAP:
* va = driver_gpuva_alloc();
* if (!va)
* ; // unwind previous VA space updates,
* // free memory and unlock
*
* driver_vm_map();
* drm_gpuva_map(gpuvm, va, &op->map);
* drm_gpuva_link(va, vm_bo);
*
* break;
* case DRM_GPUVA_OP_REMAP: {
* struct drm_gpuva *prev = NULL, *next = NULL;
*
* va = op->remap.unmap->va;
*
* if (op->remap.prev) {
* prev = driver_gpuva_alloc();
* if (!prev)
* ; // unwind previous VA space
* // updates, free memory and
* // unlock
* }
*
* if (op->remap.next) {
* next = driver_gpuva_alloc();
* if (!next)
* ; // unwind previous VA space
* // updates, free memory and
* // unlock
* }
*
* driver_vm_remap();
* drm_gpuva_remap(prev, next, &op->remap);
*
* if (prev)
* drm_gpuva_link(prev, va->vm_bo);
* if (next)
* drm_gpuva_link(next, va->vm_bo);
* drm_gpuva_unlink(va);
*
* break;
* }
* case DRM_GPUVA_OP_UNMAP:
* va = op->unmap->va;
*
* driver_vm_unmap();
* drm_gpuva_unlink(va);
* drm_gpuva_unmap(&op->unmap);
*
* break;
* default:
* break;
* }
* }
* drm_gpuvm_bo_put(vm_bo);
* driver_unlock_va_space();
*
* return 0;
* }
*
* 2) Receive a callback for each &drm_gpuva_op to create a new mapping::
*
* struct driver_context {
* struct drm_gpuvm *gpuvm;
* struct drm_gpuvm_bo *vm_bo;
* struct drm_gpuva *new_va;
* struct drm_gpuva *prev_va;
* struct drm_gpuva *next_va;
* };
*
* // ops to pass to drm_gpuvm_init()
* static const struct drm_gpuvm_ops driver_gpuvm_ops = {
* .sm_step_map = driver_gpuva_map,
* .sm_step_remap = driver_gpuva_remap,
* .sm_step_unmap = driver_gpuva_unmap,
* };
*
* // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva
* // structure in individual driver structures and lock the dma-resv with
* // drm_exec or similar helpers.
* int driver_mapping_create(struct drm_gpuvm *gpuvm,
* u64 addr, u64 range,
* struct drm_gem_object *obj, u64 offset)
* {
* struct driver_context ctx;
* struct drm_gpuvm_bo *vm_bo;
* struct drm_gpuva_ops *ops;
* struct drm_gpuva_op *op;
* int ret = 0;
*
* ctx.gpuvm = gpuvm;
*
* ctx.new_va = kzalloc(sizeof(*ctx.new_va), GFP_KERNEL);
* ctx.prev_va = kzalloc(sizeof(*ctx.prev_va), GFP_KERNEL);
* ctx.next_va = kzalloc(sizeof(*ctx.next_va), GFP_KERNEL);
* ctx.vm_bo = drm_gpuvm_bo_create(gpuvm, obj);
* if (!ctx.new_va || !ctx.prev_va || !ctx.next_va || !vm_bo) {
* ret = -ENOMEM;
* goto out;
* }
*
* // Typically protected with a driver specific GEM gpuva lock
* // used in the fence signaling path for drm_gpuva_link() and
* // drm_gpuva_unlink(), hence pre-allocate.
* ctx.vm_bo = drm_gpuvm_bo_obtain_prealloc(ctx.vm_bo);
*
* driver_lock_va_space();
* ret = drm_gpuvm_sm_map(gpuvm, &ctx, addr, range, obj, offset);
* driver_unlock_va_space();
*
* out:
* drm_gpuvm_bo_put(ctx.vm_bo);
* kfree(ctx.new_va);
* kfree(ctx.prev_va);
* kfree(ctx.next_va);
* return ret;
* }
*
* int driver_gpuva_map(struct drm_gpuva_op *op, void *__ctx)
* {
* struct driver_context *ctx = __ctx;
*
* drm_gpuva_map(ctx->vm, ctx->new_va, &op->map);
*
* drm_gpuva_link(ctx->new_va, ctx->vm_bo);
*
* // prevent the new GPUVA from being freed in
* // driver_mapping_create()
* ctx->new_va = NULL;
*
* return 0;
* }
*
* int driver_gpuva_remap(struct drm_gpuva_op *op, void *__ctx)
* {
* struct driver_context *ctx = __ctx;
* struct drm_gpuva *va = op->remap.unmap->va;
*
* drm_gpuva_remap(ctx->prev_va, ctx->next_va, &op->remap);
*
* if (op->remap.prev) {
* drm_gpuva_link(ctx->prev_va, va->vm_bo);
* ctx->prev_va = NULL;
* }
*
* if (op->remap.next) {
* drm_gpuva_link(ctx->next_va, va->vm_bo);
* ctx->next_va = NULL;
* }
*
* drm_gpuva_unlink(va);
* kfree(va);
*
* return 0;
* }
*
* int driver_gpuva_unmap(struct drm_gpuva_op *op, void *__ctx)
* {
* drm_gpuva_unlink(op->unmap.va);
* drm_gpuva_unmap(&op->unmap);
* kfree(op->unmap.va);
*
* return 0;
* }
*/
/**
* get_next_vm_bo_from_list() - get the next vm_bo element
* @__gpuvm: the &drm_gpuvm
* @__list_name: the name of the list we're iterating on
* @__local_list: a pointer to the local list used to store already iterated items
* @__prev_vm_bo: the previous element we got from get_next_vm_bo_from_list()
*
* This helper is here to provide lockless list iteration. Lockless as in, the
* iterator releases the lock immediately after picking the first element from
* the list, so list insertion deletion can happen concurrently.
*
* Elements popped from the original list are kept in a local list, so removal
* and is_empty checks can still happen while we're iterating the list.
*/
#define get_next_vm_bo_from_list(__gpuvm, __list_name, __local_list, __prev_vm_bo) \
({ \
struct drm_gpuvm_bo *__vm_bo = NULL; \
\
drm_gpuvm_bo_put(__prev_vm_bo); \
\
spin_lock(&(__gpuvm)->__list_name.lock); \
if (!(__gpuvm)->__list_name.local_list) \
(__gpuvm)->__list_name.local_list = __local_list; \
else \
drm_WARN_ON((__gpuvm)->drm, \
(__gpuvm)->__list_name.local_list != __local_list); \
\
while (!list_empty(&(__gpuvm)->__list_name.list)) { \
__vm_bo = list_first_entry(&(__gpuvm)->__list_name.list, \
struct drm_gpuvm_bo, \
list.entry.__list_name); \
if (kref_get_unless_zero(&__vm_bo->kref)) { \
list_move_tail(&(__vm_bo)->list.entry.__list_name, \
__local_list); \
break; \
} else { \
list_del_init(&(__vm_bo)->list.entry.__list_name); \
__vm_bo = NULL; \
} \
} \
spin_unlock(&(__gpuvm)->__list_name.lock); \
\
__vm_bo; \
})
/**
* for_each_vm_bo_in_list() - internal vm_bo list iterator
* @__gpuvm: the &drm_gpuvm
* @__list_name: the name of the list we're iterating on
* @__local_list: a pointer to the local list used to store already iterated items
* @__vm_bo: the struct drm_gpuvm_bo to assign in each iteration step
*
* This helper is here to provide lockless list iteration. Lockless as in, the
* iterator releases the lock immediately after picking the first element from the
* list, hence list insertion and deletion can happen concurrently.
*
* It is not allowed to re-assign the vm_bo pointer from inside this loop.
*
* Typical use:
*
* struct drm_gpuvm_bo *vm_bo;
* LIST_HEAD(my_local_list);
*
* ret = 0;
* for_each_vm_bo_in_list(gpuvm, <list_name>, &my_local_list, vm_bo) {
* ret = do_something_with_vm_bo(..., vm_bo);
* if (ret)
* break;
* }
* // Drop ref in case we break out of the loop.
* drm_gpuvm_bo_put(vm_bo);
* restore_vm_bo_list(gpuvm, <list_name>, &my_local_list);
*
*
* Only used for internal list iterations, not meant to be exposed to the outside
* world.
*/
#define for_each_vm_bo_in_list(__gpuvm, __list_name, __local_list, __vm_bo) \
for (__vm_bo = get_next_vm_bo_from_list(__gpuvm, __list_name, \
__local_list, NULL); \
__vm_bo; \
__vm_bo = get_next_vm_bo_from_list(__gpuvm, __list_name, \
__local_list, __vm_bo))
static void
__restore_vm_bo_list(struct drm_gpuvm *gpuvm, spinlock_t *lock,
struct list_head *list, struct list_head **local_list)
{
/* Merge back the two lists, moving local list elements to the
* head to preserve previous ordering, in case it matters.
*/
spin_lock(lock);
if (*local_list) {
list_splice(*local_list, list);
*local_list = NULL;
}
spin_unlock(lock);
}
/**
* restore_vm_bo_list() - move vm_bo elements back to their original list
* @__gpuvm: the &drm_gpuvm
* @__list_name: the name of the list we're iterating on
*
* When we're done iterating a vm_bo list, we should call restore_vm_bo_list()
* to restore the original state and let new iterations take place.
*/
#define restore_vm_bo_list(__gpuvm, __list_name) \
__restore_vm_bo_list((__gpuvm), &(__gpuvm)->__list_name.lock, \
&(__gpuvm)->__list_name.list, \
&(__gpuvm)->__list_name.local_list)
static void
cond_spin_lock(spinlock_t *lock, bool cond)
{
if (cond)
spin_lock(lock);
}
static void
cond_spin_unlock(spinlock_t *lock, bool cond)
{
if (cond)
spin_unlock(lock);
}
static void
__drm_gpuvm_bo_list_add(struct drm_gpuvm *gpuvm, spinlock_t *lock,
struct list_head *entry, struct list_head *list)
{
cond_spin_lock(lock, !!lock);
if (list_empty(entry))
list_add_tail(entry, list);
cond_spin_unlock(lock, !!lock);
}
/**
* drm_gpuvm_bo_list_add() - insert a vm_bo into the given list
* @__vm_bo: the &drm_gpuvm_bo
* @__list_name: the name of the list to insert into
* @__lock: whether to lock with the internal spinlock
*
* Inserts the given @__vm_bo into the list specified by @__list_name.
*/
#define drm_gpuvm_bo_list_add(__vm_bo, __list_name, __lock) \
__drm_gpuvm_bo_list_add((__vm_bo)->vm, \
__lock ? &(__vm_bo)->vm->__list_name.lock : \
NULL, \
&(__vm_bo)->list.entry.__list_name, \
&(__vm_bo)->vm->__list_name.list)
static void
__drm_gpuvm_bo_list_del(struct drm_gpuvm *gpuvm, spinlock_t *lock,
struct list_head *entry, bool init)
{
cond_spin_lock(lock, !!lock);
if (init) {
if (!list_empty(entry))
list_del_init(entry);
} else {
list_del(entry);
}
cond_spin_unlock(lock, !!lock);
}
/**
* drm_gpuvm_bo_list_del_init() - remove a vm_bo from the given list
* @__vm_bo: the &drm_gpuvm_bo
* @__list_name: the name of the list to insert into
* @__lock: whether to lock with the internal spinlock
*
* Removes the given @__vm_bo from the list specified by @__list_name.
*/
#define drm_gpuvm_bo_list_del_init(__vm_bo, __list_name, __lock) \
__drm_gpuvm_bo_list_del((__vm_bo)->vm, \
__lock ? &(__vm_bo)->vm->__list_name.lock : \
NULL, \
&(__vm_bo)->list.entry.__list_name, \
true)
/**
* drm_gpuvm_bo_list_del() - remove a vm_bo from the given list
* @__vm_bo: the &drm_gpuvm_bo
* @__list_name: the name of the list to insert into
* @__lock: whether to lock with the internal spinlock
*
* Removes the given @__vm_bo from the list specified by @__list_name.
*/
#define drm_gpuvm_bo_list_del(__vm_bo, __list_name, __lock) \
__drm_gpuvm_bo_list_del((__vm_bo)->vm, \
__lock ? &(__vm_bo)->vm->__list_name.lock : \
NULL, \
&(__vm_bo)->list.entry.__list_name, \
false)
#define to_drm_gpuva(__node) container_of((__node), struct drm_gpuva, rb.node)
#define GPUVA_START(node) ((node)->va.addr)
#define GPUVA_LAST(node) ((node)->va.addr + (node)->va.range - 1)
/* We do not actually use drm_gpuva_it_next(), tell the compiler to not complain
* about this.
*/
INTERVAL_TREE_DEFINE(struct drm_gpuva, rb.node, u64, rb.__subtree_last,
GPUVA_START, GPUVA_LAST, static __maybe_unused,
drm_gpuva_it)
static int __drm_gpuva_insert(struct drm_gpuvm *gpuvm,
struct drm_gpuva *va);
static void __drm_gpuva_remove(struct drm_gpuva *va);
static bool
drm_gpuvm_check_overflow(u64 addr, u64 range)
{
u64 end;
return check_add_overflow(addr, range, &end);
}
static bool
drm_gpuvm_warn_check_overflow(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
{
return drm_WARN(gpuvm->drm, drm_gpuvm_check_overflow(addr, range),
"GPUVA address limited to %zu bytes.\n", sizeof(addr));
}
static bool
drm_gpuvm_in_mm_range(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
{
u64 end = addr + range;
u64 mm_start = gpuvm->mm_start;
u64 mm_end = mm_start + gpuvm->mm_range;
return addr >= mm_start && end <= mm_end;
}
static bool
drm_gpuvm_in_kernel_node(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
{
u64 end = addr + range;
u64 kstart = gpuvm->kernel_alloc_node.va.addr;
u64 krange = gpuvm->kernel_alloc_node.va.range;
u64 kend = kstart + krange;
return krange && addr < kend && kstart < end;
}
/**
* drm_gpuvm_range_valid() - checks whether the given range is valid for the
* given &drm_gpuvm
* @gpuvm: the GPUVM to check the range for
* @addr: the base address
* @range: the range starting from the base address
*
* Checks whether the range is within the GPUVM's managed boundaries.
*
* Returns: true for a valid range, false otherwise
*/
bool
drm_gpuvm_range_valid(struct drm_gpuvm *gpuvm,
u64 addr, u64 range)
{
return !drm_gpuvm_check_overflow(addr, range) &&
drm_gpuvm_in_mm_range(gpuvm, addr, range) &&
!drm_gpuvm_in_kernel_node(gpuvm, addr, range);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_range_valid);
static void
drm_gpuvm_gem_object_free(struct drm_gem_object *obj)
{
drm_gem_object_release(obj);
kfree(obj);
}
static const struct drm_gem_object_funcs drm_gpuvm_object_funcs = {
.free = drm_gpuvm_gem_object_free,
};
/**
* drm_gpuvm_resv_object_alloc() - allocate a dummy &drm_gem_object
* @drm: the drivers &drm_device
*
* Allocates a dummy &drm_gem_object which can be passed to drm_gpuvm_init() in
* order to serve as root GEM object providing the &drm_resv shared across
* &drm_gem_objects local to a single GPUVM.
*
* Returns: the &drm_gem_object on success, NULL on failure
*/
struct drm_gem_object *
drm_gpuvm_resv_object_alloc(struct drm_device *drm)
{
struct drm_gem_object *obj;
obj = kzalloc(sizeof(*obj), GFP_KERNEL);
if (!obj)
return NULL;
obj->funcs = &drm_gpuvm_object_funcs;
drm_gem_private_object_init(drm, obj, 0);
return obj;
}
EXPORT_SYMBOL_GPL(drm_gpuvm_resv_object_alloc);
/**
* drm_gpuvm_init() - initialize a &drm_gpuvm
* @gpuvm: pointer to the &drm_gpuvm to initialize
* @name: the name of the GPU VA space
* @flags: the &drm_gpuvm_flags for this GPUVM
* @drm: the &drm_device this VM resides in
* @r_obj: the resv &drm_gem_object providing the GPUVM's common &dma_resv
* @start_offset: the start offset of the GPU VA space
* @range: the size of the GPU VA space
* @reserve_offset: the start of the kernel reserved GPU VA area
* @reserve_range: the size of the kernel reserved GPU VA area
* @ops: &drm_gpuvm_ops called on &drm_gpuvm_sm_map / &drm_gpuvm_sm_unmap
*
* The &drm_gpuvm must be initialized with this function before use.
*
* Note that @gpuvm must be cleared to 0 before calling this function. The given
* &name is expected to be managed by the surrounding driver structures.
*/
void
drm_gpuvm_init(struct drm_gpuvm *gpuvm, const char *name,
enum drm_gpuvm_flags flags,
struct drm_device *drm,
struct drm_gem_object *r_obj,
u64 start_offset, u64 range,
u64 reserve_offset, u64 reserve_range,
const struct drm_gpuvm_ops *ops)
{
gpuvm->rb.tree = RB_ROOT_CACHED;
INIT_LIST_HEAD(&gpuvm->rb.list);
INIT_LIST_HEAD(&gpuvm->extobj.list);
spin_lock_init(&gpuvm->extobj.lock);
INIT_LIST_HEAD(&gpuvm->evict.list);
spin_lock_init(&gpuvm->evict.lock);
kref_init(&gpuvm->kref);
gpuvm->name = name ? name : "unknown";
gpuvm->flags = flags;
gpuvm->ops = ops;
gpuvm->drm = drm;
gpuvm->r_obj = r_obj;
drm_gem_object_get(r_obj);
drm_gpuvm_warn_check_overflow(gpuvm, start_offset, range);
gpuvm->mm_start = start_offset;
gpuvm->mm_range = range;
memset(&gpuvm->kernel_alloc_node, 0, sizeof(struct drm_gpuva));
if (reserve_range) {
gpuvm->kernel_alloc_node.va.addr = reserve_offset;
gpuvm->kernel_alloc_node.va.range = reserve_range;
if (likely(!drm_gpuvm_warn_check_overflow(gpuvm, reserve_offset,
reserve_range)))
__drm_gpuva_insert(gpuvm, &gpuvm->kernel_alloc_node);
}
}
EXPORT_SYMBOL_GPL(drm_gpuvm_init);
static void
drm_gpuvm_fini(struct drm_gpuvm *gpuvm)
{
gpuvm->name = NULL;
if (gpuvm->kernel_alloc_node.va.range)
__drm_gpuva_remove(&gpuvm->kernel_alloc_node);
drm_WARN(gpuvm->drm, !RB_EMPTY_ROOT(&gpuvm->rb.tree.rb_root),
"GPUVA tree is not empty, potentially leaking memory.\n");
drm_WARN(gpuvm->drm, !list_empty(&gpuvm->extobj.list),
"Extobj list should be empty.\n");
drm_WARN(gpuvm->drm, !list_empty(&gpuvm->evict.list),
"Evict list should be empty.\n");
drm_gem_object_put(gpuvm->r_obj);
}
static void
drm_gpuvm_free(struct kref *kref)
{
struct drm_gpuvm *gpuvm = container_of(kref, struct drm_gpuvm, kref);
drm_gpuvm_fini(gpuvm);
if (drm_WARN_ON(gpuvm->drm, !gpuvm->ops->vm_free))
return;
gpuvm->ops->vm_free(gpuvm);
}
/**
* drm_gpuvm_put() - drop a struct drm_gpuvm reference
* @gpuvm: the &drm_gpuvm to release the reference of
*
* This releases a reference to @gpuvm.
*
* This function may be called from atomic context.
*/
void
drm_gpuvm_put(struct drm_gpuvm *gpuvm)
{
if (gpuvm)
kref_put(&gpuvm->kref, drm_gpuvm_free);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_put);
static int
exec_prepare_obj(struct drm_exec *exec, struct drm_gem_object *obj,
unsigned int num_fences)
{
return num_fences ? drm_exec_prepare_obj(exec, obj, num_fences) :
drm_exec_lock_obj(exec, obj);
}
/**
* drm_gpuvm_prepare_vm() - prepare the GPUVMs common dma-resv
* @gpuvm: the &drm_gpuvm
* @exec: the &drm_exec context
* @num_fences: the amount of &dma_fences to reserve
*
* Calls drm_exec_prepare_obj() for the GPUVMs dummy &drm_gem_object; if
* @num_fences is zero drm_exec_lock_obj() is called instead.
*
* Using this function directly, it is the drivers responsibility to call
* drm_exec_init() and drm_exec_fini() accordingly.
*
* Returns: 0 on success, negative error code on failure.
*/
int
drm_gpuvm_prepare_vm(struct drm_gpuvm *gpuvm,
struct drm_exec *exec,
unsigned int num_fences)
{
return exec_prepare_obj(exec, gpuvm->r_obj, num_fences);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_vm);
static int
__drm_gpuvm_prepare_objects(struct drm_gpuvm *gpuvm,
struct drm_exec *exec,
unsigned int num_fences)
{
struct drm_gpuvm_bo *vm_bo;
LIST_HEAD(extobjs);
int ret = 0;
for_each_vm_bo_in_list(gpuvm, extobj, &extobjs, vm_bo) {
ret = exec_prepare_obj(exec, vm_bo->obj, num_fences);
if (ret)
break;
}
/* Drop ref in case we break out of the loop. */
drm_gpuvm_bo_put(vm_bo);
restore_vm_bo_list(gpuvm, extobj);
return ret;
}
static int
drm_gpuvm_prepare_objects_locked(struct drm_gpuvm *gpuvm,
struct drm_exec *exec,
unsigned int num_fences)
{
struct drm_gpuvm_bo *vm_bo;
int ret = 0;
drm_gpuvm_resv_assert_held(gpuvm);
list_for_each_entry(vm_bo, &gpuvm->extobj.list, list.entry.extobj) {
ret = exec_prepare_obj(exec, vm_bo->obj, num_fences);
if (ret)
break;
if (vm_bo->evicted)
drm_gpuvm_bo_list_add(vm_bo, evict, false);
}
return ret;
}
/**
* drm_gpuvm_prepare_objects() - prepare all assoiciated BOs
* @gpuvm: the &drm_gpuvm
* @exec: the &drm_exec locking context
* @num_fences: the amount of &dma_fences to reserve
*
* Calls drm_exec_prepare_obj() for all &drm_gem_objects the given
* &drm_gpuvm contains mappings of; if @num_fences is zero drm_exec_lock_obj()
* is called instead.
*
* Using this function directly, it is the drivers responsibility to call
* drm_exec_init() and drm_exec_fini() accordingly.
*
* Note: This function is safe against concurrent insertion and removal of
* external objects, however it is not safe against concurrent usage itself.
*
* Drivers need to make sure to protect this case with either an outer VM lock
* or by calling drm_gpuvm_prepare_vm() before this function within the
* drm_exec_until_all_locked() loop, such that the GPUVM's dma-resv lock ensures
* mutual exclusion.
*
* Returns: 0 on success, negative error code on failure.
*/
int
drm_gpuvm_prepare_objects(struct drm_gpuvm *gpuvm,
struct drm_exec *exec,
unsigned int num_fences)
{
if (drm_gpuvm_resv_protected(gpuvm))
return drm_gpuvm_prepare_objects_locked(gpuvm, exec,
num_fences);
else
return __drm_gpuvm_prepare_objects(gpuvm, exec, num_fences);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_objects);
/**
* drm_gpuvm_prepare_range() - prepare all BOs mapped within a given range
* @gpuvm: the &drm_gpuvm
* @exec: the &drm_exec locking context
* @addr: the start address within the VA space
* @range: the range to iterate within the VA space
* @num_fences: the amount of &dma_fences to reserve
*
* Calls drm_exec_prepare_obj() for all &drm_gem_objects mapped between @addr
* and @addr + @range; if @num_fences is zero drm_exec_lock_obj() is called
* instead.
*
* Returns: 0 on success, negative error code on failure.
*/
int
drm_gpuvm_prepare_range(struct drm_gpuvm *gpuvm, struct drm_exec *exec,
u64 addr, u64 range, unsigned int num_fences)
{
struct drm_gpuva *va;
u64 end = addr + range;
int ret;
drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) {
struct drm_gem_object *obj = va->gem.obj;
ret = exec_prepare_obj(exec, obj, num_fences);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_range);
/**
* drm_gpuvm_exec_lock() - lock all dma-resv of all assoiciated BOs
* @vm_exec: the &drm_gpuvm_exec wrapper
*
* Acquires all dma-resv locks of all &drm_gem_objects the given
* &drm_gpuvm contains mappings of.
*
* Addionally, when calling this function with struct drm_gpuvm_exec::extra
* being set the driver receives the given @fn callback to lock additional
* dma-resv in the context of the &drm_gpuvm_exec instance. Typically, drivers
* would call drm_exec_prepare_obj() from within this callback.
*
* Returns: 0 on success, negative error code on failure.
*/
int
drm_gpuvm_exec_lock(struct drm_gpuvm_exec *vm_exec)
{
struct drm_gpuvm *gpuvm = vm_exec->vm;
struct drm_exec *exec = &vm_exec->exec;
unsigned int num_fences = vm_exec->num_fences;
int ret;
drm_exec_init(exec, vm_exec->flags, 0);
drm_exec_until_all_locked(exec) {
ret = drm_gpuvm_prepare_vm(gpuvm, exec, num_fences);
drm_exec_retry_on_contention(exec);
if (ret)
goto err;
ret = drm_gpuvm_prepare_objects(gpuvm, exec, num_fences);
drm_exec_retry_on_contention(exec);
if (ret)
goto err;
if (vm_exec->extra.fn) {
ret = vm_exec->extra.fn(vm_exec);
drm_exec_retry_on_contention(exec);
if (ret)
goto err;
}
}
return 0;
err:
drm_exec_fini(exec);
return ret;
}
EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock);
static int
fn_lock_array(struct drm_gpuvm_exec *vm_exec)
{
struct {
struct drm_gem_object **objs;
unsigned int num_objs;
} *args = vm_exec->extra.priv;
return drm_exec_prepare_array(&vm_exec->exec, args->objs,
args->num_objs, vm_exec->num_fences);
}
/**
* drm_gpuvm_exec_lock_array() - lock all dma-resv of all assoiciated BOs
* @vm_exec: the &drm_gpuvm_exec wrapper
* @objs: additional &drm_gem_objects to lock
* @num_objs: the number of additional &drm_gem_objects to lock
*
* Acquires all dma-resv locks of all &drm_gem_objects the given &drm_gpuvm
* contains mappings of, plus the ones given through @objs.
*
* Returns: 0 on success, negative error code on failure.
*/
int
drm_gpuvm_exec_lock_array(struct drm_gpuvm_exec *vm_exec,
struct drm_gem_object **objs,
unsigned int num_objs)
{
struct {
struct drm_gem_object **objs;
unsigned int num_objs;
} args;
args.objs = objs;
args.num_objs = num_objs;
vm_exec->extra.fn = fn_lock_array;
vm_exec->extra.priv = &args;
return drm_gpuvm_exec_lock(vm_exec);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock_array);
/**
* drm_gpuvm_exec_lock_range() - prepare all BOs mapped within a given range
* @vm_exec: the &drm_gpuvm_exec wrapper
* @addr: the start address within the VA space
* @range: the range to iterate within the VA space
*
* Acquires all dma-resv locks of all &drm_gem_objects mapped between @addr and
* @addr + @range.
*
* Returns: 0 on success, negative error code on failure.
*/
int
drm_gpuvm_exec_lock_range(struct drm_gpuvm_exec *vm_exec,
u64 addr, u64 range)
{
struct drm_gpuvm *gpuvm = vm_exec->vm;
struct drm_exec *exec = &vm_exec->exec;
int ret;
drm_exec_init(exec, vm_exec->flags, 0);
drm_exec_until_all_locked(exec) {
ret = drm_gpuvm_prepare_range(gpuvm, exec, addr, range,
vm_exec->num_fences);
drm_exec_retry_on_contention(exec);
if (ret)
goto err;
}
return ret;
err:
drm_exec_fini(exec);
return ret;
}
EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock_range);
static int
__drm_gpuvm_validate(struct drm_gpuvm *gpuvm, struct drm_exec *exec)
{
const struct drm_gpuvm_ops *ops = gpuvm->ops;
struct drm_gpuvm_bo *vm_bo;
LIST_HEAD(evict);
int ret = 0;
for_each_vm_bo_in_list(gpuvm, evict, &evict, vm_bo) {
ret = ops->vm_bo_validate(vm_bo, exec);
if (ret)
break;
}
/* Drop ref in case we break out of the loop. */
drm_gpuvm_bo_put(vm_bo);
restore_vm_bo_list(gpuvm, evict);
return ret;
}
static int
drm_gpuvm_validate_locked(struct drm_gpuvm *gpuvm, struct drm_exec *exec)
{
const struct drm_gpuvm_ops *ops = gpuvm->ops;
struct drm_gpuvm_bo *vm_bo, *next;
int ret = 0;
drm_gpuvm_resv_assert_held(gpuvm);
list_for_each_entry_safe(vm_bo, next, &gpuvm->evict.list,
list.entry.evict) {
ret = ops->vm_bo_validate(vm_bo, exec);
if (ret)
break;
dma_resv_assert_held(vm_bo->obj->resv);
if (!vm_bo->evicted)
drm_gpuvm_bo_list_del_init(vm_bo, evict, false);
}
return ret;
}
/**
* drm_gpuvm_validate() - validate all BOs marked as evicted
* @gpuvm: the &drm_gpuvm to validate evicted BOs
* @exec: the &drm_exec instance used for locking the GPUVM
*
* Calls the &drm_gpuvm_ops::vm_bo_validate callback for all evicted buffer
* objects being mapped in the given &drm_gpuvm.
*
* Returns: 0 on success, negative error code on failure.
*/
int
drm_gpuvm_validate(struct drm_gpuvm *gpuvm, struct drm_exec *exec)
{
const struct drm_gpuvm_ops *ops = gpuvm->ops;
if (unlikely(!ops || !ops->vm_bo_validate))
return -EOPNOTSUPP;
if (drm_gpuvm_resv_protected(gpuvm))
return drm_gpuvm_validate_locked(gpuvm, exec);
else
return __drm_gpuvm_validate(gpuvm, exec);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_validate);
/**
* drm_gpuvm_resv_add_fence - add fence to private and all extobj
* dma-resv
* @gpuvm: the &drm_gpuvm to add a fence to
* @exec: the &drm_exec locking context
* @fence: fence to add
* @private_usage: private dma-resv usage
* @extobj_usage: extobj dma-resv usage
*/
void
drm_gpuvm_resv_add_fence(struct drm_gpuvm *gpuvm,
struct drm_exec *exec,
struct dma_fence *fence,
enum dma_resv_usage private_usage,
enum dma_resv_usage extobj_usage)
{
struct drm_gem_object *obj;
unsigned long index;
drm_exec_for_each_locked_object(exec, index, obj) {
dma_resv_assert_held(obj->resv);
dma_resv_add_fence(obj->resv, fence,
drm_gpuvm_is_extobj(gpuvm, obj) ?
extobj_usage : private_usage);
}
}
EXPORT_SYMBOL_GPL(drm_gpuvm_resv_add_fence);
/**
* drm_gpuvm_bo_create() - create a new instance of struct drm_gpuvm_bo
* @gpuvm: The &drm_gpuvm the @obj is mapped in.
* @obj: The &drm_gem_object being mapped in the @gpuvm.
*
* If provided by the driver, this function uses the &drm_gpuvm_ops
* vm_bo_alloc() callback to allocate.
*
* Returns: a pointer to the &drm_gpuvm_bo on success, NULL on failure
*/
struct drm_gpuvm_bo *
drm_gpuvm_bo_create(struct drm_gpuvm *gpuvm,
struct drm_gem_object *obj)
{
const struct drm_gpuvm_ops *ops = gpuvm->ops;
struct drm_gpuvm_bo *vm_bo;
if (ops && ops->vm_bo_alloc)
vm_bo = ops->vm_bo_alloc();
else
vm_bo = kzalloc(sizeof(*vm_bo), GFP_KERNEL);
if (unlikely(!vm_bo))
return NULL;
vm_bo->vm = drm_gpuvm_get(gpuvm);
vm_bo->obj = obj;
drm_gem_object_get(obj);
kref_init(&vm_bo->kref);
INIT_LIST_HEAD(&vm_bo->list.gpuva);
INIT_LIST_HEAD(&vm_bo->list.entry.gem);
INIT_LIST_HEAD(&vm_bo->list.entry.extobj);
INIT_LIST_HEAD(&vm_bo->list.entry.evict);
return vm_bo;
}
EXPORT_SYMBOL_GPL(drm_gpuvm_bo_create);
static void
drm_gpuvm_bo_destroy(struct kref *kref)
{
struct drm_gpuvm_bo *vm_bo = container_of(kref, struct drm_gpuvm_bo,
kref);
struct drm_gpuvm *gpuvm = vm_bo->vm;
const struct drm_gpuvm_ops *ops = gpuvm->ops;
struct drm_gem_object *obj = vm_bo->obj;
bool lock = !drm_gpuvm_resv_protected(gpuvm);
if (!lock)
drm_gpuvm_resv_assert_held(gpuvm);
drm_gpuvm_bo_list_del(vm_bo, extobj, lock);
drm_gpuvm_bo_list_del(vm_bo, evict, lock);
drm_gem_gpuva_assert_lock_held(obj);
list_del(&vm_bo->list.entry.gem);
if (ops && ops->vm_bo_free)
ops->vm_bo_free(vm_bo);
else
kfree(vm_bo);
drm_gpuvm_put(gpuvm);
drm_gem_object_put(obj);
}
/**
* drm_gpuvm_bo_put() - drop a struct drm_gpuvm_bo reference
* @vm_bo: the &drm_gpuvm_bo to release the reference of
*
* This releases a reference to @vm_bo.
*
* If the reference count drops to zero, the &gpuvm_bo is destroyed, which
* includes removing it from the GEMs gpuva list. Hence, if a call to this
* function can potentially let the reference count drop to zero the caller must
* hold the dma-resv or driver specific GEM gpuva lock.
*
* This function may only be called from non-atomic context.
*
* Returns: true if vm_bo was destroyed, false otherwise.
*/
bool
drm_gpuvm_bo_put(struct drm_gpuvm_bo *vm_bo)
{
might_sleep();
if (vm_bo)
return !!kref_put(&vm_bo->kref, drm_gpuvm_bo_destroy);
return false;
}
EXPORT_SYMBOL_GPL(drm_gpuvm_bo_put);
static struct drm_gpuvm_bo *
__drm_gpuvm_bo_find(struct drm_gpuvm *gpuvm,
struct drm_gem_object *obj)
{
struct drm_gpuvm_bo *vm_bo;
drm_gem_gpuva_assert_lock_held(obj);
drm_gem_for_each_gpuvm_bo(vm_bo, obj)
if (vm_bo->vm == gpuvm)
return vm_bo;
return NULL;
}
/**
* drm_gpuvm_bo_find() - find the &drm_gpuvm_bo for the given
* &drm_gpuvm and &drm_gem_object
* @gpuvm: The &drm_gpuvm the @obj is mapped in.
* @obj: The &drm_gem_object being mapped in the @gpuvm.
*
* Find the &drm_gpuvm_bo representing the combination of the given
* &drm_gpuvm and &drm_gem_object. If found, increases the reference
* count of the &drm_gpuvm_bo accordingly.
*
* Returns: a pointer to the &drm_gpuvm_bo on success, NULL on failure
*/
struct drm_gpuvm_bo *
drm_gpuvm_bo_find(struct drm_gpuvm *gpuvm,
struct drm_gem_object *obj)
{
struct drm_gpuvm_bo *vm_bo = __drm_gpuvm_bo_find(gpuvm, obj);
return vm_bo ? drm_gpuvm_bo_get(vm_bo) : NULL;
}
EXPORT_SYMBOL_GPL(drm_gpuvm_bo_find);
/**
* drm_gpuvm_bo_obtain() - obtains and instance of the &drm_gpuvm_bo for the
* given &drm_gpuvm and &drm_gem_object
* @gpuvm: The &drm_gpuvm the @obj is mapped in.
* @obj: The &drm_gem_object being mapped in the @gpuvm.
*
* Find the &drm_gpuvm_bo representing the combination of the given
* &drm_gpuvm and &drm_gem_object. If found, increases the reference
* count of the &drm_gpuvm_bo accordingly. If not found, allocates a new
* &drm_gpuvm_bo.
*
* A new &drm_gpuvm_bo is added to the GEMs gpuva list.
*
* Returns: a pointer to the &drm_gpuvm_bo on success, an ERR_PTR on failure
*/
struct drm_gpuvm_bo *
drm_gpuvm_bo_obtain(struct drm_gpuvm *gpuvm,
struct drm_gem_object *obj)
{
struct drm_gpuvm_bo *vm_bo;
vm_bo = drm_gpuvm_bo_find(gpuvm, obj);
if (vm_bo)
return vm_bo;
vm_bo = drm_gpuvm_bo_create(gpuvm, obj);
if (!vm_bo)
return ERR_PTR(-ENOMEM);
drm_gem_gpuva_assert_lock_held(obj);
list_add_tail(&vm_bo->list.entry.gem, &obj->gpuva.list);
return vm_bo;
}
EXPORT_SYMBOL_GPL(drm_gpuvm_bo_obtain);
/**
* drm_gpuvm_bo_obtain_prealloc() - obtains and instance of the &drm_gpuvm_bo
* for the given &drm_gpuvm and &drm_gem_object
* @__vm_bo: A pre-allocated struct drm_gpuvm_bo.
*
* Find the &drm_gpuvm_bo representing the combination of the given
* &drm_gpuvm and &drm_gem_object. If found, increases the reference
* count of the found &drm_gpuvm_bo accordingly, while the @__vm_bo reference
* count is decreased. If not found @__vm_bo is returned without further
* increase of the reference count.
*
* A new &drm_gpuvm_bo is added to the GEMs gpuva list.
*
* Returns: a pointer to the found &drm_gpuvm_bo or @__vm_bo if no existing
* &drm_gpuvm_bo was found
*/
struct drm_gpuvm_bo *
drm_gpuvm_bo_obtain_prealloc(struct drm_gpuvm_bo *__vm_bo)
{
struct drm_gpuvm *gpuvm = __vm_bo->vm;
struct drm_gem_object *obj = __vm_bo->obj;
struct drm_gpuvm_bo *vm_bo;
vm_bo = drm_gpuvm_bo_find(gpuvm, obj);
if (vm_bo) {
drm_gpuvm_bo_put(__vm_bo);
return vm_bo;
}
drm_gem_gpuva_assert_lock_held(obj);
list_add_tail(&__vm_bo->list.entry.gem, &obj->gpuva.list);
return __vm_bo;
}
EXPORT_SYMBOL_GPL(drm_gpuvm_bo_obtain_prealloc);
/**
* drm_gpuvm_bo_extobj_add() - adds the &drm_gpuvm_bo to its &drm_gpuvm's
* extobj list
* @vm_bo: The &drm_gpuvm_bo to add to its &drm_gpuvm's the extobj list.
*
* Adds the given @vm_bo to its &drm_gpuvm's extobj list if not on the list
* already and if the corresponding &drm_gem_object is an external object,
* actually.
*/
void
drm_gpuvm_bo_extobj_add(struct drm_gpuvm_bo *vm_bo)
{
struct drm_gpuvm *gpuvm = vm_bo->vm;
bool lock = !drm_gpuvm_resv_protected(gpuvm);
if (!lock)
drm_gpuvm_resv_assert_held(gpuvm);
if (drm_gpuvm_is_extobj(gpuvm, vm_bo->obj))
drm_gpuvm_bo_list_add(vm_bo, extobj, lock);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_bo_extobj_add);
/**
* drm_gpuvm_bo_evict() - add / remove a &drm_gpuvm_bo to / from the &drm_gpuvms
* evicted list
* @vm_bo: the &drm_gpuvm_bo to add or remove
* @evict: indicates whether the object is evicted
*
* Adds a &drm_gpuvm_bo to or removes it from the &drm_gpuvms evicted list.
*/
void
drm_gpuvm_bo_evict(struct drm_gpuvm_bo *vm_bo, bool evict)
{
struct drm_gpuvm *gpuvm = vm_bo->vm;
struct drm_gem_object *obj = vm_bo->obj;
bool lock = !drm_gpuvm_resv_protected(gpuvm);
dma_resv_assert_held(obj->resv);
vm_bo->evicted = evict;
/* Can't add external objects to the evicted list directly if not using
* internal spinlocks, since in this case the evicted list is protected
* with the VM's common dma-resv lock.
*/
if (drm_gpuvm_is_extobj(gpuvm, obj) && !lock)
return;
if (evict)
drm_gpuvm_bo_list_add(vm_bo, evict, lock);
else
drm_gpuvm_bo_list_del_init(vm_bo, evict, lock);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_bo_evict);
static int
__drm_gpuva_insert(struct drm_gpuvm *gpuvm,
struct drm_gpuva *va)
{
struct rb_node *node;
struct list_head *head;
if (drm_gpuva_it_iter_first(&gpuvm->rb.tree,
GPUVA_START(va),
GPUVA_LAST(va)))
return -EEXIST;
va->vm = gpuvm;
drm_gpuva_it_insert(va, &gpuvm->rb.tree);
node = rb_prev(&va->rb.node);
if (node)
head = &(to_drm_gpuva(node))->rb.entry;
else
head = &gpuvm->rb.list;
list_add(&va->rb.entry, head);
return 0;
}
/**
* drm_gpuva_insert() - insert a &drm_gpuva
* @gpuvm: the &drm_gpuvm to insert the &drm_gpuva in
* @va: the &drm_gpuva to insert
*
* Insert a &drm_gpuva with a given address and range into a
* &drm_gpuvm.
*
* It is safe to use this function using the safe versions of iterating the GPU
* VA space, such as drm_gpuvm_for_each_va_safe() and
* drm_gpuvm_for_each_va_range_safe().
*
* Returns: 0 on success, negative error code on failure.
*/
int
drm_gpuva_insert(struct drm_gpuvm *gpuvm,
struct drm_gpuva *va)
{
u64 addr = va->va.addr;
u64 range = va->va.range;
int ret;
if (unlikely(!drm_gpuvm_range_valid(gpuvm, addr, range)))
return -EINVAL;
ret = __drm_gpuva_insert(gpuvm, va);
if (likely(!ret))
/* Take a reference of the GPUVM for the successfully inserted
* drm_gpuva. We can't take the reference in
* __drm_gpuva_insert() itself, since we don't want to increse
* the reference count for the GPUVM's kernel_alloc_node.
*/
drm_gpuvm_get(gpuvm);
return ret;
}
EXPORT_SYMBOL_GPL(drm_gpuva_insert);
static void
__drm_gpuva_remove(struct drm_gpuva *va)
{
drm_gpuva_it_remove(va, &va->vm->rb.tree);
list_del_init(&va->rb.entry);
}
/**
* drm_gpuva_remove() - remove a &drm_gpuva
* @va: the &drm_gpuva to remove
*
* This removes the given &va from the underlaying tree.
*
* It is safe to use this function using the safe versions of iterating the GPU
* VA space, such as drm_gpuvm_for_each_va_safe() and
* drm_gpuvm_for_each_va_range_safe().
*/
void
drm_gpuva_remove(struct drm_gpuva *va)
{
struct drm_gpuvm *gpuvm = va->vm;
if (unlikely(va == &gpuvm->kernel_alloc_node)) {
drm_WARN(gpuvm->drm, 1,
"Can't destroy kernel reserved node.\n");
return;
}
__drm_gpuva_remove(va);
drm_gpuvm_put(va->vm);
}
EXPORT_SYMBOL_GPL(drm_gpuva_remove);
/**
* drm_gpuva_link() - link a &drm_gpuva
* @va: the &drm_gpuva to link
* @vm_bo: the &drm_gpuvm_bo to add the &drm_gpuva to
*
* This adds the given &va to the GPU VA list of the &drm_gpuvm_bo and the
* &drm_gpuvm_bo to the &drm_gem_object it is associated with.
*
* For every &drm_gpuva entry added to the &drm_gpuvm_bo an additional
* reference of the latter is taken.
*
* This function expects the caller to protect the GEM's GPUVA list against
* concurrent access using either the GEMs dma_resv lock or a driver specific
* lock set through drm_gem_gpuva_set_lock().
*/
void
drm_gpuva_link(struct drm_gpuva *va, struct drm_gpuvm_bo *vm_bo)
{
struct drm_gem_object *obj = va->gem.obj;
struct drm_gpuvm *gpuvm = va->vm;
if (unlikely(!obj))
return;
drm_WARN_ON(gpuvm->drm, obj != vm_bo->obj);
va->vm_bo = drm_gpuvm_bo_get(vm_bo);
drm_gem_gpuva_assert_lock_held(obj);
list_add_tail(&va->gem.entry, &vm_bo->list.gpuva);
}
EXPORT_SYMBOL_GPL(drm_gpuva_link);
/**
* drm_gpuva_unlink() - unlink a &drm_gpuva
* @va: the &drm_gpuva to unlink
*
* This removes the given &va from the GPU VA list of the &drm_gem_object it is
* associated with.
*
* This removes the given &va from the GPU VA list of the &drm_gpuvm_bo and
* the &drm_gpuvm_bo from the &drm_gem_object it is associated with in case
* this call unlinks the last &drm_gpuva from the &drm_gpuvm_bo.
*
* For every &drm_gpuva entry removed from the &drm_gpuvm_bo a reference of
* the latter is dropped.
*
* This function expects the caller to protect the GEM's GPUVA list against
* concurrent access using either the GEMs dma_resv lock or a driver specific
* lock set through drm_gem_gpuva_set_lock().
*/
void
drm_gpuva_unlink(struct drm_gpuva *va)
{
struct drm_gem_object *obj = va->gem.obj;
struct drm_gpuvm_bo *vm_bo = va->vm_bo;
if (unlikely(!obj))
return;
drm_gem_gpuva_assert_lock_held(obj);
list_del_init(&va->gem.entry);
va->vm_bo = NULL;
drm_gpuvm_bo_put(vm_bo);
}
EXPORT_SYMBOL_GPL(drm_gpuva_unlink);
/**
* drm_gpuva_find_first() - find the first &drm_gpuva in the given range
* @gpuvm: the &drm_gpuvm to search in
* @addr: the &drm_gpuvas address
* @range: the &drm_gpuvas range
*
* Returns: the first &drm_gpuva within the given range
*/
struct drm_gpuva *
drm_gpuva_find_first(struct drm_gpuvm *gpuvm,
u64 addr, u64 range)
{
u64 last = addr + range - 1;
return drm_gpuva_it_iter_first(&gpuvm->rb.tree, addr, last);
}
EXPORT_SYMBOL_GPL(drm_gpuva_find_first);
/**
* drm_gpuva_find() - find a &drm_gpuva
* @gpuvm: the &drm_gpuvm to search in
* @addr: the &drm_gpuvas address
* @range: the &drm_gpuvas range
*
* Returns: the &drm_gpuva at a given &addr and with a given &range
*/
struct drm_gpuva *
drm_gpuva_find(struct drm_gpuvm *gpuvm,
u64 addr, u64 range)
{
struct drm_gpuva *va;
va = drm_gpuva_find_first(gpuvm, addr, range);
if (!va)
goto out;
if (va->va.addr != addr ||
va->va.range != range)
goto out;
return va;
out:
return NULL;
}
EXPORT_SYMBOL_GPL(drm_gpuva_find);
/**
* drm_gpuva_find_prev() - find the &drm_gpuva before the given address
* @gpuvm: the &drm_gpuvm to search in
* @start: the given GPU VA's start address
*
* Find the adjacent &drm_gpuva before the GPU VA with given &start address.
*
* Note that if there is any free space between the GPU VA mappings no mapping
* is returned.
*
* Returns: a pointer to the found &drm_gpuva or NULL if none was found
*/
struct drm_gpuva *
drm_gpuva_find_prev(struct drm_gpuvm *gpuvm, u64 start)
{
if (!drm_gpuvm_range_valid(gpuvm, start - 1, 1))
return NULL;
return drm_gpuva_it_iter_first(&gpuvm->rb.tree, start - 1, start);
}
EXPORT_SYMBOL_GPL(drm_gpuva_find_prev);
/**
* drm_gpuva_find_next() - find the &drm_gpuva after the given address
* @gpuvm: the &drm_gpuvm to search in
* @end: the given GPU VA's end address
*
* Find the adjacent &drm_gpuva after the GPU VA with given &end address.
*
* Note that if there is any free space between the GPU VA mappings no mapping
* is returned.
*
* Returns: a pointer to the found &drm_gpuva or NULL if none was found
*/
struct drm_gpuva *
drm_gpuva_find_next(struct drm_gpuvm *gpuvm, u64 end)
{
if (!drm_gpuvm_range_valid(gpuvm, end, 1))
return NULL;
return drm_gpuva_it_iter_first(&gpuvm->rb.tree, end, end + 1);
}
EXPORT_SYMBOL_GPL(drm_gpuva_find_next);
/**
* drm_gpuvm_interval_empty() - indicate whether a given interval of the VA space
* is empty
* @gpuvm: the &drm_gpuvm to check the range for
* @addr: the start address of the range
* @range: the range of the interval
*
* Returns: true if the interval is empty, false otherwise
*/
bool
drm_gpuvm_interval_empty(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
{
return !drm_gpuva_find_first(gpuvm, addr, range);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_interval_empty);
/**
* drm_gpuva_map() - helper to insert a &drm_gpuva according to a
* &drm_gpuva_op_map
* @gpuvm: the &drm_gpuvm
* @va: the &drm_gpuva to insert
* @op: the &drm_gpuva_op_map to initialize @va with
*
* Initializes the @va from the @op and inserts it into the given @gpuvm.
*/
void
drm_gpuva_map(struct drm_gpuvm *gpuvm,
struct drm_gpuva *va,
struct drm_gpuva_op_map *op)
{
drm_gpuva_init_from_op(va, op);
drm_gpuva_insert(gpuvm, va);
}
EXPORT_SYMBOL_GPL(drm_gpuva_map);
/**
* drm_gpuva_remap() - helper to remap a &drm_gpuva according to a
* &drm_gpuva_op_remap
* @prev: the &drm_gpuva to remap when keeping the start of a mapping
* @next: the &drm_gpuva to remap when keeping the end of a mapping
* @op: the &drm_gpuva_op_remap to initialize @prev and @next with
*
* Removes the currently mapped &drm_gpuva and remaps it using @prev and/or
* @next.
*/
void
drm_gpuva_remap(struct drm_gpuva *prev,
struct drm_gpuva *next,
struct drm_gpuva_op_remap *op)
{
struct drm_gpuva *va = op->unmap->va;
struct drm_gpuvm *gpuvm = va->vm;
drm_gpuva_remove(va);
if (op->prev) {
drm_gpuva_init_from_op(prev, op->prev);
drm_gpuva_insert(gpuvm, prev);
}
if (op->next) {
drm_gpuva_init_from_op(next, op->next);
drm_gpuva_insert(gpuvm, next);
}
}
EXPORT_SYMBOL_GPL(drm_gpuva_remap);
/**
* drm_gpuva_unmap() - helper to remove a &drm_gpuva according to a
* &drm_gpuva_op_unmap
* @op: the &drm_gpuva_op_unmap specifying the &drm_gpuva to remove
*
* Removes the &drm_gpuva associated with the &drm_gpuva_op_unmap.
*/
void
drm_gpuva_unmap(struct drm_gpuva_op_unmap *op)
{
drm_gpuva_remove(op->va);
}
EXPORT_SYMBOL_GPL(drm_gpuva_unmap);
static int
op_map_cb(const struct drm_gpuvm_ops *fn, void *priv,
u64 addr, u64 range,
struct drm_gem_object *obj, u64 offset)
{
struct drm_gpuva_op op = {};
op.op = DRM_GPUVA_OP_MAP;
op.map.va.addr = addr;
op.map.va.range = range;
op.map.gem.obj = obj;
op.map.gem.offset = offset;
return fn->sm_step_map(&op, priv);
}
static int
op_remap_cb(const struct drm_gpuvm_ops *fn, void *priv,
struct drm_gpuva_op_map *prev,
struct drm_gpuva_op_map *next,
struct drm_gpuva_op_unmap *unmap)
{
struct drm_gpuva_op op = {};
struct drm_gpuva_op_remap *r;
op.op = DRM_GPUVA_OP_REMAP;
r = &op.remap;
r->prev = prev;
r->next = next;
r->unmap = unmap;
return fn->sm_step_remap(&op, priv);
}
static int
op_unmap_cb(const struct drm_gpuvm_ops *fn, void *priv,
struct drm_gpuva *va, bool merge)
{
struct drm_gpuva_op op = {};
op.op = DRM_GPUVA_OP_UNMAP;
op.unmap.va = va;
op.unmap.keep = merge;
return fn->sm_step_unmap(&op, priv);
}
static int
__drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm,
const struct drm_gpuvm_ops *ops, void *priv,
u64 req_addr, u64 req_range,
struct drm_gem_object *req_obj, u64 req_offset)
{
struct drm_gpuva *va, *next;
u64 req_end = req_addr + req_range;
int ret;
if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
return -EINVAL;
drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
struct drm_gem_object *obj = va->gem.obj;
u64 offset = va->gem.offset;
u64 addr = va->va.addr;
u64 range = va->va.range;
u64 end = addr + range;
bool merge = !!va->gem.obj;
if (addr == req_addr) {
merge &= obj == req_obj &&
offset == req_offset;
if (end == req_end) {
ret = op_unmap_cb(ops, priv, va, merge);
if (ret)
return ret;
break;
}
if (end < req_end) {
ret = op_unmap_cb(ops, priv, va, merge);
if (ret)
return ret;
continue;
}
if (end > req_end) {
struct drm_gpuva_op_map n = {
.va.addr = req_end,
.va.range = range - req_range,
.gem.obj = obj,
.gem.offset = offset + req_range,
};
struct drm_gpuva_op_unmap u = {
.va = va,
.keep = merge,
};
ret = op_remap_cb(ops, priv, NULL, &n, &u);
if (ret)
return ret;
break;
}
} else if (addr < req_addr) {
u64 ls_range = req_addr - addr;
struct drm_gpuva_op_map p = {
.va.addr = addr,
.va.range = ls_range,
.gem.obj = obj,
.gem.offset = offset,
};
struct drm_gpuva_op_unmap u = { .va = va };
merge &= obj == req_obj &&
offset + ls_range == req_offset;
u.keep = merge;
if (end == req_end) {
ret = op_remap_cb(ops, priv, &p, NULL, &u);
if (ret)
return ret;
break;
}
if (end < req_end) {
ret = op_remap_cb(ops, priv, &p, NULL, &u);
if (ret)
return ret;
continue;
}
if (end > req_end) {
struct drm_gpuva_op_map n = {
.va.addr = req_end,
.va.range = end - req_end,
.gem.obj = obj,
.gem.offset = offset + ls_range +
req_range,
};
ret = op_remap_cb(ops, priv, &p, &n, &u);
if (ret)
return ret;
break;
}
} else if (addr > req_addr) {
merge &= obj == req_obj &&
offset == req_offset +
(addr - req_addr);
if (end == req_end) {
ret = op_unmap_cb(ops, priv, va, merge);
if (ret)
return ret;
break;
}
if (end < req_end) {
ret = op_unmap_cb(ops, priv, va, merge);
if (ret)
return ret;
continue;
}
if (end > req_end) {
struct drm_gpuva_op_map n = {
.va.addr = req_end,
.va.range = end - req_end,
.gem.obj = obj,
.gem.offset = offset + req_end - addr,
};
struct drm_gpuva_op_unmap u = {
.va = va,
.keep = merge,
};
ret = op_remap_cb(ops, priv, NULL, &n, &u);
if (ret)
return ret;
break;
}
}
}
return op_map_cb(ops, priv,
req_addr, req_range,
req_obj, req_offset);
}
static int
__drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm,
const struct drm_gpuvm_ops *ops, void *priv,
u64 req_addr, u64 req_range)
{
struct drm_gpuva *va, *next;
u64 req_end = req_addr + req_range;
int ret;
if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
return -EINVAL;
drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
struct drm_gpuva_op_map prev = {}, next = {};
bool prev_split = false, next_split = false;
struct drm_gem_object *obj = va->gem.obj;
u64 offset = va->gem.offset;
u64 addr = va->va.addr;
u64 range = va->va.range;
u64 end = addr + range;
if (addr < req_addr) {
prev.va.addr = addr;
prev.va.range = req_addr - addr;
prev.gem.obj = obj;
prev.gem.offset = offset;
prev_split = true;
}
if (end > req_end) {
next.va.addr = req_end;
next.va.range = end - req_end;
next.gem.obj = obj;
next.gem.offset = offset + (req_end - addr);
next_split = true;
}
if (prev_split || next_split) {
struct drm_gpuva_op_unmap unmap = { .va = va };
ret = op_remap_cb(ops, priv,
prev_split ? &prev : NULL,
next_split ? &next : NULL,
&unmap);
if (ret)
return ret;
} else {
ret = op_unmap_cb(ops, priv, va, false);
if (ret)
return ret;
}
}
return 0;
}
/**
* drm_gpuvm_sm_map() - creates the &drm_gpuva_op split/merge steps
* @gpuvm: the &drm_gpuvm representing the GPU VA space
* @req_addr: the start address of the new mapping
* @req_range: the range of the new mapping
* @req_obj: the &drm_gem_object to map
* @req_offset: the offset within the &drm_gem_object
* @priv: pointer to a driver private data structure
*
* This function iterates the given range of the GPU VA space. It utilizes the
* &drm_gpuvm_ops to call back into the driver providing the split and merge
* steps.
*
* Drivers may use these callbacks to update the GPU VA space right away within
* the callback. In case the driver decides to copy and store the operations for
* later processing neither this function nor &drm_gpuvm_sm_unmap is allowed to
* be called before the &drm_gpuvm's view of the GPU VA space was
* updated with the previous set of operations. To update the
* &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
* drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
* used.
*
* A sequence of callbacks can contain map, unmap and remap operations, but
* the sequence of callbacks might also be empty if no operation is required,
* e.g. if the requested mapping already exists in the exact same way.
*
* There can be an arbitrary amount of unmap operations, a maximum of two remap
* operations and a single map operation. The latter one represents the original
* map operation requested by the caller.
*
* Returns: 0 on success or a negative error code
*/
int
drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm, void *priv,
u64 req_addr, u64 req_range,
struct drm_gem_object *req_obj, u64 req_offset)
{
const struct drm_gpuvm_ops *ops = gpuvm->ops;
if (unlikely(!(ops && ops->sm_step_map &&
ops->sm_step_remap &&
ops->sm_step_unmap)))
return -EINVAL;
return __drm_gpuvm_sm_map(gpuvm, ops, priv,
req_addr, req_range,
req_obj, req_offset);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map);
/**
* drm_gpuvm_sm_unmap() - creates the &drm_gpuva_ops to split on unmap
* @gpuvm: the &drm_gpuvm representing the GPU VA space
* @priv: pointer to a driver private data structure
* @req_addr: the start address of the range to unmap
* @req_range: the range of the mappings to unmap
*
* This function iterates the given range of the GPU VA space. It utilizes the
* &drm_gpuvm_ops to call back into the driver providing the operations to
* unmap and, if required, split existent mappings.
*
* Drivers may use these callbacks to update the GPU VA space right away within
* the callback. In case the driver decides to copy and store the operations for
* later processing neither this function nor &drm_gpuvm_sm_map is allowed to be
* called before the &drm_gpuvm's view of the GPU VA space was updated
* with the previous set of operations. To update the &drm_gpuvm's view
* of the GPU VA space drm_gpuva_insert(), drm_gpuva_destroy_locked() and/or
* drm_gpuva_destroy_unlocked() should be used.
*
* A sequence of callbacks can contain unmap and remap operations, depending on
* whether there are actual overlapping mappings to split.
*
* There can be an arbitrary amount of unmap operations and a maximum of two
* remap operations.
*
* Returns: 0 on success or a negative error code
*/
int
drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm, void *priv,
u64 req_addr, u64 req_range)
{
const struct drm_gpuvm_ops *ops = gpuvm->ops;
if (unlikely(!(ops && ops->sm_step_remap &&
ops->sm_step_unmap)))
return -EINVAL;
return __drm_gpuvm_sm_unmap(gpuvm, ops, priv,
req_addr, req_range);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap);
static struct drm_gpuva_op *
gpuva_op_alloc(struct drm_gpuvm *gpuvm)
{
const struct drm_gpuvm_ops *fn = gpuvm->ops;
struct drm_gpuva_op *op;
if (fn && fn->op_alloc)
op = fn->op_alloc();
else
op = kzalloc(sizeof(*op), GFP_KERNEL);
if (unlikely(!op))
return NULL;
return op;
}
static void
gpuva_op_free(struct drm_gpuvm *gpuvm,
struct drm_gpuva_op *op)
{
const struct drm_gpuvm_ops *fn = gpuvm->ops;
if (fn && fn->op_free)
fn->op_free(op);
else
kfree(op);
}
static int
drm_gpuva_sm_step(struct drm_gpuva_op *__op,
void *priv)
{
struct {
struct drm_gpuvm *vm;
struct drm_gpuva_ops *ops;
} *args = priv;
struct drm_gpuvm *gpuvm = args->vm;
struct drm_gpuva_ops *ops = args->ops;
struct drm_gpuva_op *op;
op = gpuva_op_alloc(gpuvm);
if (unlikely(!op))
goto err;
memcpy(op, __op, sizeof(*op));
if (op->op == DRM_GPUVA_OP_REMAP) {
struct drm_gpuva_op_remap *__r = &__op->remap;
struct drm_gpuva_op_remap *r = &op->remap;
r->unmap = kmemdup(__r->unmap, sizeof(*r->unmap),
GFP_KERNEL);
if (unlikely(!r->unmap))
goto err_free_op;
if (__r->prev) {
r->prev = kmemdup(__r->prev, sizeof(*r->prev),
GFP_KERNEL);
if (unlikely(!r->prev))
goto err_free_unmap;
}
if (__r->next) {
r->next = kmemdup(__r->next, sizeof(*r->next),
GFP_KERNEL);
if (unlikely(!r->next))
goto err_free_prev;
}
}
list_add_tail(&op->entry, &ops->list);
return 0;
err_free_unmap:
kfree(op->remap.unmap);
err_free_prev:
kfree(op->remap.prev);
err_free_op:
gpuva_op_free(gpuvm, op);
err:
return -ENOMEM;
}
static const struct drm_gpuvm_ops gpuvm_list_ops = {
.sm_step_map = drm_gpuva_sm_step,
.sm_step_remap = drm_gpuva_sm_step,
.sm_step_unmap = drm_gpuva_sm_step,
};
/**
* drm_gpuvm_sm_map_ops_create() - creates the &drm_gpuva_ops to split and merge
* @gpuvm: the &drm_gpuvm representing the GPU VA space
* @req_addr: the start address of the new mapping
* @req_range: the range of the new mapping
* @req_obj: the &drm_gem_object to map
* @req_offset: the offset within the &drm_gem_object
*
* This function creates a list of operations to perform splitting and merging
* of existent mapping(s) with the newly requested one.
*
* The list can be iterated with &drm_gpuva_for_each_op and must be processed
* in the given order. It can contain map, unmap and remap operations, but it
* also can be empty if no operation is required, e.g. if the requested mapping
* already exists is the exact same way.
*
* There can be an arbitrary amount of unmap operations, a maximum of two remap
* operations and a single map operation. The latter one represents the original
* map operation requested by the caller.
*
* Note that before calling this function again with another mapping request it
* is necessary to update the &drm_gpuvm's view of the GPU VA space. The
* previously obtained operations must be either processed or abandoned. To
* update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
* drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
* used.
*
* After the caller finished processing the returned &drm_gpuva_ops, they must
* be freed with &drm_gpuva_ops_free.
*
* Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
*/
struct drm_gpuva_ops *
drm_gpuvm_sm_map_ops_create(struct drm_gpuvm *gpuvm,
u64 req_addr, u64 req_range,
struct drm_gem_object *req_obj, u64 req_offset)
{
struct drm_gpuva_ops *ops;
struct {
struct drm_gpuvm *vm;
struct drm_gpuva_ops *ops;
} args;
int ret;
ops = kzalloc(sizeof(*ops), GFP_KERNEL);
if (unlikely(!ops))
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ops->list);
args.vm = gpuvm;
args.ops = ops;
ret = __drm_gpuvm_sm_map(gpuvm, &gpuvm_list_ops, &args,
req_addr, req_range,
req_obj, req_offset);
if (ret)
goto err_free_ops;
return ops;
err_free_ops:
drm_gpuva_ops_free(gpuvm, ops);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map_ops_create);
/**
* drm_gpuvm_sm_unmap_ops_create() - creates the &drm_gpuva_ops to split on
* unmap
* @gpuvm: the &drm_gpuvm representing the GPU VA space
* @req_addr: the start address of the range to unmap
* @req_range: the range of the mappings to unmap
*
* This function creates a list of operations to perform unmapping and, if
* required, splitting of the mappings overlapping the unmap range.
*
* The list can be iterated with &drm_gpuva_for_each_op and must be processed
* in the given order. It can contain unmap and remap operations, depending on
* whether there are actual overlapping mappings to split.
*
* There can be an arbitrary amount of unmap operations and a maximum of two
* remap operations.
*
* Note that before calling this function again with another range to unmap it
* is necessary to update the &drm_gpuvm's view of the GPU VA space. The
* previously obtained operations must be processed or abandoned. To update the
* &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
* drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
* used.
*
* After the caller finished processing the returned &drm_gpuva_ops, they must
* be freed with &drm_gpuva_ops_free.
*
* Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
*/
struct drm_gpuva_ops *
drm_gpuvm_sm_unmap_ops_create(struct drm_gpuvm *gpuvm,
u64 req_addr, u64 req_range)
{
struct drm_gpuva_ops *ops;
struct {
struct drm_gpuvm *vm;
struct drm_gpuva_ops *ops;
} args;
int ret;
ops = kzalloc(sizeof(*ops), GFP_KERNEL);
if (unlikely(!ops))
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ops->list);
args.vm = gpuvm;
args.ops = ops;
ret = __drm_gpuvm_sm_unmap(gpuvm, &gpuvm_list_ops, &args,
req_addr, req_range);
if (ret)
goto err_free_ops;
return ops;
err_free_ops:
drm_gpuva_ops_free(gpuvm, ops);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap_ops_create);
/**
* drm_gpuvm_prefetch_ops_create() - creates the &drm_gpuva_ops to prefetch
* @gpuvm: the &drm_gpuvm representing the GPU VA space
* @addr: the start address of the range to prefetch
* @range: the range of the mappings to prefetch
*
* This function creates a list of operations to perform prefetching.
*
* The list can be iterated with &drm_gpuva_for_each_op and must be processed
* in the given order. It can contain prefetch operations.
*
* There can be an arbitrary amount of prefetch operations.
*
* After the caller finished processing the returned &drm_gpuva_ops, they must
* be freed with &drm_gpuva_ops_free.
*
* Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
*/
struct drm_gpuva_ops *
drm_gpuvm_prefetch_ops_create(struct drm_gpuvm *gpuvm,
u64 addr, u64 range)
{
struct drm_gpuva_ops *ops;
struct drm_gpuva_op *op;
struct drm_gpuva *va;
u64 end = addr + range;
int ret;
ops = kzalloc(sizeof(*ops), GFP_KERNEL);
if (!ops)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ops->list);
drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) {
op = gpuva_op_alloc(gpuvm);
if (!op) {
ret = -ENOMEM;
goto err_free_ops;
}
op->op = DRM_GPUVA_OP_PREFETCH;
op->prefetch.va = va;
list_add_tail(&op->entry, &ops->list);
}
return ops;
err_free_ops:
drm_gpuva_ops_free(gpuvm, ops);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_prefetch_ops_create);
/**
* drm_gpuvm_bo_unmap_ops_create() - creates the &drm_gpuva_ops to unmap a GEM
* @vm_bo: the &drm_gpuvm_bo abstraction
*
* This function creates a list of operations to perform unmapping for every
* GPUVA attached to a GEM.
*
* The list can be iterated with &drm_gpuva_for_each_op and consists out of an
* arbitrary amount of unmap operations.
*
* After the caller finished processing the returned &drm_gpuva_ops, they must
* be freed with &drm_gpuva_ops_free.
*
* It is the callers responsibility to protect the GEMs GPUVA list against
* concurrent access using the GEMs dma_resv lock.
*
* Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
*/
struct drm_gpuva_ops *
drm_gpuvm_bo_unmap_ops_create(struct drm_gpuvm_bo *vm_bo)
{
struct drm_gpuva_ops *ops;
struct drm_gpuva_op *op;
struct drm_gpuva *va;
int ret;
drm_gem_gpuva_assert_lock_held(vm_bo->obj);
ops = kzalloc(sizeof(*ops), GFP_KERNEL);
if (!ops)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ops->list);
drm_gpuvm_bo_for_each_va(va, vm_bo) {
op = gpuva_op_alloc(vm_bo->vm);
if (!op) {
ret = -ENOMEM;
goto err_free_ops;
}
op->op = DRM_GPUVA_OP_UNMAP;
op->unmap.va = va;
list_add_tail(&op->entry, &ops->list);
}
return ops;
err_free_ops:
drm_gpuva_ops_free(vm_bo->vm, ops);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_bo_unmap_ops_create);
/**
* drm_gpuva_ops_free() - free the given &drm_gpuva_ops
* @gpuvm: the &drm_gpuvm the ops were created for
* @ops: the &drm_gpuva_ops to free
*
* Frees the given &drm_gpuva_ops structure including all the ops associated
* with it.
*/
void
drm_gpuva_ops_free(struct drm_gpuvm *gpuvm,
struct drm_gpuva_ops *ops)
{
struct drm_gpuva_op *op, *next;
drm_gpuva_for_each_op_safe(op, next, ops) {
list_del(&op->entry);
if (op->op == DRM_GPUVA_OP_REMAP) {
kfree(op->remap.prev);
kfree(op->remap.next);
kfree(op->remap.unmap);
}
gpuva_op_free(gpuvm, op);
}
kfree(ops);
}
EXPORT_SYMBOL_GPL(drm_gpuva_ops_free);
MODULE_DESCRIPTION("DRM GPUVM");
MODULE_LICENSE("GPL");