mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-09 22:50:41 +00:00
a457fd5660
The number of GPA bits supported for a RISC-V Guest/VM is based on the MMU mode used by the G-stage translation. The KVM RISC-V will detect and use the best possible MMU mode for the G-stage in kvm_arch_init(). We add a generic VM capability KVM_CAP_VM_GPA_BITS which can be used by the KVM userspace to get the number of GPA (guest physical address) bits supported for a Guest/VM. Signed-off-by: Anup Patel <anup.patel@wdc.com> Reviewed-and-tested-by: Atish Patra <atishp@rivosinc.com>
777 lines
18 KiB
C
777 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Anup Patel <anup.patel@wdc.com>
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/module.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <asm/csr.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/sbi.h>
|
|
|
|
#ifdef CONFIG_64BIT
|
|
static unsigned long stage2_mode = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT);
|
|
static unsigned long stage2_pgd_levels = 3;
|
|
#define stage2_index_bits 9
|
|
#else
|
|
static unsigned long stage2_mode = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT);
|
|
static unsigned long stage2_pgd_levels = 2;
|
|
#define stage2_index_bits 10
|
|
#endif
|
|
|
|
#define stage2_pgd_xbits 2
|
|
#define stage2_pgd_size (1UL << (HGATP_PAGE_SHIFT + stage2_pgd_xbits))
|
|
#define stage2_gpa_bits (HGATP_PAGE_SHIFT + \
|
|
(stage2_pgd_levels * stage2_index_bits) + \
|
|
stage2_pgd_xbits)
|
|
#define stage2_gpa_size ((gpa_t)(1ULL << stage2_gpa_bits))
|
|
|
|
#define stage2_pte_leaf(__ptep) \
|
|
(pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
|
|
|
|
static inline unsigned long stage2_pte_index(gpa_t addr, u32 level)
|
|
{
|
|
unsigned long mask;
|
|
unsigned long shift = HGATP_PAGE_SHIFT + (stage2_index_bits * level);
|
|
|
|
if (level == (stage2_pgd_levels - 1))
|
|
mask = (PTRS_PER_PTE * (1UL << stage2_pgd_xbits)) - 1;
|
|
else
|
|
mask = PTRS_PER_PTE - 1;
|
|
|
|
return (addr >> shift) & mask;
|
|
}
|
|
|
|
static inline unsigned long stage2_pte_page_vaddr(pte_t pte)
|
|
{
|
|
return (unsigned long)pfn_to_virt(pte_val(pte) >> _PAGE_PFN_SHIFT);
|
|
}
|
|
|
|
static int stage2_page_size_to_level(unsigned long page_size, u32 *out_level)
|
|
{
|
|
u32 i;
|
|
unsigned long psz = 1UL << 12;
|
|
|
|
for (i = 0; i < stage2_pgd_levels; i++) {
|
|
if (page_size == (psz << (i * stage2_index_bits))) {
|
|
*out_level = i;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int stage2_level_to_page_size(u32 level, unsigned long *out_pgsize)
|
|
{
|
|
if (stage2_pgd_levels < level)
|
|
return -EINVAL;
|
|
|
|
*out_pgsize = 1UL << (12 + (level * stage2_index_bits));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool stage2_get_leaf_entry(struct kvm *kvm, gpa_t addr,
|
|
pte_t **ptepp, u32 *ptep_level)
|
|
{
|
|
pte_t *ptep;
|
|
u32 current_level = stage2_pgd_levels - 1;
|
|
|
|
*ptep_level = current_level;
|
|
ptep = (pte_t *)kvm->arch.pgd;
|
|
ptep = &ptep[stage2_pte_index(addr, current_level)];
|
|
while (ptep && pte_val(*ptep)) {
|
|
if (stage2_pte_leaf(ptep)) {
|
|
*ptep_level = current_level;
|
|
*ptepp = ptep;
|
|
return true;
|
|
}
|
|
|
|
if (current_level) {
|
|
current_level--;
|
|
*ptep_level = current_level;
|
|
ptep = (pte_t *)stage2_pte_page_vaddr(*ptep);
|
|
ptep = &ptep[stage2_pte_index(addr, current_level)];
|
|
} else {
|
|
ptep = NULL;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void stage2_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
|
|
{
|
|
struct cpumask hmask;
|
|
unsigned long size = PAGE_SIZE;
|
|
struct kvm_vmid *vmid = &kvm->arch.vmid;
|
|
|
|
if (stage2_level_to_page_size(level, &size))
|
|
return;
|
|
addr &= ~(size - 1);
|
|
|
|
/*
|
|
* TODO: Instead of cpu_online_mask, we should only target CPUs
|
|
* where the Guest/VM is running.
|
|
*/
|
|
preempt_disable();
|
|
riscv_cpuid_to_hartid_mask(cpu_online_mask, &hmask);
|
|
sbi_remote_hfence_gvma_vmid(cpumask_bits(&hmask), addr, size,
|
|
READ_ONCE(vmid->vmid));
|
|
preempt_enable();
|
|
}
|
|
|
|
static int stage2_set_pte(struct kvm *kvm, u32 level,
|
|
struct kvm_mmu_memory_cache *pcache,
|
|
gpa_t addr, const pte_t *new_pte)
|
|
{
|
|
u32 current_level = stage2_pgd_levels - 1;
|
|
pte_t *next_ptep = (pte_t *)kvm->arch.pgd;
|
|
pte_t *ptep = &next_ptep[stage2_pte_index(addr, current_level)];
|
|
|
|
if (current_level < level)
|
|
return -EINVAL;
|
|
|
|
while (current_level != level) {
|
|
if (stage2_pte_leaf(ptep))
|
|
return -EEXIST;
|
|
|
|
if (!pte_val(*ptep)) {
|
|
if (!pcache)
|
|
return -ENOMEM;
|
|
next_ptep = kvm_mmu_memory_cache_alloc(pcache);
|
|
if (!next_ptep)
|
|
return -ENOMEM;
|
|
*ptep = pfn_pte(PFN_DOWN(__pa(next_ptep)),
|
|
__pgprot(_PAGE_TABLE));
|
|
} else {
|
|
if (stage2_pte_leaf(ptep))
|
|
return -EEXIST;
|
|
next_ptep = (pte_t *)stage2_pte_page_vaddr(*ptep);
|
|
}
|
|
|
|
current_level--;
|
|
ptep = &next_ptep[stage2_pte_index(addr, current_level)];
|
|
}
|
|
|
|
*ptep = *new_pte;
|
|
if (stage2_pte_leaf(ptep))
|
|
stage2_remote_tlb_flush(kvm, current_level, addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stage2_map_page(struct kvm *kvm,
|
|
struct kvm_mmu_memory_cache *pcache,
|
|
gpa_t gpa, phys_addr_t hpa,
|
|
unsigned long page_size,
|
|
bool page_rdonly, bool page_exec)
|
|
{
|
|
int ret;
|
|
u32 level = 0;
|
|
pte_t new_pte;
|
|
pgprot_t prot;
|
|
|
|
ret = stage2_page_size_to_level(page_size, &level);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* A RISC-V implementation can choose to either:
|
|
* 1) Update 'A' and 'D' PTE bits in hardware
|
|
* 2) Generate page fault when 'A' and/or 'D' bits are not set
|
|
* PTE so that software can update these bits.
|
|
*
|
|
* We support both options mentioned above. To achieve this, we
|
|
* always set 'A' and 'D' PTE bits at time of creating stage2
|
|
* mapping. To support KVM dirty page logging with both options
|
|
* mentioned above, we will write-protect stage2 PTEs to track
|
|
* dirty pages.
|
|
*/
|
|
|
|
if (page_exec) {
|
|
if (page_rdonly)
|
|
prot = PAGE_READ_EXEC;
|
|
else
|
|
prot = PAGE_WRITE_EXEC;
|
|
} else {
|
|
if (page_rdonly)
|
|
prot = PAGE_READ;
|
|
else
|
|
prot = PAGE_WRITE;
|
|
}
|
|
new_pte = pfn_pte(PFN_DOWN(hpa), prot);
|
|
new_pte = pte_mkdirty(new_pte);
|
|
|
|
return stage2_set_pte(kvm, level, pcache, gpa, &new_pte);
|
|
}
|
|
|
|
enum stage2_op {
|
|
STAGE2_OP_NOP = 0, /* Nothing */
|
|
STAGE2_OP_CLEAR, /* Clear/Unmap */
|
|
STAGE2_OP_WP, /* Write-protect */
|
|
};
|
|
|
|
static void stage2_op_pte(struct kvm *kvm, gpa_t addr,
|
|
pte_t *ptep, u32 ptep_level, enum stage2_op op)
|
|
{
|
|
int i, ret;
|
|
pte_t *next_ptep;
|
|
u32 next_ptep_level;
|
|
unsigned long next_page_size, page_size;
|
|
|
|
ret = stage2_level_to_page_size(ptep_level, &page_size);
|
|
if (ret)
|
|
return;
|
|
|
|
BUG_ON(addr & (page_size - 1));
|
|
|
|
if (!pte_val(*ptep))
|
|
return;
|
|
|
|
if (ptep_level && !stage2_pte_leaf(ptep)) {
|
|
next_ptep = (pte_t *)stage2_pte_page_vaddr(*ptep);
|
|
next_ptep_level = ptep_level - 1;
|
|
ret = stage2_level_to_page_size(next_ptep_level,
|
|
&next_page_size);
|
|
if (ret)
|
|
return;
|
|
|
|
if (op == STAGE2_OP_CLEAR)
|
|
set_pte(ptep, __pte(0));
|
|
for (i = 0; i < PTRS_PER_PTE; i++)
|
|
stage2_op_pte(kvm, addr + i * next_page_size,
|
|
&next_ptep[i], next_ptep_level, op);
|
|
if (op == STAGE2_OP_CLEAR)
|
|
put_page(virt_to_page(next_ptep));
|
|
} else {
|
|
if (op == STAGE2_OP_CLEAR)
|
|
set_pte(ptep, __pte(0));
|
|
else if (op == STAGE2_OP_WP)
|
|
set_pte(ptep, __pte(pte_val(*ptep) & ~_PAGE_WRITE));
|
|
stage2_remote_tlb_flush(kvm, ptep_level, addr);
|
|
}
|
|
}
|
|
|
|
static void stage2_unmap_range(struct kvm *kvm, gpa_t start,
|
|
gpa_t size, bool may_block)
|
|
{
|
|
int ret;
|
|
pte_t *ptep;
|
|
u32 ptep_level;
|
|
bool found_leaf;
|
|
unsigned long page_size;
|
|
gpa_t addr = start, end = start + size;
|
|
|
|
while (addr < end) {
|
|
found_leaf = stage2_get_leaf_entry(kvm, addr,
|
|
&ptep, &ptep_level);
|
|
ret = stage2_level_to_page_size(ptep_level, &page_size);
|
|
if (ret)
|
|
break;
|
|
|
|
if (!found_leaf)
|
|
goto next;
|
|
|
|
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
|
|
stage2_op_pte(kvm, addr, ptep,
|
|
ptep_level, STAGE2_OP_CLEAR);
|
|
|
|
next:
|
|
addr += page_size;
|
|
|
|
/*
|
|
* If the range is too large, release the kvm->mmu_lock
|
|
* to prevent starvation and lockup detector warnings.
|
|
*/
|
|
if (may_block && addr < end)
|
|
cond_resched_lock(&kvm->mmu_lock);
|
|
}
|
|
}
|
|
|
|
static void stage2_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
|
|
{
|
|
int ret;
|
|
pte_t *ptep;
|
|
u32 ptep_level;
|
|
bool found_leaf;
|
|
gpa_t addr = start;
|
|
unsigned long page_size;
|
|
|
|
while (addr < end) {
|
|
found_leaf = stage2_get_leaf_entry(kvm, addr,
|
|
&ptep, &ptep_level);
|
|
ret = stage2_level_to_page_size(ptep_level, &page_size);
|
|
if (ret)
|
|
break;
|
|
|
|
if (!found_leaf)
|
|
goto next;
|
|
|
|
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
|
|
stage2_op_pte(kvm, addr, ptep,
|
|
ptep_level, STAGE2_OP_WP);
|
|
|
|
next:
|
|
addr += page_size;
|
|
}
|
|
}
|
|
|
|
static void stage2_wp_memory_region(struct kvm *kvm, int slot)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
|
|
phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
stage2_wp_range(kvm, start, end);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_flush_remote_tlbs(kvm);
|
|
}
|
|
|
|
static int stage2_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
|
|
unsigned long size, bool writable)
|
|
{
|
|
pte_t pte;
|
|
int ret = 0;
|
|
unsigned long pfn;
|
|
phys_addr_t addr, end;
|
|
struct kvm_mmu_memory_cache pcache;
|
|
|
|
memset(&pcache, 0, sizeof(pcache));
|
|
pcache.gfp_zero = __GFP_ZERO;
|
|
|
|
end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
|
|
pfn = __phys_to_pfn(hpa);
|
|
|
|
for (addr = gpa; addr < end; addr += PAGE_SIZE) {
|
|
pte = pfn_pte(pfn, PAGE_KERNEL);
|
|
|
|
if (!writable)
|
|
pte = pte_wrprotect(pte);
|
|
|
|
ret = kvm_mmu_topup_memory_cache(&pcache, stage2_pgd_levels);
|
|
if (ret)
|
|
goto out;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
ret = stage2_set_pte(kvm, 0, &pcache, addr, &pte);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pfn++;
|
|
}
|
|
|
|
out:
|
|
kvm_mmu_free_memory_cache(&pcache);
|
|
return ret;
|
|
}
|
|
|
|
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
gfn_t gfn_offset,
|
|
unsigned long mask)
|
|
{
|
|
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
|
|
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
|
|
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
|
|
|
|
stage2_wp_range(kvm, start, end);
|
|
}
|
|
|
|
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot)
|
|
{
|
|
kvm_flush_remote_tlbs(kvm);
|
|
}
|
|
|
|
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
|
{
|
|
kvm_riscv_stage2_free_pgd(kvm);
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot)
|
|
{
|
|
gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t size = slot->npages << PAGE_SHIFT;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
stage2_unmap_range(kvm, gpa, size, false);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *old,
|
|
const struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
/*
|
|
* At this point memslot has been committed and there is an
|
|
* allocated dirty_bitmap[], dirty pages will be tracked while
|
|
* the memory slot is write protected.
|
|
*/
|
|
if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
|
|
stage2_wp_memory_region(kvm, new->id);
|
|
}
|
|
|
|
int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
|
const struct kvm_memory_slot *old,
|
|
struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
hva_t hva, reg_end, size;
|
|
gpa_t base_gpa;
|
|
bool writable;
|
|
int ret = 0;
|
|
|
|
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
|
|
change != KVM_MR_FLAGS_ONLY)
|
|
return 0;
|
|
|
|
/*
|
|
* Prevent userspace from creating a memory region outside of the GPA
|
|
* space addressable by the KVM guest GPA space.
|
|
*/
|
|
if ((new->base_gfn + new->npages) >=
|
|
(stage2_gpa_size >> PAGE_SHIFT))
|
|
return -EFAULT;
|
|
|
|
hva = new->userspace_addr;
|
|
size = new->npages << PAGE_SHIFT;
|
|
reg_end = hva + size;
|
|
base_gpa = new->base_gfn << PAGE_SHIFT;
|
|
writable = !(new->flags & KVM_MEM_READONLY);
|
|
|
|
mmap_read_lock(current->mm);
|
|
|
|
/*
|
|
* A memory region could potentially cover multiple VMAs, and
|
|
* any holes between them, so iterate over all of them to find
|
|
* out if we can map any of them right now.
|
|
*
|
|
* +--------------------------------------------+
|
|
* +---------------+----------------+ +----------------+
|
|
* | : VMA 1 | VMA 2 | | VMA 3 : |
|
|
* +---------------+----------------+ +----------------+
|
|
* | memory region |
|
|
* +--------------------------------------------+
|
|
*/
|
|
do {
|
|
struct vm_area_struct *vma = find_vma(current->mm, hva);
|
|
hva_t vm_start, vm_end;
|
|
|
|
if (!vma || vma->vm_start >= reg_end)
|
|
break;
|
|
|
|
/*
|
|
* Mapping a read-only VMA is only allowed if the
|
|
* memory region is configured as read-only.
|
|
*/
|
|
if (writable && !(vma->vm_flags & VM_WRITE)) {
|
|
ret = -EPERM;
|
|
break;
|
|
}
|
|
|
|
/* Take the intersection of this VMA with the memory region */
|
|
vm_start = max(hva, vma->vm_start);
|
|
vm_end = min(reg_end, vma->vm_end);
|
|
|
|
if (vma->vm_flags & VM_PFNMAP) {
|
|
gpa_t gpa = base_gpa + (vm_start - hva);
|
|
phys_addr_t pa;
|
|
|
|
pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
|
|
pa += vm_start - vma->vm_start;
|
|
|
|
/* IO region dirty page logging not allowed */
|
|
if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = stage2_ioremap(kvm, gpa, pa,
|
|
vm_end - vm_start, writable);
|
|
if (ret)
|
|
break;
|
|
}
|
|
hva = vm_end;
|
|
} while (hva < reg_end);
|
|
|
|
if (change == KVM_MR_FLAGS_ONLY)
|
|
goto out;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (ret)
|
|
stage2_unmap_range(kvm, base_gpa, size, false);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
out:
|
|
mmap_read_unlock(current->mm);
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
if (!kvm->arch.pgd)
|
|
return false;
|
|
|
|
stage2_unmap_range(kvm, range->start << PAGE_SHIFT,
|
|
(range->end - range->start) << PAGE_SHIFT,
|
|
range->may_block);
|
|
return false;
|
|
}
|
|
|
|
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
int ret;
|
|
kvm_pfn_t pfn = pte_pfn(range->pte);
|
|
|
|
if (!kvm->arch.pgd)
|
|
return false;
|
|
|
|
WARN_ON(range->end - range->start != 1);
|
|
|
|
ret = stage2_map_page(kvm, NULL, range->start << PAGE_SHIFT,
|
|
__pfn_to_phys(pfn), PAGE_SIZE, true, true);
|
|
if (ret) {
|
|
kvm_debug("Failed to map stage2 page (error %d)\n", ret);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
pte_t *ptep;
|
|
u32 ptep_level = 0;
|
|
u64 size = (range->end - range->start) << PAGE_SHIFT;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return false;
|
|
|
|
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
|
|
|
|
if (!stage2_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
|
|
&ptep, &ptep_level))
|
|
return false;
|
|
|
|
return ptep_test_and_clear_young(NULL, 0, ptep);
|
|
}
|
|
|
|
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
pte_t *ptep;
|
|
u32 ptep_level = 0;
|
|
u64 size = (range->end - range->start) << PAGE_SHIFT;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return false;
|
|
|
|
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
|
|
|
|
if (!stage2_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
|
|
&ptep, &ptep_level))
|
|
return false;
|
|
|
|
return pte_young(*ptep);
|
|
}
|
|
|
|
int kvm_riscv_stage2_map(struct kvm_vcpu *vcpu,
|
|
struct kvm_memory_slot *memslot,
|
|
gpa_t gpa, unsigned long hva, bool is_write)
|
|
{
|
|
int ret;
|
|
kvm_pfn_t hfn;
|
|
bool writeable;
|
|
short vma_pageshift;
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
struct vm_area_struct *vma;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
|
|
bool logging = (memslot->dirty_bitmap &&
|
|
!(memslot->flags & KVM_MEM_READONLY)) ? true : false;
|
|
unsigned long vma_pagesize, mmu_seq;
|
|
|
|
mmap_read_lock(current->mm);
|
|
|
|
vma = find_vma_intersection(current->mm, hva, hva + 1);
|
|
if (unlikely(!vma)) {
|
|
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
|
|
mmap_read_unlock(current->mm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (is_vm_hugetlb_page(vma))
|
|
vma_pageshift = huge_page_shift(hstate_vma(vma));
|
|
else
|
|
vma_pageshift = PAGE_SHIFT;
|
|
vma_pagesize = 1ULL << vma_pageshift;
|
|
if (logging || (vma->vm_flags & VM_PFNMAP))
|
|
vma_pagesize = PAGE_SIZE;
|
|
|
|
if (vma_pagesize == PMD_SIZE || vma_pagesize == PGDIR_SIZE)
|
|
gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
|
|
|
|
mmap_read_unlock(current->mm);
|
|
|
|
if (vma_pagesize != PGDIR_SIZE &&
|
|
vma_pagesize != PMD_SIZE &&
|
|
vma_pagesize != PAGE_SIZE) {
|
|
kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* We need minimum second+third level pages */
|
|
ret = kvm_mmu_topup_memory_cache(pcache, stage2_pgd_levels);
|
|
if (ret) {
|
|
kvm_err("Failed to topup stage2 cache\n");
|
|
return ret;
|
|
}
|
|
|
|
mmu_seq = kvm->mmu_notifier_seq;
|
|
|
|
hfn = gfn_to_pfn_prot(kvm, gfn, is_write, &writeable);
|
|
if (hfn == KVM_PFN_ERR_HWPOISON) {
|
|
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
|
|
vma_pageshift, current);
|
|
return 0;
|
|
}
|
|
if (is_error_noslot_pfn(hfn))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* If logging is active then we allow writable pages only
|
|
* for write faults.
|
|
*/
|
|
if (logging && !is_write)
|
|
writeable = false;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
if (mmu_notifier_retry(kvm, mmu_seq))
|
|
goto out_unlock;
|
|
|
|
if (writeable) {
|
|
kvm_set_pfn_dirty(hfn);
|
|
mark_page_dirty(kvm, gfn);
|
|
ret = stage2_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
|
|
vma_pagesize, false, true);
|
|
} else {
|
|
ret = stage2_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
|
|
vma_pagesize, true, true);
|
|
}
|
|
|
|
if (ret)
|
|
kvm_err("Failed to map in stage2\n");
|
|
|
|
out_unlock:
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_set_pfn_accessed(hfn);
|
|
kvm_release_pfn_clean(hfn);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_riscv_stage2_alloc_pgd(struct kvm *kvm)
|
|
{
|
|
struct page *pgd_page;
|
|
|
|
if (kvm->arch.pgd != NULL) {
|
|
kvm_err("kvm_arch already initialized?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
|
|
get_order(stage2_pgd_size));
|
|
if (!pgd_page)
|
|
return -ENOMEM;
|
|
kvm->arch.pgd = page_to_virt(pgd_page);
|
|
kvm->arch.pgd_phys = page_to_phys(pgd_page);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_riscv_stage2_free_pgd(struct kvm *kvm)
|
|
{
|
|
void *pgd = NULL;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (kvm->arch.pgd) {
|
|
stage2_unmap_range(kvm, 0UL, stage2_gpa_size, false);
|
|
pgd = READ_ONCE(kvm->arch.pgd);
|
|
kvm->arch.pgd = NULL;
|
|
kvm->arch.pgd_phys = 0;
|
|
}
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
if (pgd)
|
|
free_pages((unsigned long)pgd, get_order(stage2_pgd_size));
|
|
}
|
|
|
|
void kvm_riscv_stage2_update_hgatp(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long hgatp = stage2_mode;
|
|
struct kvm_arch *k = &vcpu->kvm->arch;
|
|
|
|
hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) &
|
|
HGATP_VMID_MASK;
|
|
hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
|
|
|
|
csr_write(CSR_HGATP, hgatp);
|
|
|
|
if (!kvm_riscv_stage2_vmid_bits())
|
|
__kvm_riscv_hfence_gvma_all();
|
|
}
|
|
|
|
void kvm_riscv_stage2_mode_detect(void)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
/* Try Sv48x4 stage2 mode */
|
|
csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
|
|
if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
|
|
stage2_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
|
|
stage2_pgd_levels = 4;
|
|
}
|
|
csr_write(CSR_HGATP, 0);
|
|
|
|
__kvm_riscv_hfence_gvma_all();
|
|
#endif
|
|
}
|
|
|
|
unsigned long kvm_riscv_stage2_mode(void)
|
|
{
|
|
return stage2_mode >> HGATP_MODE_SHIFT;
|
|
}
|
|
|
|
int kvm_riscv_stage2_gpa_bits(void)
|
|
{
|
|
return stage2_gpa_bits;
|
|
}
|