linux-stable/drivers/md/dm-mpath.c
Mike Snitzer a490a07a67 dm mpath: allow table load with no priority groups
This patch adjusts the multipath target to allow a table with both 0
priority groups and 0 for the initial priority group number.

If any mpath device is held open when all paths in the last priority
group have failed, userspace multipathd will attempt to reload the
associated DM table to reflect the fact that the device no longer has
any priority groups.  But the reload attempt always failed because the
multipath target did not allow 0 priority groups.

All multipath target messages related to priority group (enable_group,
disable_group, switch_group) will handle a priority group of 0 (will
cause error).

When reloading a multipath table with 0 priority groups, userspace
multipathd must be updated to specify an initial priority group number
of 0 (rather than 1).

Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: Babu Moger <babu.moger@lsi.com>
Acked-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2011-03-24 13:54:33 +00:00

1757 lines
40 KiB
C

/*
* Copyright (C) 2003 Sistina Software Limited.
* Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
*
* This file is released under the GPL.
*/
#include <linux/device-mapper.h>
#include "dm-path-selector.h"
#include "dm-uevent.h"
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/workqueue.h>
#include <scsi/scsi_dh.h>
#include <asm/atomic.h>
#define DM_MSG_PREFIX "multipath"
#define MESG_STR(x) x, sizeof(x)
#define DM_PG_INIT_DELAY_MSECS 2000
#define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
/* Path properties */
struct pgpath {
struct list_head list;
struct priority_group *pg; /* Owning PG */
unsigned is_active; /* Path status */
unsigned fail_count; /* Cumulative failure count */
struct dm_path path;
struct delayed_work activate_path;
};
#define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
/*
* Paths are grouped into Priority Groups and numbered from 1 upwards.
* Each has a path selector which controls which path gets used.
*/
struct priority_group {
struct list_head list;
struct multipath *m; /* Owning multipath instance */
struct path_selector ps;
unsigned pg_num; /* Reference number */
unsigned bypassed; /* Temporarily bypass this PG? */
unsigned nr_pgpaths; /* Number of paths in PG */
struct list_head pgpaths;
};
/* Multipath context */
struct multipath {
struct list_head list;
struct dm_target *ti;
spinlock_t lock;
const char *hw_handler_name;
char *hw_handler_params;
unsigned nr_priority_groups;
struct list_head priority_groups;
wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */
unsigned pg_init_required; /* pg_init needs calling? */
unsigned pg_init_in_progress; /* Only one pg_init allowed at once */
unsigned pg_init_delay_retry; /* Delay pg_init retry? */
unsigned nr_valid_paths; /* Total number of usable paths */
struct pgpath *current_pgpath;
struct priority_group *current_pg;
struct priority_group *next_pg; /* Switch to this PG if set */
unsigned repeat_count; /* I/Os left before calling PS again */
unsigned queue_io; /* Must we queue all I/O? */
unsigned queue_if_no_path; /* Queue I/O if last path fails? */
unsigned saved_queue_if_no_path;/* Saved state during suspension */
unsigned pg_init_retries; /* Number of times to retry pg_init */
unsigned pg_init_count; /* Number of times pg_init called */
unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */
struct work_struct process_queued_ios;
struct list_head queued_ios;
unsigned queue_size;
struct work_struct trigger_event;
/*
* We must use a mempool of dm_mpath_io structs so that we
* can resubmit bios on error.
*/
mempool_t *mpio_pool;
struct mutex work_mutex;
};
/*
* Context information attached to each bio we process.
*/
struct dm_mpath_io {
struct pgpath *pgpath;
size_t nr_bytes;
};
typedef int (*action_fn) (struct pgpath *pgpath);
#define MIN_IOS 256 /* Mempool size */
static struct kmem_cache *_mpio_cache;
static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
static void process_queued_ios(struct work_struct *work);
static void trigger_event(struct work_struct *work);
static void activate_path(struct work_struct *work);
/*-----------------------------------------------
* Allocation routines
*-----------------------------------------------*/
static struct pgpath *alloc_pgpath(void)
{
struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
if (pgpath) {
pgpath->is_active = 1;
INIT_DELAYED_WORK(&pgpath->activate_path, activate_path);
}
return pgpath;
}
static void free_pgpath(struct pgpath *pgpath)
{
kfree(pgpath);
}
static struct priority_group *alloc_priority_group(void)
{
struct priority_group *pg;
pg = kzalloc(sizeof(*pg), GFP_KERNEL);
if (pg)
INIT_LIST_HEAD(&pg->pgpaths);
return pg;
}
static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
{
struct pgpath *pgpath, *tmp;
struct multipath *m = ti->private;
list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
list_del(&pgpath->list);
if (m->hw_handler_name)
scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev));
dm_put_device(ti, pgpath->path.dev);
free_pgpath(pgpath);
}
}
static void free_priority_group(struct priority_group *pg,
struct dm_target *ti)
{
struct path_selector *ps = &pg->ps;
if (ps->type) {
ps->type->destroy(ps);
dm_put_path_selector(ps->type);
}
free_pgpaths(&pg->pgpaths, ti);
kfree(pg);
}
static struct multipath *alloc_multipath(struct dm_target *ti)
{
struct multipath *m;
m = kzalloc(sizeof(*m), GFP_KERNEL);
if (m) {
INIT_LIST_HEAD(&m->priority_groups);
INIT_LIST_HEAD(&m->queued_ios);
spin_lock_init(&m->lock);
m->queue_io = 1;
m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
INIT_WORK(&m->process_queued_ios, process_queued_ios);
INIT_WORK(&m->trigger_event, trigger_event);
init_waitqueue_head(&m->pg_init_wait);
mutex_init(&m->work_mutex);
m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache);
if (!m->mpio_pool) {
kfree(m);
return NULL;
}
m->ti = ti;
ti->private = m;
}
return m;
}
static void free_multipath(struct multipath *m)
{
struct priority_group *pg, *tmp;
list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
list_del(&pg->list);
free_priority_group(pg, m->ti);
}
kfree(m->hw_handler_name);
kfree(m->hw_handler_params);
mempool_destroy(m->mpio_pool);
kfree(m);
}
/*-----------------------------------------------
* Path selection
*-----------------------------------------------*/
static void __pg_init_all_paths(struct multipath *m)
{
struct pgpath *pgpath;
unsigned long pg_init_delay = 0;
m->pg_init_count++;
m->pg_init_required = 0;
if (m->pg_init_delay_retry)
pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
/* Skip failed paths */
if (!pgpath->is_active)
continue;
if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
pg_init_delay))
m->pg_init_in_progress++;
}
}
static void __switch_pg(struct multipath *m, struct pgpath *pgpath)
{
m->current_pg = pgpath->pg;
/* Must we initialise the PG first, and queue I/O till it's ready? */
if (m->hw_handler_name) {
m->pg_init_required = 1;
m->queue_io = 1;
} else {
m->pg_init_required = 0;
m->queue_io = 0;
}
m->pg_init_count = 0;
}
static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg,
size_t nr_bytes)
{
struct dm_path *path;
path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes);
if (!path)
return -ENXIO;
m->current_pgpath = path_to_pgpath(path);
if (m->current_pg != pg)
__switch_pg(m, m->current_pgpath);
return 0;
}
static void __choose_pgpath(struct multipath *m, size_t nr_bytes)
{
struct priority_group *pg;
unsigned bypassed = 1;
if (!m->nr_valid_paths)
goto failed;
/* Were we instructed to switch PG? */
if (m->next_pg) {
pg = m->next_pg;
m->next_pg = NULL;
if (!__choose_path_in_pg(m, pg, nr_bytes))
return;
}
/* Don't change PG until it has no remaining paths */
if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes))
return;
/*
* Loop through priority groups until we find a valid path.
* First time we skip PGs marked 'bypassed'.
* Second time we only try the ones we skipped.
*/
do {
list_for_each_entry(pg, &m->priority_groups, list) {
if (pg->bypassed == bypassed)
continue;
if (!__choose_path_in_pg(m, pg, nr_bytes))
return;
}
} while (bypassed--);
failed:
m->current_pgpath = NULL;
m->current_pg = NULL;
}
/*
* Check whether bios must be queued in the device-mapper core rather
* than here in the target.
*
* m->lock must be held on entry.
*
* If m->queue_if_no_path and m->saved_queue_if_no_path hold the
* same value then we are not between multipath_presuspend()
* and multipath_resume() calls and we have no need to check
* for the DMF_NOFLUSH_SUSPENDING flag.
*/
static int __must_push_back(struct multipath *m)
{
return (m->queue_if_no_path != m->saved_queue_if_no_path &&
dm_noflush_suspending(m->ti));
}
static int map_io(struct multipath *m, struct request *clone,
struct dm_mpath_io *mpio, unsigned was_queued)
{
int r = DM_MAPIO_REMAPPED;
size_t nr_bytes = blk_rq_bytes(clone);
unsigned long flags;
struct pgpath *pgpath;
struct block_device *bdev;
spin_lock_irqsave(&m->lock, flags);
/* Do we need to select a new pgpath? */
if (!m->current_pgpath ||
(!m->queue_io && (m->repeat_count && --m->repeat_count == 0)))
__choose_pgpath(m, nr_bytes);
pgpath = m->current_pgpath;
if (was_queued)
m->queue_size--;
if ((pgpath && m->queue_io) ||
(!pgpath && m->queue_if_no_path)) {
/* Queue for the daemon to resubmit */
list_add_tail(&clone->queuelist, &m->queued_ios);
m->queue_size++;
if ((m->pg_init_required && !m->pg_init_in_progress) ||
!m->queue_io)
queue_work(kmultipathd, &m->process_queued_ios);
pgpath = NULL;
r = DM_MAPIO_SUBMITTED;
} else if (pgpath) {
bdev = pgpath->path.dev->bdev;
clone->q = bdev_get_queue(bdev);
clone->rq_disk = bdev->bd_disk;
} else if (__must_push_back(m))
r = DM_MAPIO_REQUEUE;
else
r = -EIO; /* Failed */
mpio->pgpath = pgpath;
mpio->nr_bytes = nr_bytes;
if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io)
pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path,
nr_bytes);
spin_unlock_irqrestore(&m->lock, flags);
return r;
}
/*
* If we run out of usable paths, should we queue I/O or error it?
*/
static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path,
unsigned save_old_value)
{
unsigned long flags;
spin_lock_irqsave(&m->lock, flags);
if (save_old_value)
m->saved_queue_if_no_path = m->queue_if_no_path;
else
m->saved_queue_if_no_path = queue_if_no_path;
m->queue_if_no_path = queue_if_no_path;
if (!m->queue_if_no_path && m->queue_size)
queue_work(kmultipathd, &m->process_queued_ios);
spin_unlock_irqrestore(&m->lock, flags);
return 0;
}
/*-----------------------------------------------------------------
* The multipath daemon is responsible for resubmitting queued ios.
*---------------------------------------------------------------*/
static void dispatch_queued_ios(struct multipath *m)
{
int r;
unsigned long flags;
struct dm_mpath_io *mpio;
union map_info *info;
struct request *clone, *n;
LIST_HEAD(cl);
spin_lock_irqsave(&m->lock, flags);
list_splice_init(&m->queued_ios, &cl);
spin_unlock_irqrestore(&m->lock, flags);
list_for_each_entry_safe(clone, n, &cl, queuelist) {
list_del_init(&clone->queuelist);
info = dm_get_rq_mapinfo(clone);
mpio = info->ptr;
r = map_io(m, clone, mpio, 1);
if (r < 0) {
mempool_free(mpio, m->mpio_pool);
dm_kill_unmapped_request(clone, r);
} else if (r == DM_MAPIO_REMAPPED)
dm_dispatch_request(clone);
else if (r == DM_MAPIO_REQUEUE) {
mempool_free(mpio, m->mpio_pool);
dm_requeue_unmapped_request(clone);
}
}
}
static void process_queued_ios(struct work_struct *work)
{
struct multipath *m =
container_of(work, struct multipath, process_queued_ios);
struct pgpath *pgpath = NULL;
unsigned must_queue = 1;
unsigned long flags;
spin_lock_irqsave(&m->lock, flags);
if (!m->queue_size)
goto out;
if (!m->current_pgpath)
__choose_pgpath(m, 0);
pgpath = m->current_pgpath;
if ((pgpath && !m->queue_io) ||
(!pgpath && !m->queue_if_no_path))
must_queue = 0;
if (m->pg_init_required && !m->pg_init_in_progress && pgpath)
__pg_init_all_paths(m);
out:
spin_unlock_irqrestore(&m->lock, flags);
if (!must_queue)
dispatch_queued_ios(m);
}
/*
* An event is triggered whenever a path is taken out of use.
* Includes path failure and PG bypass.
*/
static void trigger_event(struct work_struct *work)
{
struct multipath *m =
container_of(work, struct multipath, trigger_event);
dm_table_event(m->ti->table);
}
/*-----------------------------------------------------------------
* Constructor/argument parsing:
* <#multipath feature args> [<arg>]*
* <#hw_handler args> [hw_handler [<arg>]*]
* <#priority groups>
* <initial priority group>
* [<selector> <#selector args> [<arg>]*
* <#paths> <#per-path selector args>
* [<path> [<arg>]* ]+ ]+
*---------------------------------------------------------------*/
struct param {
unsigned min;
unsigned max;
char *error;
};
static int read_param(struct param *param, char *str, unsigned *v, char **error)
{
if (!str ||
(sscanf(str, "%u", v) != 1) ||
(*v < param->min) ||
(*v > param->max)) {
*error = param->error;
return -EINVAL;
}
return 0;
}
struct arg_set {
unsigned argc;
char **argv;
};
static char *shift(struct arg_set *as)
{
char *r;
if (as->argc) {
as->argc--;
r = *as->argv;
as->argv++;
return r;
}
return NULL;
}
static void consume(struct arg_set *as, unsigned n)
{
BUG_ON (as->argc < n);
as->argc -= n;
as->argv += n;
}
static int parse_path_selector(struct arg_set *as, struct priority_group *pg,
struct dm_target *ti)
{
int r;
struct path_selector_type *pst;
unsigned ps_argc;
static struct param _params[] = {
{0, 1024, "invalid number of path selector args"},
};
pst = dm_get_path_selector(shift(as));
if (!pst) {
ti->error = "unknown path selector type";
return -EINVAL;
}
r = read_param(_params, shift(as), &ps_argc, &ti->error);
if (r) {
dm_put_path_selector(pst);
return -EINVAL;
}
if (ps_argc > as->argc) {
dm_put_path_selector(pst);
ti->error = "not enough arguments for path selector";
return -EINVAL;
}
r = pst->create(&pg->ps, ps_argc, as->argv);
if (r) {
dm_put_path_selector(pst);
ti->error = "path selector constructor failed";
return r;
}
pg->ps.type = pst;
consume(as, ps_argc);
return 0;
}
static struct pgpath *parse_path(struct arg_set *as, struct path_selector *ps,
struct dm_target *ti)
{
int r;
struct pgpath *p;
struct multipath *m = ti->private;
/* we need at least a path arg */
if (as->argc < 1) {
ti->error = "no device given";
return ERR_PTR(-EINVAL);
}
p = alloc_pgpath();
if (!p)
return ERR_PTR(-ENOMEM);
r = dm_get_device(ti, shift(as), dm_table_get_mode(ti->table),
&p->path.dev);
if (r) {
ti->error = "error getting device";
goto bad;
}
if (m->hw_handler_name) {
struct request_queue *q = bdev_get_queue(p->path.dev->bdev);
r = scsi_dh_attach(q, m->hw_handler_name);
if (r == -EBUSY) {
/*
* Already attached to different hw_handler,
* try to reattach with correct one.
*/
scsi_dh_detach(q);
r = scsi_dh_attach(q, m->hw_handler_name);
}
if (r < 0) {
ti->error = "error attaching hardware handler";
dm_put_device(ti, p->path.dev);
goto bad;
}
if (m->hw_handler_params) {
r = scsi_dh_set_params(q, m->hw_handler_params);
if (r < 0) {
ti->error = "unable to set hardware "
"handler parameters";
scsi_dh_detach(q);
dm_put_device(ti, p->path.dev);
goto bad;
}
}
}
r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
if (r) {
dm_put_device(ti, p->path.dev);
goto bad;
}
return p;
bad:
free_pgpath(p);
return ERR_PTR(r);
}
static struct priority_group *parse_priority_group(struct arg_set *as,
struct multipath *m)
{
static struct param _params[] = {
{1, 1024, "invalid number of paths"},
{0, 1024, "invalid number of selector args"}
};
int r;
unsigned i, nr_selector_args, nr_params;
struct priority_group *pg;
struct dm_target *ti = m->ti;
if (as->argc < 2) {
as->argc = 0;
ti->error = "not enough priority group arguments";
return ERR_PTR(-EINVAL);
}
pg = alloc_priority_group();
if (!pg) {
ti->error = "couldn't allocate priority group";
return ERR_PTR(-ENOMEM);
}
pg->m = m;
r = parse_path_selector(as, pg, ti);
if (r)
goto bad;
/*
* read the paths
*/
r = read_param(_params, shift(as), &pg->nr_pgpaths, &ti->error);
if (r)
goto bad;
r = read_param(_params + 1, shift(as), &nr_selector_args, &ti->error);
if (r)
goto bad;
nr_params = 1 + nr_selector_args;
for (i = 0; i < pg->nr_pgpaths; i++) {
struct pgpath *pgpath;
struct arg_set path_args;
if (as->argc < nr_params) {
ti->error = "not enough path parameters";
r = -EINVAL;
goto bad;
}
path_args.argc = nr_params;
path_args.argv = as->argv;
pgpath = parse_path(&path_args, &pg->ps, ti);
if (IS_ERR(pgpath)) {
r = PTR_ERR(pgpath);
goto bad;
}
pgpath->pg = pg;
list_add_tail(&pgpath->list, &pg->pgpaths);
consume(as, nr_params);
}
return pg;
bad:
free_priority_group(pg, ti);
return ERR_PTR(r);
}
static int parse_hw_handler(struct arg_set *as, struct multipath *m)
{
unsigned hw_argc;
int ret;
struct dm_target *ti = m->ti;
static struct param _params[] = {
{0, 1024, "invalid number of hardware handler args"},
};
if (read_param(_params, shift(as), &hw_argc, &ti->error))
return -EINVAL;
if (!hw_argc)
return 0;
if (hw_argc > as->argc) {
ti->error = "not enough arguments for hardware handler";
return -EINVAL;
}
m->hw_handler_name = kstrdup(shift(as), GFP_KERNEL);
request_module("scsi_dh_%s", m->hw_handler_name);
if (scsi_dh_handler_exist(m->hw_handler_name) == 0) {
ti->error = "unknown hardware handler type";
ret = -EINVAL;
goto fail;
}
if (hw_argc > 1) {
char *p;
int i, j, len = 4;
for (i = 0; i <= hw_argc - 2; i++)
len += strlen(as->argv[i]) + 1;
p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
if (!p) {
ti->error = "memory allocation failed";
ret = -ENOMEM;
goto fail;
}
j = sprintf(p, "%d", hw_argc - 1);
for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
j = sprintf(p, "%s", as->argv[i]);
}
consume(as, hw_argc - 1);
return 0;
fail:
kfree(m->hw_handler_name);
m->hw_handler_name = NULL;
return ret;
}
static int parse_features(struct arg_set *as, struct multipath *m)
{
int r;
unsigned argc;
struct dm_target *ti = m->ti;
const char *param_name;
static struct param _params[] = {
{0, 5, "invalid number of feature args"},
{1, 50, "pg_init_retries must be between 1 and 50"},
{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
};
r = read_param(_params, shift(as), &argc, &ti->error);
if (r)
return -EINVAL;
if (!argc)
return 0;
do {
param_name = shift(as);
argc--;
if (!strnicmp(param_name, MESG_STR("queue_if_no_path"))) {
r = queue_if_no_path(m, 1, 0);
continue;
}
if (!strnicmp(param_name, MESG_STR("pg_init_retries")) &&
(argc >= 1)) {
r = read_param(_params + 1, shift(as),
&m->pg_init_retries, &ti->error);
argc--;
continue;
}
if (!strnicmp(param_name, MESG_STR("pg_init_delay_msecs")) &&
(argc >= 1)) {
r = read_param(_params + 2, shift(as),
&m->pg_init_delay_msecs, &ti->error);
argc--;
continue;
}
ti->error = "Unrecognised multipath feature request";
r = -EINVAL;
} while (argc && !r);
return r;
}
static int multipath_ctr(struct dm_target *ti, unsigned int argc,
char **argv)
{
/* target parameters */
static struct param _params[] = {
{0, 1024, "invalid number of priority groups"},
{0, 1024, "invalid initial priority group number"},
};
int r;
struct multipath *m;
struct arg_set as;
unsigned pg_count = 0;
unsigned next_pg_num;
as.argc = argc;
as.argv = argv;
m = alloc_multipath(ti);
if (!m) {
ti->error = "can't allocate multipath";
return -EINVAL;
}
r = parse_features(&as, m);
if (r)
goto bad;
r = parse_hw_handler(&as, m);
if (r)
goto bad;
r = read_param(_params, shift(&as), &m->nr_priority_groups, &ti->error);
if (r)
goto bad;
r = read_param(_params + 1, shift(&as), &next_pg_num, &ti->error);
if (r)
goto bad;
if ((!m->nr_priority_groups && next_pg_num) ||
(m->nr_priority_groups && !next_pg_num)) {
ti->error = "invalid initial priority group";
r = -EINVAL;
goto bad;
}
/* parse the priority groups */
while (as.argc) {
struct priority_group *pg;
pg = parse_priority_group(&as, m);
if (IS_ERR(pg)) {
r = PTR_ERR(pg);
goto bad;
}
m->nr_valid_paths += pg->nr_pgpaths;
list_add_tail(&pg->list, &m->priority_groups);
pg_count++;
pg->pg_num = pg_count;
if (!--next_pg_num)
m->next_pg = pg;
}
if (pg_count != m->nr_priority_groups) {
ti->error = "priority group count mismatch";
r = -EINVAL;
goto bad;
}
ti->num_flush_requests = 1;
ti->num_discard_requests = 1;
return 0;
bad:
free_multipath(m);
return r;
}
static void multipath_wait_for_pg_init_completion(struct multipath *m)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
add_wait_queue(&m->pg_init_wait, &wait);
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
spin_lock_irqsave(&m->lock, flags);
if (!m->pg_init_in_progress) {
spin_unlock_irqrestore(&m->lock, flags);
break;
}
spin_unlock_irqrestore(&m->lock, flags);
io_schedule();
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&m->pg_init_wait, &wait);
}
static void flush_multipath_work(struct multipath *m)
{
flush_workqueue(kmpath_handlerd);
multipath_wait_for_pg_init_completion(m);
flush_workqueue(kmultipathd);
flush_work_sync(&m->trigger_event);
}
static void multipath_dtr(struct dm_target *ti)
{
struct multipath *m = ti->private;
flush_multipath_work(m);
free_multipath(m);
}
/*
* Map cloned requests
*/
static int multipath_map(struct dm_target *ti, struct request *clone,
union map_info *map_context)
{
int r;
struct dm_mpath_io *mpio;
struct multipath *m = (struct multipath *) ti->private;
mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC);
if (!mpio)
/* ENOMEM, requeue */
return DM_MAPIO_REQUEUE;
memset(mpio, 0, sizeof(*mpio));
map_context->ptr = mpio;
clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
r = map_io(m, clone, mpio, 0);
if (r < 0 || r == DM_MAPIO_REQUEUE)
mempool_free(mpio, m->mpio_pool);
return r;
}
/*
* Take a path out of use.
*/
static int fail_path(struct pgpath *pgpath)
{
unsigned long flags;
struct multipath *m = pgpath->pg->m;
spin_lock_irqsave(&m->lock, flags);
if (!pgpath->is_active)
goto out;
DMWARN("Failing path %s.", pgpath->path.dev->name);
pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
pgpath->is_active = 0;
pgpath->fail_count++;
m->nr_valid_paths--;
if (pgpath == m->current_pgpath)
m->current_pgpath = NULL;
dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
pgpath->path.dev->name, m->nr_valid_paths);
schedule_work(&m->trigger_event);
out:
spin_unlock_irqrestore(&m->lock, flags);
return 0;
}
/*
* Reinstate a previously-failed path
*/
static int reinstate_path(struct pgpath *pgpath)
{
int r = 0;
unsigned long flags;
struct multipath *m = pgpath->pg->m;
spin_lock_irqsave(&m->lock, flags);
if (pgpath->is_active)
goto out;
if (!pgpath->pg->ps.type->reinstate_path) {
DMWARN("Reinstate path not supported by path selector %s",
pgpath->pg->ps.type->name);
r = -EINVAL;
goto out;
}
r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
if (r)
goto out;
pgpath->is_active = 1;
if (!m->nr_valid_paths++ && m->queue_size) {
m->current_pgpath = NULL;
queue_work(kmultipathd, &m->process_queued_ios);
} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
m->pg_init_in_progress++;
}
dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
pgpath->path.dev->name, m->nr_valid_paths);
schedule_work(&m->trigger_event);
out:
spin_unlock_irqrestore(&m->lock, flags);
return r;
}
/*
* Fail or reinstate all paths that match the provided struct dm_dev.
*/
static int action_dev(struct multipath *m, struct dm_dev *dev,
action_fn action)
{
int r = -EINVAL;
struct pgpath *pgpath;
struct priority_group *pg;
list_for_each_entry(pg, &m->priority_groups, list) {
list_for_each_entry(pgpath, &pg->pgpaths, list) {
if (pgpath->path.dev == dev)
r = action(pgpath);
}
}
return r;
}
/*
* Temporarily try to avoid having to use the specified PG
*/
static void bypass_pg(struct multipath *m, struct priority_group *pg,
int bypassed)
{
unsigned long flags;
spin_lock_irqsave(&m->lock, flags);
pg->bypassed = bypassed;
m->current_pgpath = NULL;
m->current_pg = NULL;
spin_unlock_irqrestore(&m->lock, flags);
schedule_work(&m->trigger_event);
}
/*
* Switch to using the specified PG from the next I/O that gets mapped
*/
static int switch_pg_num(struct multipath *m, const char *pgstr)
{
struct priority_group *pg;
unsigned pgnum;
unsigned long flags;
if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
(pgnum > m->nr_priority_groups)) {
DMWARN("invalid PG number supplied to switch_pg_num");
return -EINVAL;
}
spin_lock_irqsave(&m->lock, flags);
list_for_each_entry(pg, &m->priority_groups, list) {
pg->bypassed = 0;
if (--pgnum)
continue;
m->current_pgpath = NULL;
m->current_pg = NULL;
m->next_pg = pg;
}
spin_unlock_irqrestore(&m->lock, flags);
schedule_work(&m->trigger_event);
return 0;
}
/*
* Set/clear bypassed status of a PG.
* PGs are numbered upwards from 1 in the order they were declared.
*/
static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed)
{
struct priority_group *pg;
unsigned pgnum;
if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
(pgnum > m->nr_priority_groups)) {
DMWARN("invalid PG number supplied to bypass_pg");
return -EINVAL;
}
list_for_each_entry(pg, &m->priority_groups, list) {
if (!--pgnum)
break;
}
bypass_pg(m, pg, bypassed);
return 0;
}
/*
* Should we retry pg_init immediately?
*/
static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
{
unsigned long flags;
int limit_reached = 0;
spin_lock_irqsave(&m->lock, flags);
if (m->pg_init_count <= m->pg_init_retries)
m->pg_init_required = 1;
else
limit_reached = 1;
spin_unlock_irqrestore(&m->lock, flags);
return limit_reached;
}
static void pg_init_done(void *data, int errors)
{
struct pgpath *pgpath = data;
struct priority_group *pg = pgpath->pg;
struct multipath *m = pg->m;
unsigned long flags;
unsigned delay_retry = 0;
/* device or driver problems */
switch (errors) {
case SCSI_DH_OK:
break;
case SCSI_DH_NOSYS:
if (!m->hw_handler_name) {
errors = 0;
break;
}
DMERR("Could not failover the device: Handler scsi_dh_%s "
"Error %d.", m->hw_handler_name, errors);
/*
* Fail path for now, so we do not ping pong
*/
fail_path(pgpath);
break;
case SCSI_DH_DEV_TEMP_BUSY:
/*
* Probably doing something like FW upgrade on the
* controller so try the other pg.
*/
bypass_pg(m, pg, 1);
break;
case SCSI_DH_RETRY:
/* Wait before retrying. */
delay_retry = 1;
case SCSI_DH_IMM_RETRY:
case SCSI_DH_RES_TEMP_UNAVAIL:
if (pg_init_limit_reached(m, pgpath))
fail_path(pgpath);
errors = 0;
break;
default:
/*
* We probably do not want to fail the path for a device
* error, but this is what the old dm did. In future
* patches we can do more advanced handling.
*/
fail_path(pgpath);
}
spin_lock_irqsave(&m->lock, flags);
if (errors) {
if (pgpath == m->current_pgpath) {
DMERR("Could not failover device. Error %d.", errors);
m->current_pgpath = NULL;
m->current_pg = NULL;
}
} else if (!m->pg_init_required)
pg->bypassed = 0;
if (--m->pg_init_in_progress)
/* Activations of other paths are still on going */
goto out;
if (!m->pg_init_required)
m->queue_io = 0;
m->pg_init_delay_retry = delay_retry;
queue_work(kmultipathd, &m->process_queued_ios);
/*
* Wake up any thread waiting to suspend.
*/
wake_up(&m->pg_init_wait);
out:
spin_unlock_irqrestore(&m->lock, flags);
}
static void activate_path(struct work_struct *work)
{
struct pgpath *pgpath =
container_of(work, struct pgpath, activate_path.work);
scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev),
pg_init_done, pgpath);
}
/*
* end_io handling
*/
static int do_end_io(struct multipath *m, struct request *clone,
int error, struct dm_mpath_io *mpio)
{
/*
* We don't queue any clone request inside the multipath target
* during end I/O handling, since those clone requests don't have
* bio clones. If we queue them inside the multipath target,
* we need to make bio clones, that requires memory allocation.
* (See drivers/md/dm.c:end_clone_bio() about why the clone requests
* don't have bio clones.)
* Instead of queueing the clone request here, we queue the original
* request into dm core, which will remake a clone request and
* clone bios for it and resubmit it later.
*/
int r = DM_ENDIO_REQUEUE;
unsigned long flags;
if (!error && !clone->errors)
return 0; /* I/O complete */
if (error == -EOPNOTSUPP || error == -EREMOTEIO)
return error;
if (mpio->pgpath)
fail_path(mpio->pgpath);
spin_lock_irqsave(&m->lock, flags);
if (!m->nr_valid_paths) {
if (!m->queue_if_no_path) {
if (!__must_push_back(m))
r = -EIO;
} else {
if (error == -EBADE)
r = error;
}
}
spin_unlock_irqrestore(&m->lock, flags);
return r;
}
static int multipath_end_io(struct dm_target *ti, struct request *clone,
int error, union map_info *map_context)
{
struct multipath *m = ti->private;
struct dm_mpath_io *mpio = map_context->ptr;
struct pgpath *pgpath = mpio->pgpath;
struct path_selector *ps;
int r;
r = do_end_io(m, clone, error, mpio);
if (pgpath) {
ps = &pgpath->pg->ps;
if (ps->type->end_io)
ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
}
mempool_free(mpio, m->mpio_pool);
return r;
}
/*
* Suspend can't complete until all the I/O is processed so if
* the last path fails we must error any remaining I/O.
* Note that if the freeze_bdev fails while suspending, the
* queue_if_no_path state is lost - userspace should reset it.
*/
static void multipath_presuspend(struct dm_target *ti)
{
struct multipath *m = (struct multipath *) ti->private;
queue_if_no_path(m, 0, 1);
}
static void multipath_postsuspend(struct dm_target *ti)
{
struct multipath *m = ti->private;
mutex_lock(&m->work_mutex);
flush_multipath_work(m);
mutex_unlock(&m->work_mutex);
}
/*
* Restore the queue_if_no_path setting.
*/
static void multipath_resume(struct dm_target *ti)
{
struct multipath *m = (struct multipath *) ti->private;
unsigned long flags;
spin_lock_irqsave(&m->lock, flags);
m->queue_if_no_path = m->saved_queue_if_no_path;
spin_unlock_irqrestore(&m->lock, flags);
}
/*
* Info output has the following format:
* num_multipath_feature_args [multipath_feature_args]*
* num_handler_status_args [handler_status_args]*
* num_groups init_group_number
* [A|D|E num_ps_status_args [ps_status_args]*
* num_paths num_selector_args
* [path_dev A|F fail_count [selector_args]* ]+ ]+
*
* Table output has the following format (identical to the constructor string):
* num_feature_args [features_args]*
* num_handler_args hw_handler [hw_handler_args]*
* num_groups init_group_number
* [priority selector-name num_ps_args [ps_args]*
* num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
*/
static int multipath_status(struct dm_target *ti, status_type_t type,
char *result, unsigned int maxlen)
{
int sz = 0;
unsigned long flags;
struct multipath *m = (struct multipath *) ti->private;
struct priority_group *pg;
struct pgpath *p;
unsigned pg_num;
char state;
spin_lock_irqsave(&m->lock, flags);
/* Features */
if (type == STATUSTYPE_INFO)
DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count);
else {
DMEMIT("%u ", m->queue_if_no_path +
(m->pg_init_retries > 0) * 2 +
(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2);
if (m->queue_if_no_path)
DMEMIT("queue_if_no_path ");
if (m->pg_init_retries)
DMEMIT("pg_init_retries %u ", m->pg_init_retries);
if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
}
if (!m->hw_handler_name || type == STATUSTYPE_INFO)
DMEMIT("0 ");
else
DMEMIT("1 %s ", m->hw_handler_name);
DMEMIT("%u ", m->nr_priority_groups);
if (m->next_pg)
pg_num = m->next_pg->pg_num;
else if (m->current_pg)
pg_num = m->current_pg->pg_num;
else
pg_num = (m->nr_priority_groups ? 1 : 0);
DMEMIT("%u ", pg_num);
switch (type) {
case STATUSTYPE_INFO:
list_for_each_entry(pg, &m->priority_groups, list) {
if (pg->bypassed)
state = 'D'; /* Disabled */
else if (pg == m->current_pg)
state = 'A'; /* Currently Active */
else
state = 'E'; /* Enabled */
DMEMIT("%c ", state);
if (pg->ps.type->status)
sz += pg->ps.type->status(&pg->ps, NULL, type,
result + sz,
maxlen - sz);
else
DMEMIT("0 ");
DMEMIT("%u %u ", pg->nr_pgpaths,
pg->ps.type->info_args);
list_for_each_entry(p, &pg->pgpaths, list) {
DMEMIT("%s %s %u ", p->path.dev->name,
p->is_active ? "A" : "F",
p->fail_count);
if (pg->ps.type->status)
sz += pg->ps.type->status(&pg->ps,
&p->path, type, result + sz,
maxlen - sz);
}
}
break;
case STATUSTYPE_TABLE:
list_for_each_entry(pg, &m->priority_groups, list) {
DMEMIT("%s ", pg->ps.type->name);
if (pg->ps.type->status)
sz += pg->ps.type->status(&pg->ps, NULL, type,
result + sz,
maxlen - sz);
else
DMEMIT("0 ");
DMEMIT("%u %u ", pg->nr_pgpaths,
pg->ps.type->table_args);
list_for_each_entry(p, &pg->pgpaths, list) {
DMEMIT("%s ", p->path.dev->name);
if (pg->ps.type->status)
sz += pg->ps.type->status(&pg->ps,
&p->path, type, result + sz,
maxlen - sz);
}
}
break;
}
spin_unlock_irqrestore(&m->lock, flags);
return 0;
}
static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
{
int r = -EINVAL;
struct dm_dev *dev;
struct multipath *m = (struct multipath *) ti->private;
action_fn action;
mutex_lock(&m->work_mutex);
if (dm_suspended(ti)) {
r = -EBUSY;
goto out;
}
if (argc == 1) {
if (!strnicmp(argv[0], MESG_STR("queue_if_no_path"))) {
r = queue_if_no_path(m, 1, 0);
goto out;
} else if (!strnicmp(argv[0], MESG_STR("fail_if_no_path"))) {
r = queue_if_no_path(m, 0, 0);
goto out;
}
}
if (argc != 2) {
DMWARN("Unrecognised multipath message received.");
goto out;
}
if (!strnicmp(argv[0], MESG_STR("disable_group"))) {
r = bypass_pg_num(m, argv[1], 1);
goto out;
} else if (!strnicmp(argv[0], MESG_STR("enable_group"))) {
r = bypass_pg_num(m, argv[1], 0);
goto out;
} else if (!strnicmp(argv[0], MESG_STR("switch_group"))) {
r = switch_pg_num(m, argv[1]);
goto out;
} else if (!strnicmp(argv[0], MESG_STR("reinstate_path")))
action = reinstate_path;
else if (!strnicmp(argv[0], MESG_STR("fail_path")))
action = fail_path;
else {
DMWARN("Unrecognised multipath message received.");
goto out;
}
r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
if (r) {
DMWARN("message: error getting device %s",
argv[1]);
goto out;
}
r = action_dev(m, dev, action);
dm_put_device(ti, dev);
out:
mutex_unlock(&m->work_mutex);
return r;
}
static int multipath_ioctl(struct dm_target *ti, unsigned int cmd,
unsigned long arg)
{
struct multipath *m = (struct multipath *) ti->private;
struct block_device *bdev = NULL;
fmode_t mode = 0;
unsigned long flags;
int r = 0;
spin_lock_irqsave(&m->lock, flags);
if (!m->current_pgpath)
__choose_pgpath(m, 0);
if (m->current_pgpath) {
bdev = m->current_pgpath->path.dev->bdev;
mode = m->current_pgpath->path.dev->mode;
}
if (m->queue_io)
r = -EAGAIN;
else if (!bdev)
r = -EIO;
spin_unlock_irqrestore(&m->lock, flags);
return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg);
}
static int multipath_iterate_devices(struct dm_target *ti,
iterate_devices_callout_fn fn, void *data)
{
struct multipath *m = ti->private;
struct priority_group *pg;
struct pgpath *p;
int ret = 0;
list_for_each_entry(pg, &m->priority_groups, list) {
list_for_each_entry(p, &pg->pgpaths, list) {
ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
if (ret)
goto out;
}
}
out:
return ret;
}
static int __pgpath_busy(struct pgpath *pgpath)
{
struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
return dm_underlying_device_busy(q);
}
/*
* We return "busy", only when we can map I/Os but underlying devices
* are busy (so even if we map I/Os now, the I/Os will wait on
* the underlying queue).
* In other words, if we want to kill I/Os or queue them inside us
* due to map unavailability, we don't return "busy". Otherwise,
* dm core won't give us the I/Os and we can't do what we want.
*/
static int multipath_busy(struct dm_target *ti)
{
int busy = 0, has_active = 0;
struct multipath *m = ti->private;
struct priority_group *pg;
struct pgpath *pgpath;
unsigned long flags;
spin_lock_irqsave(&m->lock, flags);
/* Guess which priority_group will be used at next mapping time */
if (unlikely(!m->current_pgpath && m->next_pg))
pg = m->next_pg;
else if (likely(m->current_pg))
pg = m->current_pg;
else
/*
* We don't know which pg will be used at next mapping time.
* We don't call __choose_pgpath() here to avoid to trigger
* pg_init just by busy checking.
* So we don't know whether underlying devices we will be using
* at next mapping time are busy or not. Just try mapping.
*/
goto out;
/*
* If there is one non-busy active path at least, the path selector
* will be able to select it. So we consider such a pg as not busy.
*/
busy = 1;
list_for_each_entry(pgpath, &pg->pgpaths, list)
if (pgpath->is_active) {
has_active = 1;
if (!__pgpath_busy(pgpath)) {
busy = 0;
break;
}
}
if (!has_active)
/*
* No active path in this pg, so this pg won't be used and
* the current_pg will be changed at next mapping time.
* We need to try mapping to determine it.
*/
busy = 0;
out:
spin_unlock_irqrestore(&m->lock, flags);
return busy;
}
/*-----------------------------------------------------------------
* Module setup
*---------------------------------------------------------------*/
static struct target_type multipath_target = {
.name = "multipath",
.version = {1, 3, 0},
.module = THIS_MODULE,
.ctr = multipath_ctr,
.dtr = multipath_dtr,
.map_rq = multipath_map,
.rq_end_io = multipath_end_io,
.presuspend = multipath_presuspend,
.postsuspend = multipath_postsuspend,
.resume = multipath_resume,
.status = multipath_status,
.message = multipath_message,
.ioctl = multipath_ioctl,
.iterate_devices = multipath_iterate_devices,
.busy = multipath_busy,
};
static int __init dm_multipath_init(void)
{
int r;
/* allocate a slab for the dm_ios */
_mpio_cache = KMEM_CACHE(dm_mpath_io, 0);
if (!_mpio_cache)
return -ENOMEM;
r = dm_register_target(&multipath_target);
if (r < 0) {
DMERR("register failed %d", r);
kmem_cache_destroy(_mpio_cache);
return -EINVAL;
}
kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
if (!kmultipathd) {
DMERR("failed to create workqueue kmpathd");
dm_unregister_target(&multipath_target);
kmem_cache_destroy(_mpio_cache);
return -ENOMEM;
}
/*
* A separate workqueue is used to handle the device handlers
* to avoid overloading existing workqueue. Overloading the
* old workqueue would also create a bottleneck in the
* path of the storage hardware device activation.
*/
kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
WQ_MEM_RECLAIM);
if (!kmpath_handlerd) {
DMERR("failed to create workqueue kmpath_handlerd");
destroy_workqueue(kmultipathd);
dm_unregister_target(&multipath_target);
kmem_cache_destroy(_mpio_cache);
return -ENOMEM;
}
DMINFO("version %u.%u.%u loaded",
multipath_target.version[0], multipath_target.version[1],
multipath_target.version[2]);
return r;
}
static void __exit dm_multipath_exit(void)
{
destroy_workqueue(kmpath_handlerd);
destroy_workqueue(kmultipathd);
dm_unregister_target(&multipath_target);
kmem_cache_destroy(_mpio_cache);
}
module_init(dm_multipath_init);
module_exit(dm_multipath_exit);
MODULE_DESCRIPTION(DM_NAME " multipath target");
MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
MODULE_LICENSE("GPL");