linux-stable/net/smc/smc_tx.c
Ingo Molnar c3edc4010e sched/headers: Move task_struct::signal and task_struct::sighand types and accessors into <linux/sched/signal.h>
task_struct::signal and task_struct::sighand are pointers, which would normally make it
straightforward to not define those types in sched.h.

That is not so, because the types are accompanied by a myriad of APIs (macros and inline
functions) that dereference them.

Split the types and the APIs out of sched.h and move them into a new header, <linux/sched/signal.h>.

With this change sched.h does not know about 'struct signal' and 'struct sighand' anymore,
trying to put accessors into sched.h as a test fails the following way:

  ./include/linux/sched.h: In function ‘test_signal_types’:
  ./include/linux/sched.h:2461:18: error: dereferencing pointer to incomplete type ‘struct signal_struct’
                    ^

This reduces the size and complexity of sched.h significantly.

Update all headers and .c code that relied on getting the signal handling
functionality from <linux/sched.h> to include <linux/sched/signal.h>.

The list of affected files in the preparatory patch was partly generated by
grepping for the APIs, and partly by doing coverage build testing, both
all[yes|mod|def|no]config builds on 64-bit and 32-bit x86, and an array of
cross-architecture builds.

Nevertheless some (trivial) build breakage is still expected related to rare
Kconfig combinations and in-flight patches to various kernel code, but most
of it should be handled by this patch.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-03 01:43:37 +01:00

486 lines
14 KiB
C

/*
* Shared Memory Communications over RDMA (SMC-R) and RoCE
*
* Manage send buffer.
* Producer:
* Copy user space data into send buffer, if send buffer space available.
* Consumer:
* Trigger RDMA write into RMBE of peer and send CDC, if RMBE space available.
*
* Copyright IBM Corp. 2016
*
* Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com>
*/
#include <linux/net.h>
#include <linux/rcupdate.h>
#include <linux/workqueue.h>
#include <linux/sched/signal.h>
#include <net/sock.h>
#include "smc.h"
#include "smc_wr.h"
#include "smc_cdc.h"
#include "smc_tx.h"
/***************************** sndbuf producer *******************************/
/* callback implementation for sk.sk_write_space()
* to wakeup sndbuf producers that blocked with smc_tx_wait_memory().
* called under sk_socket lock.
*/
static void smc_tx_write_space(struct sock *sk)
{
struct socket *sock = sk->sk_socket;
struct smc_sock *smc = smc_sk(sk);
struct socket_wq *wq;
/* similar to sk_stream_write_space */
if (atomic_read(&smc->conn.sndbuf_space) && sock) {
clear_bit(SOCK_NOSPACE, &sock->flags);
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_poll(&wq->wait,
POLLOUT | POLLWRNORM |
POLLWRBAND);
if (wq && wq->fasync_list && !(sk->sk_shutdown & SEND_SHUTDOWN))
sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
rcu_read_unlock();
}
}
/* Wakeup sndbuf producers that blocked with smc_tx_wait_memory().
* Cf. tcp_data_snd_check()=>tcp_check_space()=>tcp_new_space().
*/
void smc_tx_sndbuf_nonfull(struct smc_sock *smc)
{
if (smc->sk.sk_socket &&
test_bit(SOCK_NOSPACE, &smc->sk.sk_socket->flags))
smc->sk.sk_write_space(&smc->sk);
}
/* blocks sndbuf producer until at least one byte of free space available */
static int smc_tx_wait_memory(struct smc_sock *smc, int flags)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
struct smc_connection *conn = &smc->conn;
struct sock *sk = &smc->sk;
bool noblock;
long timeo;
int rc = 0;
/* similar to sk_stream_wait_memory */
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
noblock = timeo ? false : true;
add_wait_queue(sk_sleep(sk), &wait);
while (1) {
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
if (sk->sk_err ||
(sk->sk_shutdown & SEND_SHUTDOWN) ||
conn->local_tx_ctrl.conn_state_flags.peer_done_writing) {
rc = -EPIPE;
break;
}
if (conn->local_rx_ctrl.conn_state_flags.peer_conn_abort) {
rc = -ECONNRESET;
break;
}
if (!timeo) {
if (noblock)
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
rc = -EAGAIN;
break;
}
if (signal_pending(current)) {
rc = sock_intr_errno(timeo);
break;
}
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
if (atomic_read(&conn->sndbuf_space))
break; /* at least 1 byte of free space available */
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
sk->sk_write_pending++;
sk_wait_event(sk, &timeo,
sk->sk_err ||
(sk->sk_shutdown & SEND_SHUTDOWN) ||
smc_cdc_rxed_any_close_or_senddone(conn) ||
atomic_read(&conn->sndbuf_space),
&wait);
sk->sk_write_pending--;
}
remove_wait_queue(sk_sleep(sk), &wait);
return rc;
}
/* sndbuf producer: main API called by socket layer.
* called under sock lock.
*/
int smc_tx_sendmsg(struct smc_sock *smc, struct msghdr *msg, size_t len)
{
size_t copylen, send_done = 0, send_remaining = len;
size_t chunk_len, chunk_off, chunk_len_sum;
struct smc_connection *conn = &smc->conn;
union smc_host_cursor prep;
struct sock *sk = &smc->sk;
char *sndbuf_base;
int tx_cnt_prep;
int writespace;
int rc, chunk;
/* This should be in poll */
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
rc = -EPIPE;
goto out_err;
}
while (msg_data_left(msg)) {
if (sk->sk_state == SMC_INIT)
return -ENOTCONN;
if (smc->sk.sk_shutdown & SEND_SHUTDOWN ||
(smc->sk.sk_err == ECONNABORTED) ||
conn->local_tx_ctrl.conn_state_flags.peer_conn_abort)
return -EPIPE;
if (smc_cdc_rxed_any_close(conn))
return send_done ?: -ECONNRESET;
if (!atomic_read(&conn->sndbuf_space)) {
rc = smc_tx_wait_memory(smc, msg->msg_flags);
if (rc) {
if (send_done)
return send_done;
goto out_err;
}
continue;
}
/* initialize variables for 1st iteration of subsequent loop */
/* could be just 1 byte, even after smc_tx_wait_memory above */
writespace = atomic_read(&conn->sndbuf_space);
/* not more than what user space asked for */
copylen = min_t(size_t, send_remaining, writespace);
/* determine start of sndbuf */
sndbuf_base = conn->sndbuf_desc->cpu_addr;
smc_curs_write(&prep,
smc_curs_read(&conn->tx_curs_prep, conn),
conn);
tx_cnt_prep = prep.count;
/* determine chunks where to write into sndbuf */
/* either unwrapped case, or 1st chunk of wrapped case */
chunk_len = min_t(size_t,
copylen, conn->sndbuf_size - tx_cnt_prep);
chunk_len_sum = chunk_len;
chunk_off = tx_cnt_prep;
for (chunk = 0; chunk < 2; chunk++) {
rc = memcpy_from_msg(sndbuf_base + chunk_off,
msg, chunk_len);
if (rc) {
if (send_done)
return send_done;
goto out_err;
}
send_done += chunk_len;
send_remaining -= chunk_len;
if (chunk_len_sum == copylen)
break; /* either on 1st or 2nd iteration */
/* prepare next (== 2nd) iteration */
chunk_len = copylen - chunk_len; /* remainder */
chunk_len_sum += chunk_len;
chunk_off = 0; /* modulo offset in send ring buffer */
}
/* update cursors */
smc_curs_add(conn->sndbuf_size, &prep, copylen);
smc_curs_write(&conn->tx_curs_prep,
smc_curs_read(&prep, conn),
conn);
/* increased in send tasklet smc_cdc_tx_handler() */
smp_mb__before_atomic();
atomic_sub(copylen, &conn->sndbuf_space);
/* guarantee 0 <= sndbuf_space <= sndbuf_size */
smp_mb__after_atomic();
/* since we just produced more new data into sndbuf,
* trigger sndbuf consumer: RDMA write into peer RMBE and CDC
*/
smc_tx_sndbuf_nonempty(conn);
} /* while (msg_data_left(msg)) */
return send_done;
out_err:
rc = sk_stream_error(sk, msg->msg_flags, rc);
/* make sure we wake any epoll edge trigger waiter */
if (unlikely(rc == -EAGAIN))
sk->sk_write_space(sk);
return rc;
}
/***************************** sndbuf consumer *******************************/
/* sndbuf consumer: actual data transfer of one target chunk with RDMA write */
static int smc_tx_rdma_write(struct smc_connection *conn, int peer_rmbe_offset,
int num_sges, struct ib_sge sges[])
{
struct smc_link_group *lgr = conn->lgr;
struct ib_send_wr *failed_wr = NULL;
struct ib_rdma_wr rdma_wr;
struct smc_link *link;
int rc;
memset(&rdma_wr, 0, sizeof(rdma_wr));
link = &lgr->lnk[SMC_SINGLE_LINK];
rdma_wr.wr.wr_id = smc_wr_tx_get_next_wr_id(link);
rdma_wr.wr.sg_list = sges;
rdma_wr.wr.num_sge = num_sges;
rdma_wr.wr.opcode = IB_WR_RDMA_WRITE;
rdma_wr.remote_addr =
lgr->rtokens[conn->rtoken_idx][SMC_SINGLE_LINK].dma_addr +
/* RMBE within RMB */
((conn->peer_conn_idx - 1) * conn->peer_rmbe_size) +
/* offset within RMBE */
peer_rmbe_offset;
rdma_wr.rkey = lgr->rtokens[conn->rtoken_idx][SMC_SINGLE_LINK].rkey;
rc = ib_post_send(link->roce_qp, &rdma_wr.wr, &failed_wr);
if (rc)
conn->local_tx_ctrl.conn_state_flags.peer_conn_abort = 1;
return rc;
}
/* sndbuf consumer */
static inline void smc_tx_advance_cursors(struct smc_connection *conn,
union smc_host_cursor *prod,
union smc_host_cursor *sent,
size_t len)
{
smc_curs_add(conn->peer_rmbe_size, prod, len);
/* increased in recv tasklet smc_cdc_msg_rcv() */
smp_mb__before_atomic();
/* data in flight reduces usable snd_wnd */
atomic_sub(len, &conn->peer_rmbe_space);
/* guarantee 0 <= peer_rmbe_space <= peer_rmbe_size */
smp_mb__after_atomic();
smc_curs_add(conn->sndbuf_size, sent, len);
}
/* sndbuf consumer: prepare all necessary (src&dst) chunks of data transmit;
* usable snd_wnd as max transmit
*/
static int smc_tx_rdma_writes(struct smc_connection *conn)
{
size_t src_off, src_len, dst_off, dst_len; /* current chunk values */
size_t len, dst_len_sum, src_len_sum, dstchunk, srcchunk;
union smc_host_cursor sent, prep, prod, cons;
struct ib_sge sges[SMC_IB_MAX_SEND_SGE];
struct smc_link_group *lgr = conn->lgr;
int to_send, rmbespace;
struct smc_link *link;
int num_sges;
int rc;
/* source: sndbuf */
smc_curs_write(&sent, smc_curs_read(&conn->tx_curs_sent, conn), conn);
smc_curs_write(&prep, smc_curs_read(&conn->tx_curs_prep, conn), conn);
/* cf. wmem_alloc - (snd_max - snd_una) */
to_send = smc_curs_diff(conn->sndbuf_size, &sent, &prep);
if (to_send <= 0)
return 0;
/* destination: RMBE */
/* cf. snd_wnd */
rmbespace = atomic_read(&conn->peer_rmbe_space);
if (rmbespace <= 0)
return 0;
smc_curs_write(&prod,
smc_curs_read(&conn->local_tx_ctrl.prod, conn),
conn);
smc_curs_write(&cons,
smc_curs_read(&conn->local_rx_ctrl.cons, conn),
conn);
/* if usable snd_wnd closes ask peer to advertise once it opens again */
conn->local_tx_ctrl.prod_flags.write_blocked = (to_send >= rmbespace);
/* cf. usable snd_wnd */
len = min(to_send, rmbespace);
/* initialize variables for first iteration of subsequent nested loop */
link = &lgr->lnk[SMC_SINGLE_LINK];
dst_off = prod.count;
if (prod.wrap == cons.wrap) {
/* the filled destination area is unwrapped,
* hence the available free destination space is wrapped
* and we need 2 destination chunks of sum len; start with 1st
* which is limited by what's available in sndbuf
*/
dst_len = min_t(size_t,
conn->peer_rmbe_size - prod.count, len);
} else {
/* the filled destination area is wrapped,
* hence the available free destination space is unwrapped
* and we need a single destination chunk of entire len
*/
dst_len = len;
}
dst_len_sum = dst_len;
src_off = sent.count;
/* dst_len determines the maximum src_len */
if (sent.count + dst_len <= conn->sndbuf_size) {
/* unwrapped src case: single chunk of entire dst_len */
src_len = dst_len;
} else {
/* wrapped src case: 2 chunks of sum dst_len; start with 1st: */
src_len = conn->sndbuf_size - sent.count;
}
src_len_sum = src_len;
for (dstchunk = 0; dstchunk < 2; dstchunk++) {
num_sges = 0;
for (srcchunk = 0; srcchunk < 2; srcchunk++) {
sges[srcchunk].addr =
conn->sndbuf_desc->dma_addr[SMC_SINGLE_LINK] +
src_off;
sges[srcchunk].length = src_len;
sges[srcchunk].lkey = link->roce_pd->local_dma_lkey;
num_sges++;
src_off += src_len;
if (src_off >= conn->sndbuf_size)
src_off -= conn->sndbuf_size;
/* modulo in send ring */
if (src_len_sum == dst_len)
break; /* either on 1st or 2nd iteration */
/* prepare next (== 2nd) iteration */
src_len = dst_len - src_len; /* remainder */
src_len_sum += src_len;
}
rc = smc_tx_rdma_write(conn, dst_off, num_sges, sges);
if (rc)
return rc;
if (dst_len_sum == len)
break; /* either on 1st or 2nd iteration */
/* prepare next (== 2nd) iteration */
dst_off = 0; /* modulo offset in RMBE ring buffer */
dst_len = len - dst_len; /* remainder */
dst_len_sum += dst_len;
src_len = min_t(int,
dst_len, conn->sndbuf_size - sent.count);
src_len_sum = src_len;
}
smc_tx_advance_cursors(conn, &prod, &sent, len);
/* update connection's cursors with advanced local cursors */
smc_curs_write(&conn->local_tx_ctrl.prod,
smc_curs_read(&prod, conn),
conn);
/* dst: peer RMBE */
smc_curs_write(&conn->tx_curs_sent,
smc_curs_read(&sent, conn),
conn);
/* src: local sndbuf */
return 0;
}
/* Wakeup sndbuf consumers from any context (IRQ or process)
* since there is more data to transmit; usable snd_wnd as max transmit
*/
int smc_tx_sndbuf_nonempty(struct smc_connection *conn)
{
struct smc_cdc_tx_pend *pend;
struct smc_wr_buf *wr_buf;
int rc;
spin_lock_bh(&conn->send_lock);
rc = smc_cdc_get_free_slot(&conn->lgr->lnk[SMC_SINGLE_LINK], &wr_buf,
&pend);
if (rc < 0) {
if (rc == -EBUSY) {
struct smc_sock *smc =
container_of(conn, struct smc_sock, conn);
if (smc->sk.sk_err == ECONNABORTED) {
rc = sock_error(&smc->sk);
goto out_unlock;
}
rc = 0;
schedule_work(&conn->tx_work);
}
goto out_unlock;
}
rc = smc_tx_rdma_writes(conn);
if (rc) {
smc_wr_tx_put_slot(&conn->lgr->lnk[SMC_SINGLE_LINK],
(struct smc_wr_tx_pend_priv *)pend);
goto out_unlock;
}
rc = smc_cdc_msg_send(conn, wr_buf, pend);
out_unlock:
spin_unlock_bh(&conn->send_lock);
return rc;
}
/* Wakeup sndbuf consumers from process context
* since there is more data to transmit
*/
static void smc_tx_work(struct work_struct *work)
{
struct smc_connection *conn = container_of(work,
struct smc_connection,
tx_work);
struct smc_sock *smc = container_of(conn, struct smc_sock, conn);
lock_sock(&smc->sk);
smc_tx_sndbuf_nonempty(conn);
release_sock(&smc->sk);
}
void smc_tx_consumer_update(struct smc_connection *conn)
{
union smc_host_cursor cfed, cons;
struct smc_cdc_tx_pend *pend;
struct smc_wr_buf *wr_buf;
int to_confirm, rc;
smc_curs_write(&cons,
smc_curs_read(&conn->local_tx_ctrl.cons, conn),
conn);
smc_curs_write(&cfed,
smc_curs_read(&conn->rx_curs_confirmed, conn),
conn);
to_confirm = smc_curs_diff(conn->rmbe_size, &cfed, &cons);
if (conn->local_rx_ctrl.prod_flags.cons_curs_upd_req ||
((to_confirm > conn->rmbe_update_limit) &&
((to_confirm > (conn->rmbe_size / 2)) ||
conn->local_rx_ctrl.prod_flags.write_blocked))) {
rc = smc_cdc_get_free_slot(&conn->lgr->lnk[SMC_SINGLE_LINK],
&wr_buf, &pend);
if (!rc)
rc = smc_cdc_msg_send(conn, wr_buf, pend);
if (rc < 0) {
schedule_work(&conn->tx_work);
return;
}
smc_curs_write(&conn->rx_curs_confirmed,
smc_curs_read(&conn->local_tx_ctrl.cons, conn),
conn);
conn->local_rx_ctrl.prod_flags.cons_curs_upd_req = 0;
}
if (conn->local_rx_ctrl.prod_flags.write_blocked &&
!atomic_read(&conn->bytes_to_rcv))
conn->local_rx_ctrl.prod_flags.write_blocked = 0;
}
/***************************** send initialize *******************************/
/* Initialize send properties on connection establishment. NB: not __init! */
void smc_tx_init(struct smc_sock *smc)
{
smc->sk.sk_write_space = smc_tx_write_space;
INIT_WORK(&smc->conn.tx_work, smc_tx_work);
spin_lock_init(&smc->conn.send_lock);
}