linux-stable/fs/gfs2/glock.c
Bob Peterson b3422cacdd gfs2: Rework how rgrp buffer_heads are managed
Before this patch, the rgrp code had a serious problem related to
how it managed buffer_heads for resource groups. The problem caused
file system corruption, especially in cases of journal replay.

When an rgrp glock was demoted to transfer ownership to a
different cluster node, do_xmote() first calls rgrp_go_sync and then
rgrp_go_inval, as expected. When it calls rgrp_go_sync, that called
gfs2_rgrp_brelse() that dropped the buffer_head reference count.
In most cases, the reference count went to zero, which is right.
However, there were other places where the buffers are handled
differently.

After rgrp_go_sync, do_xmote called rgrp_go_inval which called
gfs2_rgrp_brelse a second time, then rgrp_go_inval's call to
truncate_inode_pages_range would get rid of the pages in memory,
but only if the reference count drops to 0.

Unfortunately, gfs2_rgrp_brelse was setting bi->bi_bh = NULL.
So when rgrp_go_sync called gfs2_rgrp_brelse, it lost the pointer
to the buffer_heads in cases where the reference count was still 1.
Therefore, when rgrp_go_inval called gfs2_rgrp_brelse a second time,
it failed the check for "if (bi->bi_bh)" and thus failed to call
brelse a second time. Because of that, the reference count on those
buffers sometimes failed to drop from 1 to 0. And that caused
function truncate_inode_pages_range to keep the pages in page cache
rather than freeing them.

The next time the rgrp glock was acquired, the metadata read of
the rgrp buffers re-used the pages in memory, which were now
wrong because they were likely modified by the other node who
acquired the glock in EX (which is why we demoted the glock).
This re-use of the page cache caused corruption because changes
made by the other nodes were never seen, so the bitmaps were
inaccurate.

For some reason, the problem became most apparent when journal
replay forced the replay of rgrps in memory, which caused newer
rgrp data to be overwritten by the older in-core pages.

A big part of the problem was that the rgrp buffer were released
in multiple places: The go_unlock function would release them when
the glock was released rather than when the glock is demoted,
which is clearly wrong because our intent was to cache them until
the glock is demoted from SH or EX.

This patch attempts to clean up the mess and make one consistent
and centralized mechanism for managing the rgrp buffer_heads by
implementing several changes:

1. It eliminates the call to gfs2_rgrp_brelse() from rgrp_go_sync.
   We don't want to release the buffers or zero the pointers when
   syncing for the reasons stated above. It only makes sense to
   release them when the glock is actually invalidated (go_inval).
   And when we do, then we set the bh pointers to NULL.
2. The go_unlock function (which was only used for rgrps) is
   eliminated, as we've talked about doing many times before.
   The go_unlock function was called too early in the glock dq
   process, and should not happen until the glock is invalidated.
3. It also eliminates the call to rgrp_brelse in gfs2_clear_rgrpd.
   That will now happen automatically when the rgrp glocks are
   demoted, and shouldn't happen any sooner or later than that.
   Instead, function gfs2_clear_rgrpd has been modified to demote
   the rgrp glocks, and therefore, free those pages, before the
   remaining glocks are culled by gfs2_gl_hash_clear. This
   prevents the gl_object from hanging around when the glocks are
   culled.

Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Reviewed-by: Andreas Gruenbacher <agruenba@redhat.com>
2020-02-10 07:39:48 -06:00

2269 lines
56 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/buffer_head.h>
#include <linux/delay.h>
#include <linux/sort.h>
#include <linux/hash.h>
#include <linux/jhash.h>
#include <linux/kallsyms.h>
#include <linux/gfs2_ondisk.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
#include <linux/debugfs.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/rcupdate.h>
#include <linux/rculist_bl.h>
#include <linux/bit_spinlock.h>
#include <linux/percpu.h>
#include <linux/list_sort.h>
#include <linux/lockref.h>
#include <linux/rhashtable.h>
#include "gfs2.h"
#include "incore.h"
#include "glock.h"
#include "glops.h"
#include "inode.h"
#include "lops.h"
#include "meta_io.h"
#include "quota.h"
#include "super.h"
#include "util.h"
#include "bmap.h"
#define CREATE_TRACE_POINTS
#include "trace_gfs2.h"
struct gfs2_glock_iter {
struct gfs2_sbd *sdp; /* incore superblock */
struct rhashtable_iter hti; /* rhashtable iterator */
struct gfs2_glock *gl; /* current glock struct */
loff_t last_pos; /* last position */
};
typedef void (*glock_examiner) (struct gfs2_glock * gl);
static void do_xmote(struct gfs2_glock *gl, struct gfs2_holder *gh, unsigned int target);
static struct dentry *gfs2_root;
static struct workqueue_struct *glock_workqueue;
struct workqueue_struct *gfs2_delete_workqueue;
static LIST_HEAD(lru_list);
static atomic_t lru_count = ATOMIC_INIT(0);
static DEFINE_SPINLOCK(lru_lock);
#define GFS2_GL_HASH_SHIFT 15
#define GFS2_GL_HASH_SIZE BIT(GFS2_GL_HASH_SHIFT)
static const struct rhashtable_params ht_parms = {
.nelem_hint = GFS2_GL_HASH_SIZE * 3 / 4,
.key_len = offsetofend(struct lm_lockname, ln_type),
.key_offset = offsetof(struct gfs2_glock, gl_name),
.head_offset = offsetof(struct gfs2_glock, gl_node),
};
static struct rhashtable gl_hash_table;
#define GLOCK_WAIT_TABLE_BITS 12
#define GLOCK_WAIT_TABLE_SIZE (1 << GLOCK_WAIT_TABLE_BITS)
static wait_queue_head_t glock_wait_table[GLOCK_WAIT_TABLE_SIZE] __cacheline_aligned;
struct wait_glock_queue {
struct lm_lockname *name;
wait_queue_entry_t wait;
};
static int glock_wake_function(wait_queue_entry_t *wait, unsigned int mode,
int sync, void *key)
{
struct wait_glock_queue *wait_glock =
container_of(wait, struct wait_glock_queue, wait);
struct lm_lockname *wait_name = wait_glock->name;
struct lm_lockname *wake_name = key;
if (wake_name->ln_sbd != wait_name->ln_sbd ||
wake_name->ln_number != wait_name->ln_number ||
wake_name->ln_type != wait_name->ln_type)
return 0;
return autoremove_wake_function(wait, mode, sync, key);
}
static wait_queue_head_t *glock_waitqueue(struct lm_lockname *name)
{
u32 hash = jhash2((u32 *)name, ht_parms.key_len / 4, 0);
return glock_wait_table + hash_32(hash, GLOCK_WAIT_TABLE_BITS);
}
/**
* wake_up_glock - Wake up waiters on a glock
* @gl: the glock
*/
static void wake_up_glock(struct gfs2_glock *gl)
{
wait_queue_head_t *wq = glock_waitqueue(&gl->gl_name);
if (waitqueue_active(wq))
__wake_up(wq, TASK_NORMAL, 1, &gl->gl_name);
}
static void gfs2_glock_dealloc(struct rcu_head *rcu)
{
struct gfs2_glock *gl = container_of(rcu, struct gfs2_glock, gl_rcu);
if (gl->gl_ops->go_flags & GLOF_ASPACE) {
kmem_cache_free(gfs2_glock_aspace_cachep, gl);
} else {
kfree(gl->gl_lksb.sb_lvbptr);
kmem_cache_free(gfs2_glock_cachep, gl);
}
}
void gfs2_glock_free(struct gfs2_glock *gl)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
BUG_ON(atomic_read(&gl->gl_revokes));
rhashtable_remove_fast(&gl_hash_table, &gl->gl_node, ht_parms);
smp_mb();
wake_up_glock(gl);
call_rcu(&gl->gl_rcu, gfs2_glock_dealloc);
if (atomic_dec_and_test(&sdp->sd_glock_disposal))
wake_up(&sdp->sd_glock_wait);
}
/**
* gfs2_glock_hold() - increment reference count on glock
* @gl: The glock to hold
*
*/
void gfs2_glock_hold(struct gfs2_glock *gl)
{
GLOCK_BUG_ON(gl, __lockref_is_dead(&gl->gl_lockref));
lockref_get(&gl->gl_lockref);
}
/**
* demote_ok - Check to see if it's ok to unlock a glock
* @gl: the glock
*
* Returns: 1 if it's ok
*/
static int demote_ok(const struct gfs2_glock *gl)
{
const struct gfs2_glock_operations *glops = gl->gl_ops;
if (gl->gl_state == LM_ST_UNLOCKED)
return 0;
if (!list_empty(&gl->gl_holders))
return 0;
if (glops->go_demote_ok)
return glops->go_demote_ok(gl);
return 1;
}
void gfs2_glock_add_to_lru(struct gfs2_glock *gl)
{
if (!(gl->gl_ops->go_flags & GLOF_LRU))
return;
spin_lock(&lru_lock);
list_del(&gl->gl_lru);
list_add_tail(&gl->gl_lru, &lru_list);
if (!test_bit(GLF_LRU, &gl->gl_flags)) {
set_bit(GLF_LRU, &gl->gl_flags);
atomic_inc(&lru_count);
}
spin_unlock(&lru_lock);
}
static void gfs2_glock_remove_from_lru(struct gfs2_glock *gl)
{
if (!(gl->gl_ops->go_flags & GLOF_LRU))
return;
spin_lock(&lru_lock);
if (test_bit(GLF_LRU, &gl->gl_flags)) {
list_del_init(&gl->gl_lru);
atomic_dec(&lru_count);
clear_bit(GLF_LRU, &gl->gl_flags);
}
spin_unlock(&lru_lock);
}
/*
* Enqueue the glock on the work queue. Passes one glock reference on to the
* work queue.
*/
static void __gfs2_glock_queue_work(struct gfs2_glock *gl, unsigned long delay) {
if (!queue_delayed_work(glock_workqueue, &gl->gl_work, delay)) {
/*
* We are holding the lockref spinlock, and the work was still
* queued above. The queued work (glock_work_func) takes that
* spinlock before dropping its glock reference(s), so it
* cannot have dropped them in the meantime.
*/
GLOCK_BUG_ON(gl, gl->gl_lockref.count < 2);
gl->gl_lockref.count--;
}
}
static void gfs2_glock_queue_work(struct gfs2_glock *gl, unsigned long delay) {
spin_lock(&gl->gl_lockref.lock);
__gfs2_glock_queue_work(gl, delay);
spin_unlock(&gl->gl_lockref.lock);
}
static void __gfs2_glock_put(struct gfs2_glock *gl)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct address_space *mapping = gfs2_glock2aspace(gl);
lockref_mark_dead(&gl->gl_lockref);
gfs2_glock_remove_from_lru(gl);
spin_unlock(&gl->gl_lockref.lock);
GLOCK_BUG_ON(gl, !list_empty(&gl->gl_holders));
GLOCK_BUG_ON(gl, mapping && mapping->nrpages);
trace_gfs2_glock_put(gl);
sdp->sd_lockstruct.ls_ops->lm_put_lock(gl);
}
/*
* Cause the glock to be put in work queue context.
*/
void gfs2_glock_queue_put(struct gfs2_glock *gl)
{
gfs2_glock_queue_work(gl, 0);
}
/**
* gfs2_glock_put() - Decrement reference count on glock
* @gl: The glock to put
*
*/
void gfs2_glock_put(struct gfs2_glock *gl)
{
if (lockref_put_or_lock(&gl->gl_lockref))
return;
__gfs2_glock_put(gl);
}
/**
* may_grant - check if its ok to grant a new lock
* @gl: The glock
* @gh: The lock request which we wish to grant
*
* Returns: true if its ok to grant the lock
*/
static inline int may_grant(const struct gfs2_glock *gl, const struct gfs2_holder *gh)
{
const struct gfs2_holder *gh_head = list_entry(gl->gl_holders.next, const struct gfs2_holder, gh_list);
if ((gh->gh_state == LM_ST_EXCLUSIVE ||
gh_head->gh_state == LM_ST_EXCLUSIVE) && gh != gh_head)
return 0;
if (gl->gl_state == gh->gh_state)
return 1;
if (gh->gh_flags & GL_EXACT)
return 0;
if (gl->gl_state == LM_ST_EXCLUSIVE) {
if (gh->gh_state == LM_ST_SHARED && gh_head->gh_state == LM_ST_SHARED)
return 1;
if (gh->gh_state == LM_ST_DEFERRED && gh_head->gh_state == LM_ST_DEFERRED)
return 1;
}
if (gl->gl_state != LM_ST_UNLOCKED && (gh->gh_flags & LM_FLAG_ANY))
return 1;
return 0;
}
static void gfs2_holder_wake(struct gfs2_holder *gh)
{
clear_bit(HIF_WAIT, &gh->gh_iflags);
smp_mb__after_atomic();
wake_up_bit(&gh->gh_iflags, HIF_WAIT);
if (gh->gh_flags & GL_ASYNC) {
struct gfs2_sbd *sdp = gh->gh_gl->gl_name.ln_sbd;
wake_up(&sdp->sd_async_glock_wait);
}
}
/**
* do_error - Something unexpected has happened during a lock request
*
*/
static void do_error(struct gfs2_glock *gl, const int ret)
{
struct gfs2_holder *gh, *tmp;
list_for_each_entry_safe(gh, tmp, &gl->gl_holders, gh_list) {
if (test_bit(HIF_HOLDER, &gh->gh_iflags))
continue;
if (ret & LM_OUT_ERROR)
gh->gh_error = -EIO;
else if (gh->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB))
gh->gh_error = GLR_TRYFAILED;
else
continue;
list_del_init(&gh->gh_list);
trace_gfs2_glock_queue(gh, 0);
gfs2_holder_wake(gh);
}
}
/**
* do_promote - promote as many requests as possible on the current queue
* @gl: The glock
*
* Returns: 1 if there is a blocked holder at the head of the list, or 2
* if a type specific operation is underway.
*/
static int do_promote(struct gfs2_glock *gl)
__releases(&gl->gl_lockref.lock)
__acquires(&gl->gl_lockref.lock)
{
const struct gfs2_glock_operations *glops = gl->gl_ops;
struct gfs2_holder *gh, *tmp;
int ret;
restart:
list_for_each_entry_safe(gh, tmp, &gl->gl_holders, gh_list) {
if (test_bit(HIF_HOLDER, &gh->gh_iflags))
continue;
if (may_grant(gl, gh)) {
if (gh->gh_list.prev == &gl->gl_holders &&
glops->go_lock) {
spin_unlock(&gl->gl_lockref.lock);
/* FIXME: eliminate this eventually */
ret = glops->go_lock(gh);
spin_lock(&gl->gl_lockref.lock);
if (ret) {
if (ret == 1)
return 2;
gh->gh_error = ret;
list_del_init(&gh->gh_list);
trace_gfs2_glock_queue(gh, 0);
gfs2_holder_wake(gh);
goto restart;
}
set_bit(HIF_HOLDER, &gh->gh_iflags);
trace_gfs2_promote(gh, 1);
gfs2_holder_wake(gh);
goto restart;
}
set_bit(HIF_HOLDER, &gh->gh_iflags);
trace_gfs2_promote(gh, 0);
gfs2_holder_wake(gh);
continue;
}
if (gh->gh_list.prev == &gl->gl_holders)
return 1;
do_error(gl, 0);
break;
}
return 0;
}
/**
* find_first_waiter - find the first gh that's waiting for the glock
* @gl: the glock
*/
static inline struct gfs2_holder *find_first_waiter(const struct gfs2_glock *gl)
{
struct gfs2_holder *gh;
list_for_each_entry(gh, &gl->gl_holders, gh_list) {
if (!test_bit(HIF_HOLDER, &gh->gh_iflags))
return gh;
}
return NULL;
}
/**
* state_change - record that the glock is now in a different state
* @gl: the glock
* @new_state the new state
*
*/
static void state_change(struct gfs2_glock *gl, unsigned int new_state)
{
int held1, held2;
held1 = (gl->gl_state != LM_ST_UNLOCKED);
held2 = (new_state != LM_ST_UNLOCKED);
if (held1 != held2) {
GLOCK_BUG_ON(gl, __lockref_is_dead(&gl->gl_lockref));
if (held2)
gl->gl_lockref.count++;
else
gl->gl_lockref.count--;
}
if (held1 && held2 && list_empty(&gl->gl_holders))
clear_bit(GLF_QUEUED, &gl->gl_flags);
if (new_state != gl->gl_target)
/* shorten our minimum hold time */
gl->gl_hold_time = max(gl->gl_hold_time - GL_GLOCK_HOLD_DECR,
GL_GLOCK_MIN_HOLD);
gl->gl_state = new_state;
gl->gl_tchange = jiffies;
}
static void gfs2_demote_wake(struct gfs2_glock *gl)
{
gl->gl_demote_state = LM_ST_EXCLUSIVE;
clear_bit(GLF_DEMOTE, &gl->gl_flags);
smp_mb__after_atomic();
wake_up_bit(&gl->gl_flags, GLF_DEMOTE);
}
/**
* finish_xmote - The DLM has replied to one of our lock requests
* @gl: The glock
* @ret: The status from the DLM
*
*/
static void finish_xmote(struct gfs2_glock *gl, unsigned int ret)
{
const struct gfs2_glock_operations *glops = gl->gl_ops;
struct gfs2_holder *gh;
unsigned state = ret & LM_OUT_ST_MASK;
int rv;
spin_lock(&gl->gl_lockref.lock);
trace_gfs2_glock_state_change(gl, state);
state_change(gl, state);
gh = find_first_waiter(gl);
/* Demote to UN request arrived during demote to SH or DF */
if (test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
state != LM_ST_UNLOCKED && gl->gl_demote_state == LM_ST_UNLOCKED)
gl->gl_target = LM_ST_UNLOCKED;
/* Check for state != intended state */
if (unlikely(state != gl->gl_target)) {
if (gh && !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags)) {
/* move to back of queue and try next entry */
if (ret & LM_OUT_CANCELED) {
if ((gh->gh_flags & LM_FLAG_PRIORITY) == 0)
list_move_tail(&gh->gh_list, &gl->gl_holders);
gh = find_first_waiter(gl);
gl->gl_target = gh->gh_state;
goto retry;
}
/* Some error or failed "try lock" - report it */
if ((ret & LM_OUT_ERROR) ||
(gh->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB))) {
gl->gl_target = gl->gl_state;
do_error(gl, ret);
goto out;
}
}
switch(state) {
/* Unlocked due to conversion deadlock, try again */
case LM_ST_UNLOCKED:
retry:
do_xmote(gl, gh, gl->gl_target);
break;
/* Conversion fails, unlock and try again */
case LM_ST_SHARED:
case LM_ST_DEFERRED:
do_xmote(gl, gh, LM_ST_UNLOCKED);
break;
default: /* Everything else */
fs_err(gl->gl_name.ln_sbd, "wanted %u got %u\n",
gl->gl_target, state);
GLOCK_BUG_ON(gl, 1);
}
spin_unlock(&gl->gl_lockref.lock);
return;
}
/* Fast path - we got what we asked for */
if (test_and_clear_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags))
gfs2_demote_wake(gl);
if (state != LM_ST_UNLOCKED) {
if (glops->go_xmote_bh) {
spin_unlock(&gl->gl_lockref.lock);
rv = glops->go_xmote_bh(gl, gh);
spin_lock(&gl->gl_lockref.lock);
if (rv) {
do_error(gl, rv);
goto out;
}
}
rv = do_promote(gl);
if (rv == 2)
goto out_locked;
}
out:
clear_bit(GLF_LOCK, &gl->gl_flags);
out_locked:
spin_unlock(&gl->gl_lockref.lock);
}
/**
* do_xmote - Calls the DLM to change the state of a lock
* @gl: The lock state
* @gh: The holder (only for promotes)
* @target: The target lock state
*
*/
static void do_xmote(struct gfs2_glock *gl, struct gfs2_holder *gh, unsigned int target)
__releases(&gl->gl_lockref.lock)
__acquires(&gl->gl_lockref.lock)
{
const struct gfs2_glock_operations *glops = gl->gl_ops;
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
unsigned int lck_flags = (unsigned int)(gh ? gh->gh_flags : 0);
int ret;
if (unlikely(gfs2_withdrawn(sdp)) &&
target != LM_ST_UNLOCKED)
return;
lck_flags &= (LM_FLAG_TRY | LM_FLAG_TRY_1CB | LM_FLAG_NOEXP |
LM_FLAG_PRIORITY);
GLOCK_BUG_ON(gl, gl->gl_state == target);
GLOCK_BUG_ON(gl, gl->gl_state == gl->gl_target);
if ((target == LM_ST_UNLOCKED || target == LM_ST_DEFERRED) &&
glops->go_inval) {
/*
* If another process is already doing the invalidate, let that
* finish first. The glock state machine will get back to this
* holder again later.
*/
if (test_and_set_bit(GLF_INVALIDATE_IN_PROGRESS,
&gl->gl_flags))
return;
do_error(gl, 0); /* Fail queued try locks */
}
gl->gl_req = target;
set_bit(GLF_BLOCKING, &gl->gl_flags);
if ((gl->gl_req == LM_ST_UNLOCKED) ||
(gl->gl_state == LM_ST_EXCLUSIVE) ||
(lck_flags & (LM_FLAG_TRY|LM_FLAG_TRY_1CB)))
clear_bit(GLF_BLOCKING, &gl->gl_flags);
spin_unlock(&gl->gl_lockref.lock);
if (glops->go_sync)
glops->go_sync(gl);
if (test_bit(GLF_INVALIDATE_IN_PROGRESS, &gl->gl_flags))
glops->go_inval(gl, target == LM_ST_DEFERRED ? 0 : DIO_METADATA);
clear_bit(GLF_INVALIDATE_IN_PROGRESS, &gl->gl_flags);
gfs2_glock_hold(gl);
if (sdp->sd_lockstruct.ls_ops->lm_lock) {
/* lock_dlm */
ret = sdp->sd_lockstruct.ls_ops->lm_lock(gl, target, lck_flags);
if (ret == -EINVAL && gl->gl_target == LM_ST_UNLOCKED &&
target == LM_ST_UNLOCKED &&
test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags)) {
finish_xmote(gl, target);
gfs2_glock_queue_work(gl, 0);
}
else if (ret) {
fs_err(sdp, "lm_lock ret %d\n", ret);
GLOCK_BUG_ON(gl, !gfs2_withdrawn(sdp));
}
} else { /* lock_nolock */
finish_xmote(gl, target);
gfs2_glock_queue_work(gl, 0);
}
spin_lock(&gl->gl_lockref.lock);
}
/**
* find_first_holder - find the first "holder" gh
* @gl: the glock
*/
static inline struct gfs2_holder *find_first_holder(const struct gfs2_glock *gl)
{
struct gfs2_holder *gh;
if (!list_empty(&gl->gl_holders)) {
gh = list_entry(gl->gl_holders.next, struct gfs2_holder, gh_list);
if (test_bit(HIF_HOLDER, &gh->gh_iflags))
return gh;
}
return NULL;
}
/**
* run_queue - do all outstanding tasks related to a glock
* @gl: The glock in question
* @nonblock: True if we must not block in run_queue
*
*/
static void run_queue(struct gfs2_glock *gl, const int nonblock)
__releases(&gl->gl_lockref.lock)
__acquires(&gl->gl_lockref.lock)
{
struct gfs2_holder *gh = NULL;
int ret;
if (test_and_set_bit(GLF_LOCK, &gl->gl_flags))
return;
GLOCK_BUG_ON(gl, test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags));
if (test_bit(GLF_DEMOTE, &gl->gl_flags) &&
gl->gl_demote_state != gl->gl_state) {
if (find_first_holder(gl))
goto out_unlock;
if (nonblock)
goto out_sched;
set_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags);
GLOCK_BUG_ON(gl, gl->gl_demote_state == LM_ST_EXCLUSIVE);
gl->gl_target = gl->gl_demote_state;
} else {
if (test_bit(GLF_DEMOTE, &gl->gl_flags))
gfs2_demote_wake(gl);
ret = do_promote(gl);
if (ret == 0)
goto out_unlock;
if (ret == 2)
goto out;
gh = find_first_waiter(gl);
gl->gl_target = gh->gh_state;
if (!(gh->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB)))
do_error(gl, 0); /* Fail queued try locks */
}
do_xmote(gl, gh, gl->gl_target);
out:
return;
out_sched:
clear_bit(GLF_LOCK, &gl->gl_flags);
smp_mb__after_atomic();
gl->gl_lockref.count++;
__gfs2_glock_queue_work(gl, 0);
return;
out_unlock:
clear_bit(GLF_LOCK, &gl->gl_flags);
smp_mb__after_atomic();
return;
}
static void delete_work_func(struct work_struct *work)
{
struct gfs2_glock *gl = container_of(work, struct gfs2_glock, gl_delete);
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct inode *inode;
u64 no_addr = gl->gl_name.ln_number;
/* If someone's using this glock to create a new dinode, the block must
have been freed by another node, then re-used, in which case our
iopen callback is too late after the fact. Ignore it. */
if (test_bit(GLF_INODE_CREATING, &gl->gl_flags))
goto out;
inode = gfs2_lookup_by_inum(sdp, no_addr, NULL, GFS2_BLKST_UNLINKED);
if (!IS_ERR_OR_NULL(inode)) {
d_prune_aliases(inode);
iput(inode);
}
out:
gfs2_glock_put(gl);
}
static void glock_work_func(struct work_struct *work)
{
unsigned long delay = 0;
struct gfs2_glock *gl = container_of(work, struct gfs2_glock, gl_work.work);
unsigned int drop_refs = 1;
if (test_and_clear_bit(GLF_REPLY_PENDING, &gl->gl_flags)) {
finish_xmote(gl, gl->gl_reply);
drop_refs++;
}
spin_lock(&gl->gl_lockref.lock);
if (test_bit(GLF_PENDING_DEMOTE, &gl->gl_flags) &&
gl->gl_state != LM_ST_UNLOCKED &&
gl->gl_demote_state != LM_ST_EXCLUSIVE) {
unsigned long holdtime, now = jiffies;
holdtime = gl->gl_tchange + gl->gl_hold_time;
if (time_before(now, holdtime))
delay = holdtime - now;
if (!delay) {
clear_bit(GLF_PENDING_DEMOTE, &gl->gl_flags);
set_bit(GLF_DEMOTE, &gl->gl_flags);
}
}
run_queue(gl, 0);
if (delay) {
/* Keep one glock reference for the work we requeue. */
drop_refs--;
if (gl->gl_name.ln_type != LM_TYPE_INODE)
delay = 0;
__gfs2_glock_queue_work(gl, delay);
}
/*
* Drop the remaining glock references manually here. (Mind that
* __gfs2_glock_queue_work depends on the lockref spinlock begin held
* here as well.)
*/
gl->gl_lockref.count -= drop_refs;
if (!gl->gl_lockref.count) {
__gfs2_glock_put(gl);
return;
}
spin_unlock(&gl->gl_lockref.lock);
}
static struct gfs2_glock *find_insert_glock(struct lm_lockname *name,
struct gfs2_glock *new)
{
struct wait_glock_queue wait;
wait_queue_head_t *wq = glock_waitqueue(name);
struct gfs2_glock *gl;
wait.name = name;
init_wait(&wait.wait);
wait.wait.func = glock_wake_function;
again:
prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
rcu_read_lock();
if (new) {
gl = rhashtable_lookup_get_insert_fast(&gl_hash_table,
&new->gl_node, ht_parms);
if (IS_ERR(gl))
goto out;
} else {
gl = rhashtable_lookup_fast(&gl_hash_table,
name, ht_parms);
}
if (gl && !lockref_get_not_dead(&gl->gl_lockref)) {
rcu_read_unlock();
schedule();
goto again;
}
out:
rcu_read_unlock();
finish_wait(wq, &wait.wait);
return gl;
}
/**
* gfs2_glock_get() - Get a glock, or create one if one doesn't exist
* @sdp: The GFS2 superblock
* @number: the lock number
* @glops: The glock_operations to use
* @create: If 0, don't create the glock if it doesn't exist
* @glp: the glock is returned here
*
* This does not lock a glock, just finds/creates structures for one.
*
* Returns: errno
*/
int gfs2_glock_get(struct gfs2_sbd *sdp, u64 number,
const struct gfs2_glock_operations *glops, int create,
struct gfs2_glock **glp)
{
struct super_block *s = sdp->sd_vfs;
struct lm_lockname name = { .ln_number = number,
.ln_type = glops->go_type,
.ln_sbd = sdp };
struct gfs2_glock *gl, *tmp;
struct address_space *mapping;
struct kmem_cache *cachep;
int ret = 0;
gl = find_insert_glock(&name, NULL);
if (gl) {
*glp = gl;
return 0;
}
if (!create)
return -ENOENT;
if (glops->go_flags & GLOF_ASPACE)
cachep = gfs2_glock_aspace_cachep;
else
cachep = gfs2_glock_cachep;
gl = kmem_cache_alloc(cachep, GFP_NOFS);
if (!gl)
return -ENOMEM;
memset(&gl->gl_lksb, 0, sizeof(struct dlm_lksb));
if (glops->go_flags & GLOF_LVB) {
gl->gl_lksb.sb_lvbptr = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
if (!gl->gl_lksb.sb_lvbptr) {
kmem_cache_free(cachep, gl);
return -ENOMEM;
}
}
atomic_inc(&sdp->sd_glock_disposal);
gl->gl_node.next = NULL;
gl->gl_flags = 0;
gl->gl_name = name;
gl->gl_lockref.count = 1;
gl->gl_state = LM_ST_UNLOCKED;
gl->gl_target = LM_ST_UNLOCKED;
gl->gl_demote_state = LM_ST_EXCLUSIVE;
gl->gl_ops = glops;
gl->gl_dstamp = 0;
preempt_disable();
/* We use the global stats to estimate the initial per-glock stats */
gl->gl_stats = this_cpu_ptr(sdp->sd_lkstats)->lkstats[glops->go_type];
preempt_enable();
gl->gl_stats.stats[GFS2_LKS_DCOUNT] = 0;
gl->gl_stats.stats[GFS2_LKS_QCOUNT] = 0;
gl->gl_tchange = jiffies;
gl->gl_object = NULL;
gl->gl_hold_time = GL_GLOCK_DFT_HOLD;
INIT_DELAYED_WORK(&gl->gl_work, glock_work_func);
INIT_WORK(&gl->gl_delete, delete_work_func);
mapping = gfs2_glock2aspace(gl);
if (mapping) {
mapping->a_ops = &gfs2_meta_aops;
mapping->host = s->s_bdev->bd_inode;
mapping->flags = 0;
mapping_set_gfp_mask(mapping, GFP_NOFS);
mapping->private_data = NULL;
mapping->writeback_index = 0;
}
tmp = find_insert_glock(&name, gl);
if (!tmp) {
*glp = gl;
goto out;
}
if (IS_ERR(tmp)) {
ret = PTR_ERR(tmp);
goto out_free;
}
*glp = tmp;
out_free:
kfree(gl->gl_lksb.sb_lvbptr);
kmem_cache_free(cachep, gl);
atomic_dec(&sdp->sd_glock_disposal);
out:
return ret;
}
/**
* gfs2_holder_init - initialize a struct gfs2_holder in the default way
* @gl: the glock
* @state: the state we're requesting
* @flags: the modifier flags
* @gh: the holder structure
*
*/
void gfs2_holder_init(struct gfs2_glock *gl, unsigned int state, u16 flags,
struct gfs2_holder *gh)
{
INIT_LIST_HEAD(&gh->gh_list);
gh->gh_gl = gl;
gh->gh_ip = _RET_IP_;
gh->gh_owner_pid = get_pid(task_pid(current));
gh->gh_state = state;
gh->gh_flags = flags;
gh->gh_error = 0;
gh->gh_iflags = 0;
gfs2_glock_hold(gl);
}
/**
* gfs2_holder_reinit - reinitialize a struct gfs2_holder so we can requeue it
* @state: the state we're requesting
* @flags: the modifier flags
* @gh: the holder structure
*
* Don't mess with the glock.
*
*/
void gfs2_holder_reinit(unsigned int state, u16 flags, struct gfs2_holder *gh)
{
gh->gh_state = state;
gh->gh_flags = flags;
gh->gh_iflags = 0;
gh->gh_ip = _RET_IP_;
put_pid(gh->gh_owner_pid);
gh->gh_owner_pid = get_pid(task_pid(current));
}
/**
* gfs2_holder_uninit - uninitialize a holder structure (drop glock reference)
* @gh: the holder structure
*
*/
void gfs2_holder_uninit(struct gfs2_holder *gh)
{
put_pid(gh->gh_owner_pid);
gfs2_glock_put(gh->gh_gl);
gfs2_holder_mark_uninitialized(gh);
gh->gh_ip = 0;
}
static void gfs2_glock_update_hold_time(struct gfs2_glock *gl,
unsigned long start_time)
{
/* Have we waited longer that a second? */
if (time_after(jiffies, start_time + HZ)) {
/* Lengthen the minimum hold time. */
gl->gl_hold_time = min(gl->gl_hold_time + GL_GLOCK_HOLD_INCR,
GL_GLOCK_MAX_HOLD);
}
}
/**
* gfs2_glock_wait - wait on a glock acquisition
* @gh: the glock holder
*
* Returns: 0 on success
*/
int gfs2_glock_wait(struct gfs2_holder *gh)
{
unsigned long start_time = jiffies;
might_sleep();
wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE);
gfs2_glock_update_hold_time(gh->gh_gl, start_time);
return gh->gh_error;
}
static int glocks_pending(unsigned int num_gh, struct gfs2_holder *ghs)
{
int i;
for (i = 0; i < num_gh; i++)
if (test_bit(HIF_WAIT, &ghs[i].gh_iflags))
return 1;
return 0;
}
/**
* gfs2_glock_async_wait - wait on multiple asynchronous glock acquisitions
* @num_gh: the number of holders in the array
* @ghs: the glock holder array
*
* Returns: 0 on success, meaning all glocks have been granted and are held.
* -ESTALE if the request timed out, meaning all glocks were released,
* and the caller should retry the operation.
*/
int gfs2_glock_async_wait(unsigned int num_gh, struct gfs2_holder *ghs)
{
struct gfs2_sbd *sdp = ghs[0].gh_gl->gl_name.ln_sbd;
int i, ret = 0, timeout = 0;
unsigned long start_time = jiffies;
bool keep_waiting;
might_sleep();
/*
* Total up the (minimum hold time * 2) of all glocks and use that to
* determine the max amount of time we should wait.
*/
for (i = 0; i < num_gh; i++)
timeout += ghs[i].gh_gl->gl_hold_time << 1;
wait_for_dlm:
if (!wait_event_timeout(sdp->sd_async_glock_wait,
!glocks_pending(num_gh, ghs), timeout))
ret = -ESTALE; /* request timed out. */
/*
* If dlm granted all our requests, we need to adjust the glock
* minimum hold time values according to how long we waited.
*
* If our request timed out, we need to repeatedly release any held
* glocks we acquired thus far to allow dlm to acquire the remaining
* glocks without deadlocking. We cannot currently cancel outstanding
* glock acquisitions.
*
* The HIF_WAIT bit tells us which requests still need a response from
* dlm.
*
* If dlm sent us any errors, we return the first error we find.
*/
keep_waiting = false;
for (i = 0; i < num_gh; i++) {
/* Skip holders we have already dequeued below. */
if (!gfs2_holder_queued(&ghs[i]))
continue;
/* Skip holders with a pending DLM response. */
if (test_bit(HIF_WAIT, &ghs[i].gh_iflags)) {
keep_waiting = true;
continue;
}
if (test_bit(HIF_HOLDER, &ghs[i].gh_iflags)) {
if (ret == -ESTALE)
gfs2_glock_dq(&ghs[i]);
else
gfs2_glock_update_hold_time(ghs[i].gh_gl,
start_time);
}
if (!ret)
ret = ghs[i].gh_error;
}
if (keep_waiting)
goto wait_for_dlm;
/*
* At this point, we've either acquired all locks or released them all.
*/
return ret;
}
/**
* handle_callback - process a demote request
* @gl: the glock
* @state: the state the caller wants us to change to
*
* There are only two requests that we are going to see in actual
* practise: LM_ST_SHARED and LM_ST_UNLOCKED
*/
static void handle_callback(struct gfs2_glock *gl, unsigned int state,
unsigned long delay, bool remote)
{
int bit = delay ? GLF_PENDING_DEMOTE : GLF_DEMOTE;
set_bit(bit, &gl->gl_flags);
if (gl->gl_demote_state == LM_ST_EXCLUSIVE) {
gl->gl_demote_state = state;
gl->gl_demote_time = jiffies;
} else if (gl->gl_demote_state != LM_ST_UNLOCKED &&
gl->gl_demote_state != state) {
gl->gl_demote_state = LM_ST_UNLOCKED;
}
if (gl->gl_ops->go_callback)
gl->gl_ops->go_callback(gl, remote);
trace_gfs2_demote_rq(gl, remote);
}
void gfs2_print_dbg(struct seq_file *seq, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
if (seq) {
seq_vprintf(seq, fmt, args);
} else {
vaf.fmt = fmt;
vaf.va = &args;
pr_err("%pV", &vaf);
}
va_end(args);
}
/**
* add_to_queue - Add a holder to the wait queue (but look for recursion)
* @gh: the holder structure to add
*
* Eventually we should move the recursive locking trap to a
* debugging option or something like that. This is the fast
* path and needs to have the minimum number of distractions.
*
*/
static inline void add_to_queue(struct gfs2_holder *gh)
__releases(&gl->gl_lockref.lock)
__acquires(&gl->gl_lockref.lock)
{
struct gfs2_glock *gl = gh->gh_gl;
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct list_head *insert_pt = NULL;
struct gfs2_holder *gh2;
int try_futile = 0;
GLOCK_BUG_ON(gl, gh->gh_owner_pid == NULL);
if (test_and_set_bit(HIF_WAIT, &gh->gh_iflags))
GLOCK_BUG_ON(gl, true);
if (gh->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB)) {
if (test_bit(GLF_LOCK, &gl->gl_flags))
try_futile = !may_grant(gl, gh);
if (test_bit(GLF_INVALIDATE_IN_PROGRESS, &gl->gl_flags))
goto fail;
}
list_for_each_entry(gh2, &gl->gl_holders, gh_list) {
if (unlikely(gh2->gh_owner_pid == gh->gh_owner_pid &&
(gh->gh_gl->gl_ops->go_type != LM_TYPE_FLOCK)))
goto trap_recursive;
if (try_futile &&
!(gh2->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB))) {
fail:
gh->gh_error = GLR_TRYFAILED;
gfs2_holder_wake(gh);
return;
}
if (test_bit(HIF_HOLDER, &gh2->gh_iflags))
continue;
if (unlikely((gh->gh_flags & LM_FLAG_PRIORITY) && !insert_pt))
insert_pt = &gh2->gh_list;
}
set_bit(GLF_QUEUED, &gl->gl_flags);
trace_gfs2_glock_queue(gh, 1);
gfs2_glstats_inc(gl, GFS2_LKS_QCOUNT);
gfs2_sbstats_inc(gl, GFS2_LKS_QCOUNT);
if (likely(insert_pt == NULL)) {
list_add_tail(&gh->gh_list, &gl->gl_holders);
if (unlikely(gh->gh_flags & LM_FLAG_PRIORITY))
goto do_cancel;
return;
}
list_add_tail(&gh->gh_list, insert_pt);
do_cancel:
gh = list_entry(gl->gl_holders.next, struct gfs2_holder, gh_list);
if (!(gh->gh_flags & LM_FLAG_PRIORITY)) {
spin_unlock(&gl->gl_lockref.lock);
if (sdp->sd_lockstruct.ls_ops->lm_cancel)
sdp->sd_lockstruct.ls_ops->lm_cancel(gl);
spin_lock(&gl->gl_lockref.lock);
}
return;
trap_recursive:
fs_err(sdp, "original: %pSR\n", (void *)gh2->gh_ip);
fs_err(sdp, "pid: %d\n", pid_nr(gh2->gh_owner_pid));
fs_err(sdp, "lock type: %d req lock state : %d\n",
gh2->gh_gl->gl_name.ln_type, gh2->gh_state);
fs_err(sdp, "new: %pSR\n", (void *)gh->gh_ip);
fs_err(sdp, "pid: %d\n", pid_nr(gh->gh_owner_pid));
fs_err(sdp, "lock type: %d req lock state : %d\n",
gh->gh_gl->gl_name.ln_type, gh->gh_state);
gfs2_dump_glock(NULL, gl, true);
BUG();
}
/**
* gfs2_glock_nq - enqueue a struct gfs2_holder onto a glock (acquire a glock)
* @gh: the holder structure
*
* if (gh->gh_flags & GL_ASYNC), this never returns an error
*
* Returns: 0, GLR_TRYFAILED, or errno on failure
*/
int gfs2_glock_nq(struct gfs2_holder *gh)
{
struct gfs2_glock *gl = gh->gh_gl;
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
int error = 0;
if (unlikely(gfs2_withdrawn(sdp)))
return -EIO;
if (test_bit(GLF_LRU, &gl->gl_flags))
gfs2_glock_remove_from_lru(gl);
spin_lock(&gl->gl_lockref.lock);
add_to_queue(gh);
if (unlikely((LM_FLAG_NOEXP & gh->gh_flags) &&
test_and_clear_bit(GLF_FROZEN, &gl->gl_flags))) {
set_bit(GLF_REPLY_PENDING, &gl->gl_flags);
gl->gl_lockref.count++;
__gfs2_glock_queue_work(gl, 0);
}
run_queue(gl, 1);
spin_unlock(&gl->gl_lockref.lock);
if (!(gh->gh_flags & GL_ASYNC))
error = gfs2_glock_wait(gh);
return error;
}
/**
* gfs2_glock_poll - poll to see if an async request has been completed
* @gh: the holder
*
* Returns: 1 if the request is ready to be gfs2_glock_wait()ed on
*/
int gfs2_glock_poll(struct gfs2_holder *gh)
{
return test_bit(HIF_WAIT, &gh->gh_iflags) ? 0 : 1;
}
/**
* gfs2_glock_dq - dequeue a struct gfs2_holder from a glock (release a glock)
* @gh: the glock holder
*
*/
void gfs2_glock_dq(struct gfs2_holder *gh)
{
struct gfs2_glock *gl = gh->gh_gl;
unsigned delay = 0;
int fast_path = 0;
spin_lock(&gl->gl_lockref.lock);
if (gh->gh_flags & GL_NOCACHE)
handle_callback(gl, LM_ST_UNLOCKED, 0, false);
list_del_init(&gh->gh_list);
clear_bit(HIF_HOLDER, &gh->gh_iflags);
if (find_first_holder(gl) == NULL) {
if (list_empty(&gl->gl_holders) &&
!test_bit(GLF_PENDING_DEMOTE, &gl->gl_flags) &&
!test_bit(GLF_DEMOTE, &gl->gl_flags))
fast_path = 1;
}
if (!test_bit(GLF_LFLUSH, &gl->gl_flags) && demote_ok(gl))
gfs2_glock_add_to_lru(gl);
trace_gfs2_glock_queue(gh, 0);
if (unlikely(!fast_path)) {
gl->gl_lockref.count++;
if (test_bit(GLF_PENDING_DEMOTE, &gl->gl_flags) &&
!test_bit(GLF_DEMOTE, &gl->gl_flags) &&
gl->gl_name.ln_type == LM_TYPE_INODE)
delay = gl->gl_hold_time;
__gfs2_glock_queue_work(gl, delay);
}
spin_unlock(&gl->gl_lockref.lock);
}
void gfs2_glock_dq_wait(struct gfs2_holder *gh)
{
struct gfs2_glock *gl = gh->gh_gl;
gfs2_glock_dq(gh);
might_sleep();
wait_on_bit(&gl->gl_flags, GLF_DEMOTE, TASK_UNINTERRUPTIBLE);
}
/**
* gfs2_glock_dq_uninit - dequeue a holder from a glock and initialize it
* @gh: the holder structure
*
*/
void gfs2_glock_dq_uninit(struct gfs2_holder *gh)
{
gfs2_glock_dq(gh);
gfs2_holder_uninit(gh);
}
/**
* gfs2_glock_nq_num - acquire a glock based on lock number
* @sdp: the filesystem
* @number: the lock number
* @glops: the glock operations for the type of glock
* @state: the state to acquire the glock in
* @flags: modifier flags for the acquisition
* @gh: the struct gfs2_holder
*
* Returns: errno
*/
int gfs2_glock_nq_num(struct gfs2_sbd *sdp, u64 number,
const struct gfs2_glock_operations *glops,
unsigned int state, u16 flags, struct gfs2_holder *gh)
{
struct gfs2_glock *gl;
int error;
error = gfs2_glock_get(sdp, number, glops, CREATE, &gl);
if (!error) {
error = gfs2_glock_nq_init(gl, state, flags, gh);
gfs2_glock_put(gl);
}
return error;
}
/**
* glock_compare - Compare two struct gfs2_glock structures for sorting
* @arg_a: the first structure
* @arg_b: the second structure
*
*/
static int glock_compare(const void *arg_a, const void *arg_b)
{
const struct gfs2_holder *gh_a = *(const struct gfs2_holder **)arg_a;
const struct gfs2_holder *gh_b = *(const struct gfs2_holder **)arg_b;
const struct lm_lockname *a = &gh_a->gh_gl->gl_name;
const struct lm_lockname *b = &gh_b->gh_gl->gl_name;
if (a->ln_number > b->ln_number)
return 1;
if (a->ln_number < b->ln_number)
return -1;
BUG_ON(gh_a->gh_gl->gl_ops->go_type == gh_b->gh_gl->gl_ops->go_type);
return 0;
}
/**
* nq_m_sync - synchonously acquire more than one glock in deadlock free order
* @num_gh: the number of structures
* @ghs: an array of struct gfs2_holder structures
*
* Returns: 0 on success (all glocks acquired),
* errno on failure (no glocks acquired)
*/
static int nq_m_sync(unsigned int num_gh, struct gfs2_holder *ghs,
struct gfs2_holder **p)
{
unsigned int x;
int error = 0;
for (x = 0; x < num_gh; x++)
p[x] = &ghs[x];
sort(p, num_gh, sizeof(struct gfs2_holder *), glock_compare, NULL);
for (x = 0; x < num_gh; x++) {
p[x]->gh_flags &= ~(LM_FLAG_TRY | GL_ASYNC);
error = gfs2_glock_nq(p[x]);
if (error) {
while (x--)
gfs2_glock_dq(p[x]);
break;
}
}
return error;
}
/**
* gfs2_glock_nq_m - acquire multiple glocks
* @num_gh: the number of structures
* @ghs: an array of struct gfs2_holder structures
*
*
* Returns: 0 on success (all glocks acquired),
* errno on failure (no glocks acquired)
*/
int gfs2_glock_nq_m(unsigned int num_gh, struct gfs2_holder *ghs)
{
struct gfs2_holder *tmp[4];
struct gfs2_holder **pph = tmp;
int error = 0;
switch(num_gh) {
case 0:
return 0;
case 1:
ghs->gh_flags &= ~(LM_FLAG_TRY | GL_ASYNC);
return gfs2_glock_nq(ghs);
default:
if (num_gh <= 4)
break;
pph = kmalloc_array(num_gh, sizeof(struct gfs2_holder *),
GFP_NOFS);
if (!pph)
return -ENOMEM;
}
error = nq_m_sync(num_gh, ghs, pph);
if (pph != tmp)
kfree(pph);
return error;
}
/**
* gfs2_glock_dq_m - release multiple glocks
* @num_gh: the number of structures
* @ghs: an array of struct gfs2_holder structures
*
*/
void gfs2_glock_dq_m(unsigned int num_gh, struct gfs2_holder *ghs)
{
while (num_gh--)
gfs2_glock_dq(&ghs[num_gh]);
}
void gfs2_glock_cb(struct gfs2_glock *gl, unsigned int state)
{
unsigned long delay = 0;
unsigned long holdtime;
unsigned long now = jiffies;
gfs2_glock_hold(gl);
holdtime = gl->gl_tchange + gl->gl_hold_time;
if (test_bit(GLF_QUEUED, &gl->gl_flags) &&
gl->gl_name.ln_type == LM_TYPE_INODE) {
if (time_before(now, holdtime))
delay = holdtime - now;
if (test_bit(GLF_REPLY_PENDING, &gl->gl_flags))
delay = gl->gl_hold_time;
}
spin_lock(&gl->gl_lockref.lock);
handle_callback(gl, state, delay, true);
__gfs2_glock_queue_work(gl, delay);
spin_unlock(&gl->gl_lockref.lock);
}
/**
* gfs2_should_freeze - Figure out if glock should be frozen
* @gl: The glock in question
*
* Glocks are not frozen if (a) the result of the dlm operation is
* an error, (b) the locking operation was an unlock operation or
* (c) if there is a "noexp" flagged request anywhere in the queue
*
* Returns: 1 if freezing should occur, 0 otherwise
*/
static int gfs2_should_freeze(const struct gfs2_glock *gl)
{
const struct gfs2_holder *gh;
if (gl->gl_reply & ~LM_OUT_ST_MASK)
return 0;
if (gl->gl_target == LM_ST_UNLOCKED)
return 0;
list_for_each_entry(gh, &gl->gl_holders, gh_list) {
if (test_bit(HIF_HOLDER, &gh->gh_iflags))
continue;
if (LM_FLAG_NOEXP & gh->gh_flags)
return 0;
}
return 1;
}
/**
* gfs2_glock_complete - Callback used by locking
* @gl: Pointer to the glock
* @ret: The return value from the dlm
*
* The gl_reply field is under the gl_lockref.lock lock so that it is ok
* to use a bitfield shared with other glock state fields.
*/
void gfs2_glock_complete(struct gfs2_glock *gl, int ret)
{
struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
spin_lock(&gl->gl_lockref.lock);
gl->gl_reply = ret;
if (unlikely(test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags))) {
if (gfs2_should_freeze(gl)) {
set_bit(GLF_FROZEN, &gl->gl_flags);
spin_unlock(&gl->gl_lockref.lock);
return;
}
}
gl->gl_lockref.count++;
set_bit(GLF_REPLY_PENDING, &gl->gl_flags);
__gfs2_glock_queue_work(gl, 0);
spin_unlock(&gl->gl_lockref.lock);
}
static int glock_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct gfs2_glock *gla, *glb;
gla = list_entry(a, struct gfs2_glock, gl_lru);
glb = list_entry(b, struct gfs2_glock, gl_lru);
if (gla->gl_name.ln_number > glb->gl_name.ln_number)
return 1;
if (gla->gl_name.ln_number < glb->gl_name.ln_number)
return -1;
return 0;
}
/**
* gfs2_dispose_glock_lru - Demote a list of glocks
* @list: The list to dispose of
*
* Disposing of glocks may involve disk accesses, so that here we sort
* the glocks by number (i.e. disk location of the inodes) so that if
* there are any such accesses, they'll be sent in order (mostly).
*
* Must be called under the lru_lock, but may drop and retake this
* lock. While the lru_lock is dropped, entries may vanish from the
* list, but no new entries will appear on the list (since it is
* private)
*/
static void gfs2_dispose_glock_lru(struct list_head *list)
__releases(&lru_lock)
__acquires(&lru_lock)
{
struct gfs2_glock *gl;
list_sort(NULL, list, glock_cmp);
while(!list_empty(list)) {
gl = list_entry(list->next, struct gfs2_glock, gl_lru);
list_del_init(&gl->gl_lru);
if (!spin_trylock(&gl->gl_lockref.lock)) {
add_back_to_lru:
list_add(&gl->gl_lru, &lru_list);
set_bit(GLF_LRU, &gl->gl_flags);
atomic_inc(&lru_count);
continue;
}
if (test_and_set_bit(GLF_LOCK, &gl->gl_flags)) {
spin_unlock(&gl->gl_lockref.lock);
goto add_back_to_lru;
}
gl->gl_lockref.count++;
if (demote_ok(gl))
handle_callback(gl, LM_ST_UNLOCKED, 0, false);
WARN_ON(!test_and_clear_bit(GLF_LOCK, &gl->gl_flags));
__gfs2_glock_queue_work(gl, 0);
spin_unlock(&gl->gl_lockref.lock);
cond_resched_lock(&lru_lock);
}
}
/**
* gfs2_scan_glock_lru - Scan the LRU looking for locks to demote
* @nr: The number of entries to scan
*
* This function selects the entries on the LRU which are able to
* be demoted, and then kicks off the process by calling
* gfs2_dispose_glock_lru() above.
*/
static long gfs2_scan_glock_lru(int nr)
{
struct gfs2_glock *gl;
LIST_HEAD(skipped);
LIST_HEAD(dispose);
long freed = 0;
spin_lock(&lru_lock);
while ((nr-- >= 0) && !list_empty(&lru_list)) {
gl = list_entry(lru_list.next, struct gfs2_glock, gl_lru);
/* Test for being demotable */
if (!test_bit(GLF_LOCK, &gl->gl_flags)) {
list_move(&gl->gl_lru, &dispose);
atomic_dec(&lru_count);
clear_bit(GLF_LRU, &gl->gl_flags);
freed++;
continue;
}
list_move(&gl->gl_lru, &skipped);
}
list_splice(&skipped, &lru_list);
if (!list_empty(&dispose))
gfs2_dispose_glock_lru(&dispose);
spin_unlock(&lru_lock);
return freed;
}
static unsigned long gfs2_glock_shrink_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
if (!(sc->gfp_mask & __GFP_FS))
return SHRINK_STOP;
return gfs2_scan_glock_lru(sc->nr_to_scan);
}
static unsigned long gfs2_glock_shrink_count(struct shrinker *shrink,
struct shrink_control *sc)
{
return vfs_pressure_ratio(atomic_read(&lru_count));
}
static struct shrinker glock_shrinker = {
.seeks = DEFAULT_SEEKS,
.count_objects = gfs2_glock_shrink_count,
.scan_objects = gfs2_glock_shrink_scan,
};
/**
* examine_bucket - Call a function for glock in a hash bucket
* @examiner: the function
* @sdp: the filesystem
* @bucket: the bucket
*
* Note that the function can be called multiple times on the same
* object. So the user must ensure that the function can cope with
* that.
*/
static void glock_hash_walk(glock_examiner examiner, const struct gfs2_sbd *sdp)
{
struct gfs2_glock *gl;
struct rhashtable_iter iter;
rhashtable_walk_enter(&gl_hash_table, &iter);
do {
rhashtable_walk_start(&iter);
while ((gl = rhashtable_walk_next(&iter)) && !IS_ERR(gl))
if (gl->gl_name.ln_sbd == sdp &&
lockref_get_not_dead(&gl->gl_lockref))
examiner(gl);
rhashtable_walk_stop(&iter);
} while (cond_resched(), gl == ERR_PTR(-EAGAIN));
rhashtable_walk_exit(&iter);
}
/**
* thaw_glock - thaw out a glock which has an unprocessed reply waiting
* @gl: The glock to thaw
*
*/
static void thaw_glock(struct gfs2_glock *gl)
{
if (!test_and_clear_bit(GLF_FROZEN, &gl->gl_flags)) {
gfs2_glock_put(gl);
return;
}
set_bit(GLF_REPLY_PENDING, &gl->gl_flags);
gfs2_glock_queue_work(gl, 0);
}
/**
* clear_glock - look at a glock and see if we can free it from glock cache
* @gl: the glock to look at
*
*/
static void clear_glock(struct gfs2_glock *gl)
{
gfs2_glock_remove_from_lru(gl);
spin_lock(&gl->gl_lockref.lock);
if (gl->gl_state != LM_ST_UNLOCKED)
handle_callback(gl, LM_ST_UNLOCKED, 0, false);
__gfs2_glock_queue_work(gl, 0);
spin_unlock(&gl->gl_lockref.lock);
}
/**
* gfs2_glock_thaw - Thaw any frozen glocks
* @sdp: The super block
*
*/
void gfs2_glock_thaw(struct gfs2_sbd *sdp)
{
glock_hash_walk(thaw_glock, sdp);
}
static void dump_glock(struct seq_file *seq, struct gfs2_glock *gl, bool fsid)
{
spin_lock(&gl->gl_lockref.lock);
gfs2_dump_glock(seq, gl, fsid);
spin_unlock(&gl->gl_lockref.lock);
}
static void dump_glock_func(struct gfs2_glock *gl)
{
dump_glock(NULL, gl, true);
}
/**
* gfs2_gl_hash_clear - Empty out the glock hash table
* @sdp: the filesystem
* @wait: wait until it's all gone
*
* Called when unmounting the filesystem.
*/
void gfs2_gl_hash_clear(struct gfs2_sbd *sdp)
{
set_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags);
flush_workqueue(glock_workqueue);
glock_hash_walk(clear_glock, sdp);
flush_workqueue(glock_workqueue);
wait_event_timeout(sdp->sd_glock_wait,
atomic_read(&sdp->sd_glock_disposal) == 0,
HZ * 600);
glock_hash_walk(dump_glock_func, sdp);
}
void gfs2_glock_finish_truncate(struct gfs2_inode *ip)
{
struct gfs2_glock *gl = ip->i_gl;
int ret;
ret = gfs2_truncatei_resume(ip);
gfs2_assert_withdraw(gl->gl_name.ln_sbd, ret == 0);
spin_lock(&gl->gl_lockref.lock);
clear_bit(GLF_LOCK, &gl->gl_flags);
run_queue(gl, 1);
spin_unlock(&gl->gl_lockref.lock);
}
static const char *state2str(unsigned state)
{
switch(state) {
case LM_ST_UNLOCKED:
return "UN";
case LM_ST_SHARED:
return "SH";
case LM_ST_DEFERRED:
return "DF";
case LM_ST_EXCLUSIVE:
return "EX";
}
return "??";
}
static const char *hflags2str(char *buf, u16 flags, unsigned long iflags)
{
char *p = buf;
if (flags & LM_FLAG_TRY)
*p++ = 't';
if (flags & LM_FLAG_TRY_1CB)
*p++ = 'T';
if (flags & LM_FLAG_NOEXP)
*p++ = 'e';
if (flags & LM_FLAG_ANY)
*p++ = 'A';
if (flags & LM_FLAG_PRIORITY)
*p++ = 'p';
if (flags & GL_ASYNC)
*p++ = 'a';
if (flags & GL_EXACT)
*p++ = 'E';
if (flags & GL_NOCACHE)
*p++ = 'c';
if (test_bit(HIF_HOLDER, &iflags))
*p++ = 'H';
if (test_bit(HIF_WAIT, &iflags))
*p++ = 'W';
if (test_bit(HIF_FIRST, &iflags))
*p++ = 'F';
*p = 0;
return buf;
}
/**
* dump_holder - print information about a glock holder
* @seq: the seq_file struct
* @gh: the glock holder
* @fs_id_buf: pointer to file system id (if requested)
*
*/
static void dump_holder(struct seq_file *seq, const struct gfs2_holder *gh,
const char *fs_id_buf)
{
struct task_struct *gh_owner = NULL;
char flags_buf[32];
rcu_read_lock();
if (gh->gh_owner_pid)
gh_owner = pid_task(gh->gh_owner_pid, PIDTYPE_PID);
gfs2_print_dbg(seq, "%s H: s:%s f:%s e:%d p:%ld [%s] %pS\n",
fs_id_buf, state2str(gh->gh_state),
hflags2str(flags_buf, gh->gh_flags, gh->gh_iflags),
gh->gh_error,
gh->gh_owner_pid ? (long)pid_nr(gh->gh_owner_pid) : -1,
gh_owner ? gh_owner->comm : "(ended)",
(void *)gh->gh_ip);
rcu_read_unlock();
}
static const char *gflags2str(char *buf, const struct gfs2_glock *gl)
{
const unsigned long *gflags = &gl->gl_flags;
char *p = buf;
if (test_bit(GLF_LOCK, gflags))
*p++ = 'l';
if (test_bit(GLF_DEMOTE, gflags))
*p++ = 'D';
if (test_bit(GLF_PENDING_DEMOTE, gflags))
*p++ = 'd';
if (test_bit(GLF_DEMOTE_IN_PROGRESS, gflags))
*p++ = 'p';
if (test_bit(GLF_DIRTY, gflags))
*p++ = 'y';
if (test_bit(GLF_LFLUSH, gflags))
*p++ = 'f';
if (test_bit(GLF_INVALIDATE_IN_PROGRESS, gflags))
*p++ = 'i';
if (test_bit(GLF_REPLY_PENDING, gflags))
*p++ = 'r';
if (test_bit(GLF_INITIAL, gflags))
*p++ = 'I';
if (test_bit(GLF_FROZEN, gflags))
*p++ = 'F';
if (test_bit(GLF_QUEUED, gflags))
*p++ = 'q';
if (test_bit(GLF_LRU, gflags))
*p++ = 'L';
if (gl->gl_object)
*p++ = 'o';
if (test_bit(GLF_BLOCKING, gflags))
*p++ = 'b';
*p = 0;
return buf;
}
/**
* gfs2_dump_glock - print information about a glock
* @seq: The seq_file struct
* @gl: the glock
* @fsid: If true, also dump the file system id
*
* The file format is as follows:
* One line per object, capital letters are used to indicate objects
* G = glock, I = Inode, R = rgrp, H = holder. Glocks are not indented,
* other objects are indented by a single space and follow the glock to
* which they are related. Fields are indicated by lower case letters
* followed by a colon and the field value, except for strings which are in
* [] so that its possible to see if they are composed of spaces for
* example. The field's are n = number (id of the object), f = flags,
* t = type, s = state, r = refcount, e = error, p = pid.
*
*/
void gfs2_dump_glock(struct seq_file *seq, struct gfs2_glock *gl, bool fsid)
{
const struct gfs2_glock_operations *glops = gl->gl_ops;
unsigned long long dtime;
const struct gfs2_holder *gh;
char gflags_buf[32];
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
memset(fs_id_buf, 0, sizeof(fs_id_buf));
if (fsid && sdp) /* safety precaution */
sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
dtime = jiffies - gl->gl_demote_time;
dtime *= 1000000/HZ; /* demote time in uSec */
if (!test_bit(GLF_DEMOTE, &gl->gl_flags))
dtime = 0;
gfs2_print_dbg(seq, "%sG: s:%s n:%u/%llx f:%s t:%s d:%s/%llu a:%d "
"v:%d r:%d m:%ld\n", fs_id_buf, state2str(gl->gl_state),
gl->gl_name.ln_type,
(unsigned long long)gl->gl_name.ln_number,
gflags2str(gflags_buf, gl),
state2str(gl->gl_target),
state2str(gl->gl_demote_state), dtime,
atomic_read(&gl->gl_ail_count),
atomic_read(&gl->gl_revokes),
(int)gl->gl_lockref.count, gl->gl_hold_time);
list_for_each_entry(gh, &gl->gl_holders, gh_list)
dump_holder(seq, gh, fs_id_buf);
if (gl->gl_state != LM_ST_UNLOCKED && glops->go_dump)
glops->go_dump(seq, gl, fs_id_buf);
}
static int gfs2_glstats_seq_show(struct seq_file *seq, void *iter_ptr)
{
struct gfs2_glock *gl = iter_ptr;
seq_printf(seq, "G: n:%u/%llx rtt:%llu/%llu rttb:%llu/%llu irt:%llu/%llu dcnt: %llu qcnt: %llu\n",
gl->gl_name.ln_type,
(unsigned long long)gl->gl_name.ln_number,
(unsigned long long)gl->gl_stats.stats[GFS2_LKS_SRTT],
(unsigned long long)gl->gl_stats.stats[GFS2_LKS_SRTTVAR],
(unsigned long long)gl->gl_stats.stats[GFS2_LKS_SRTTB],
(unsigned long long)gl->gl_stats.stats[GFS2_LKS_SRTTVARB],
(unsigned long long)gl->gl_stats.stats[GFS2_LKS_SIRT],
(unsigned long long)gl->gl_stats.stats[GFS2_LKS_SIRTVAR],
(unsigned long long)gl->gl_stats.stats[GFS2_LKS_DCOUNT],
(unsigned long long)gl->gl_stats.stats[GFS2_LKS_QCOUNT]);
return 0;
}
static const char *gfs2_gltype[] = {
"type",
"reserved",
"nondisk",
"inode",
"rgrp",
"meta",
"iopen",
"flock",
"plock",
"quota",
"journal",
};
static const char *gfs2_stype[] = {
[GFS2_LKS_SRTT] = "srtt",
[GFS2_LKS_SRTTVAR] = "srttvar",
[GFS2_LKS_SRTTB] = "srttb",
[GFS2_LKS_SRTTVARB] = "srttvarb",
[GFS2_LKS_SIRT] = "sirt",
[GFS2_LKS_SIRTVAR] = "sirtvar",
[GFS2_LKS_DCOUNT] = "dlm",
[GFS2_LKS_QCOUNT] = "queue",
};
#define GFS2_NR_SBSTATS (ARRAY_SIZE(gfs2_gltype) * ARRAY_SIZE(gfs2_stype))
static int gfs2_sbstats_seq_show(struct seq_file *seq, void *iter_ptr)
{
struct gfs2_sbd *sdp = seq->private;
loff_t pos = *(loff_t *)iter_ptr;
unsigned index = pos >> 3;
unsigned subindex = pos & 0x07;
int i;
if (index == 0 && subindex != 0)
return 0;
seq_printf(seq, "%-10s %8s:", gfs2_gltype[index],
(index == 0) ? "cpu": gfs2_stype[subindex]);
for_each_possible_cpu(i) {
const struct gfs2_pcpu_lkstats *lkstats = per_cpu_ptr(sdp->sd_lkstats, i);
if (index == 0)
seq_printf(seq, " %15u", i);
else
seq_printf(seq, " %15llu", (unsigned long long)lkstats->
lkstats[index - 1].stats[subindex]);
}
seq_putc(seq, '\n');
return 0;
}
int __init gfs2_glock_init(void)
{
int i, ret;
ret = rhashtable_init(&gl_hash_table, &ht_parms);
if (ret < 0)
return ret;
glock_workqueue = alloc_workqueue("glock_workqueue", WQ_MEM_RECLAIM |
WQ_HIGHPRI | WQ_FREEZABLE, 0);
if (!glock_workqueue) {
rhashtable_destroy(&gl_hash_table);
return -ENOMEM;
}
gfs2_delete_workqueue = alloc_workqueue("delete_workqueue",
WQ_MEM_RECLAIM | WQ_FREEZABLE,
0);
if (!gfs2_delete_workqueue) {
destroy_workqueue(glock_workqueue);
rhashtable_destroy(&gl_hash_table);
return -ENOMEM;
}
ret = register_shrinker(&glock_shrinker);
if (ret) {
destroy_workqueue(gfs2_delete_workqueue);
destroy_workqueue(glock_workqueue);
rhashtable_destroy(&gl_hash_table);
return ret;
}
for (i = 0; i < GLOCK_WAIT_TABLE_SIZE; i++)
init_waitqueue_head(glock_wait_table + i);
return 0;
}
void gfs2_glock_exit(void)
{
unregister_shrinker(&glock_shrinker);
rhashtable_destroy(&gl_hash_table);
destroy_workqueue(glock_workqueue);
destroy_workqueue(gfs2_delete_workqueue);
}
static void gfs2_glock_iter_next(struct gfs2_glock_iter *gi, loff_t n)
{
struct gfs2_glock *gl = gi->gl;
if (gl) {
if (n == 0)
return;
if (!lockref_put_not_zero(&gl->gl_lockref))
gfs2_glock_queue_put(gl);
}
for (;;) {
gl = rhashtable_walk_next(&gi->hti);
if (IS_ERR_OR_NULL(gl)) {
if (gl == ERR_PTR(-EAGAIN)) {
n = 1;
continue;
}
gl = NULL;
break;
}
if (gl->gl_name.ln_sbd != gi->sdp)
continue;
if (n <= 1) {
if (!lockref_get_not_dead(&gl->gl_lockref))
continue;
break;
} else {
if (__lockref_is_dead(&gl->gl_lockref))
continue;
n--;
}
}
gi->gl = gl;
}
static void *gfs2_glock_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(RCU)
{
struct gfs2_glock_iter *gi = seq->private;
loff_t n;
/*
* We can either stay where we are, skip to the next hash table
* entry, or start from the beginning.
*/
if (*pos < gi->last_pos) {
rhashtable_walk_exit(&gi->hti);
rhashtable_walk_enter(&gl_hash_table, &gi->hti);
n = *pos + 1;
} else {
n = *pos - gi->last_pos;
}
rhashtable_walk_start(&gi->hti);
gfs2_glock_iter_next(gi, n);
gi->last_pos = *pos;
return gi->gl;
}
static void *gfs2_glock_seq_next(struct seq_file *seq, void *iter_ptr,
loff_t *pos)
{
struct gfs2_glock_iter *gi = seq->private;
(*pos)++;
gi->last_pos = *pos;
gfs2_glock_iter_next(gi, 1);
return gi->gl;
}
static void gfs2_glock_seq_stop(struct seq_file *seq, void *iter_ptr)
__releases(RCU)
{
struct gfs2_glock_iter *gi = seq->private;
rhashtable_walk_stop(&gi->hti);
}
static int gfs2_glock_seq_show(struct seq_file *seq, void *iter_ptr)
{
dump_glock(seq, iter_ptr, false);
return 0;
}
static void *gfs2_sbstats_seq_start(struct seq_file *seq, loff_t *pos)
{
preempt_disable();
if (*pos >= GFS2_NR_SBSTATS)
return NULL;
return pos;
}
static void *gfs2_sbstats_seq_next(struct seq_file *seq, void *iter_ptr,
loff_t *pos)
{
(*pos)++;
if (*pos >= GFS2_NR_SBSTATS)
return NULL;
return pos;
}
static void gfs2_sbstats_seq_stop(struct seq_file *seq, void *iter_ptr)
{
preempt_enable();
}
static const struct seq_operations gfs2_glock_seq_ops = {
.start = gfs2_glock_seq_start,
.next = gfs2_glock_seq_next,
.stop = gfs2_glock_seq_stop,
.show = gfs2_glock_seq_show,
};
static const struct seq_operations gfs2_glstats_seq_ops = {
.start = gfs2_glock_seq_start,
.next = gfs2_glock_seq_next,
.stop = gfs2_glock_seq_stop,
.show = gfs2_glstats_seq_show,
};
static const struct seq_operations gfs2_sbstats_seq_ops = {
.start = gfs2_sbstats_seq_start,
.next = gfs2_sbstats_seq_next,
.stop = gfs2_sbstats_seq_stop,
.show = gfs2_sbstats_seq_show,
};
#define GFS2_SEQ_GOODSIZE min(PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER, 65536UL)
static int __gfs2_glocks_open(struct inode *inode, struct file *file,
const struct seq_operations *ops)
{
int ret = seq_open_private(file, ops, sizeof(struct gfs2_glock_iter));
if (ret == 0) {
struct seq_file *seq = file->private_data;
struct gfs2_glock_iter *gi = seq->private;
gi->sdp = inode->i_private;
seq->buf = kmalloc(GFS2_SEQ_GOODSIZE, GFP_KERNEL | __GFP_NOWARN);
if (seq->buf)
seq->size = GFS2_SEQ_GOODSIZE;
/*
* Initially, we are "before" the first hash table entry; the
* first call to rhashtable_walk_next gets us the first entry.
*/
gi->last_pos = -1;
gi->gl = NULL;
rhashtable_walk_enter(&gl_hash_table, &gi->hti);
}
return ret;
}
static int gfs2_glocks_open(struct inode *inode, struct file *file)
{
return __gfs2_glocks_open(inode, file, &gfs2_glock_seq_ops);
}
static int gfs2_glocks_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
struct gfs2_glock_iter *gi = seq->private;
if (gi->gl)
gfs2_glock_put(gi->gl);
rhashtable_walk_exit(&gi->hti);
return seq_release_private(inode, file);
}
static int gfs2_glstats_open(struct inode *inode, struct file *file)
{
return __gfs2_glocks_open(inode, file, &gfs2_glstats_seq_ops);
}
static int gfs2_sbstats_open(struct inode *inode, struct file *file)
{
int ret = seq_open(file, &gfs2_sbstats_seq_ops);
if (ret == 0) {
struct seq_file *seq = file->private_data;
seq->private = inode->i_private; /* sdp */
}
return ret;
}
static const struct file_operations gfs2_glocks_fops = {
.owner = THIS_MODULE,
.open = gfs2_glocks_open,
.read = seq_read,
.llseek = seq_lseek,
.release = gfs2_glocks_release,
};
static const struct file_operations gfs2_glstats_fops = {
.owner = THIS_MODULE,
.open = gfs2_glstats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = gfs2_glocks_release,
};
static const struct file_operations gfs2_sbstats_fops = {
.owner = THIS_MODULE,
.open = gfs2_sbstats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
void gfs2_create_debugfs_file(struct gfs2_sbd *sdp)
{
sdp->debugfs_dir = debugfs_create_dir(sdp->sd_table_name, gfs2_root);
debugfs_create_file("glocks", S_IFREG | S_IRUGO, sdp->debugfs_dir, sdp,
&gfs2_glocks_fops);
debugfs_create_file("glstats", S_IFREG | S_IRUGO, sdp->debugfs_dir, sdp,
&gfs2_glstats_fops);
debugfs_create_file("sbstats", S_IFREG | S_IRUGO, sdp->debugfs_dir, sdp,
&gfs2_sbstats_fops);
}
void gfs2_delete_debugfs_file(struct gfs2_sbd *sdp)
{
debugfs_remove_recursive(sdp->debugfs_dir);
sdp->debugfs_dir = NULL;
}
void gfs2_register_debugfs(void)
{
gfs2_root = debugfs_create_dir("gfs2", NULL);
}
void gfs2_unregister_debugfs(void)
{
debugfs_remove(gfs2_root);
gfs2_root = NULL;
}