linux-stable/net/sctp/socket.c
Eric Dumazet b3cb764aa1 net: drop nopreempt requirement on sock_prot_inuse_add()
This is distracting really, let's make this simpler,
because many callers had to take care of this
by themselves, even if on x86 this adds more
code than really needed.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-11-16 13:20:45 +00:00

9694 lines
265 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* SCTP kernel implementation
* (C) Copyright IBM Corp. 2001, 2004
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001-2003 Intel Corp.
* Copyright (c) 2001-2002 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
*
* This file is part of the SCTP kernel implementation
*
* These functions interface with the sockets layer to implement the
* SCTP Extensions for the Sockets API.
*
* Note that the descriptions from the specification are USER level
* functions--this file is the functions which populate the struct proto
* for SCTP which is the BOTTOM of the sockets interface.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <linux-sctp@vger.kernel.org>
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Narasimha Budihal <narsi@refcode.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Jon Grimm <jgrimm@us.ibm.com>
* Xingang Guo <xingang.guo@intel.com>
* Daisy Chang <daisyc@us.ibm.com>
* Sridhar Samudrala <samudrala@us.ibm.com>
* Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
* Ardelle Fan <ardelle.fan@intel.com>
* Ryan Layer <rmlayer@us.ibm.com>
* Anup Pemmaiah <pemmaiah@cc.usu.edu>
* Kevin Gao <kevin.gao@intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <crypto/hash.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/wait.h>
#include <linux/time.h>
#include <linux/sched/signal.h>
#include <linux/ip.h>
#include <linux/capability.h>
#include <linux/fcntl.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/compat.h>
#include <linux/rhashtable.h>
#include <net/ip.h>
#include <net/icmp.h>
#include <net/route.h>
#include <net/ipv6.h>
#include <net/inet_common.h>
#include <net/busy_poll.h>
#include <linux/socket.h> /* for sa_family_t */
#include <linux/export.h>
#include <net/sock.h>
#include <net/sctp/sctp.h>
#include <net/sctp/sm.h>
#include <net/sctp/stream_sched.h>
/* Forward declarations for internal helper functions. */
static bool sctp_writeable(struct sock *sk);
static void sctp_wfree(struct sk_buff *skb);
static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
size_t msg_len);
static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
static int sctp_wait_for_accept(struct sock *sk, long timeo);
static void sctp_wait_for_close(struct sock *sk, long timeo);
static void sctp_destruct_sock(struct sock *sk);
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
union sctp_addr *addr, int len);
static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf(struct sctp_association *asoc,
struct sctp_chunk *chunk);
static int sctp_do_bind(struct sock *, union sctp_addr *, int);
static int sctp_autobind(struct sock *sk);
static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
struct sctp_association *assoc,
enum sctp_socket_type type);
static unsigned long sctp_memory_pressure;
static atomic_long_t sctp_memory_allocated;
struct percpu_counter sctp_sockets_allocated;
static void sctp_enter_memory_pressure(struct sock *sk)
{
sctp_memory_pressure = 1;
}
/* Get the sndbuf space available at the time on the association. */
static inline int sctp_wspace(struct sctp_association *asoc)
{
struct sock *sk = asoc->base.sk;
return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
: sk_stream_wspace(sk);
}
/* Increment the used sndbuf space count of the corresponding association by
* the size of the outgoing data chunk.
* Also, set the skb destructor for sndbuf accounting later.
*
* Since it is always 1-1 between chunk and skb, and also a new skb is always
* allocated for chunk bundling in sctp_packet_transmit(), we can use the
* destructor in the data chunk skb for the purpose of the sndbuf space
* tracking.
*/
static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
{
struct sctp_association *asoc = chunk->asoc;
struct sock *sk = asoc->base.sk;
/* The sndbuf space is tracked per association. */
sctp_association_hold(asoc);
if (chunk->shkey)
sctp_auth_shkey_hold(chunk->shkey);
skb_set_owner_w(chunk->skb, sk);
chunk->skb->destructor = sctp_wfree;
/* Save the chunk pointer in skb for sctp_wfree to use later. */
skb_shinfo(chunk->skb)->destructor_arg = chunk;
refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
sk_mem_charge(sk, chunk->skb->truesize);
}
static void sctp_clear_owner_w(struct sctp_chunk *chunk)
{
skb_orphan(chunk->skb);
}
#define traverse_and_process() \
do { \
msg = chunk->msg; \
if (msg == prev_msg) \
continue; \
list_for_each_entry(c, &msg->chunks, frag_list) { \
if ((clear && asoc->base.sk == c->skb->sk) || \
(!clear && asoc->base.sk != c->skb->sk)) \
cb(c); \
} \
prev_msg = msg; \
} while (0)
static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
bool clear,
void (*cb)(struct sctp_chunk *))
{
struct sctp_datamsg *msg, *prev_msg = NULL;
struct sctp_outq *q = &asoc->outqueue;
struct sctp_chunk *chunk, *c;
struct sctp_transport *t;
list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
list_for_each_entry(chunk, &t->transmitted, transmitted_list)
traverse_and_process();
list_for_each_entry(chunk, &q->retransmit, transmitted_list)
traverse_and_process();
list_for_each_entry(chunk, &q->sacked, transmitted_list)
traverse_and_process();
list_for_each_entry(chunk, &q->abandoned, transmitted_list)
traverse_and_process();
list_for_each_entry(chunk, &q->out_chunk_list, list)
traverse_and_process();
}
static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
void (*cb)(struct sk_buff *, struct sock *))
{
struct sk_buff *skb, *tmp;
sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
cb(skb, sk);
sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
cb(skb, sk);
sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
cb(skb, sk);
}
/* Verify that this is a valid address. */
static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
int len)
{
struct sctp_af *af;
/* Verify basic sockaddr. */
af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
if (!af)
return -EINVAL;
/* Is this a valid SCTP address? */
if (!af->addr_valid(addr, sctp_sk(sk), NULL))
return -EINVAL;
if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
return -EINVAL;
return 0;
}
/* Look up the association by its id. If this is not a UDP-style
* socket, the ID field is always ignored.
*/
struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
{
struct sctp_association *asoc = NULL;
/* If this is not a UDP-style socket, assoc id should be ignored. */
if (!sctp_style(sk, UDP)) {
/* Return NULL if the socket state is not ESTABLISHED. It
* could be a TCP-style listening socket or a socket which
* hasn't yet called connect() to establish an association.
*/
if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
return NULL;
/* Get the first and the only association from the list. */
if (!list_empty(&sctp_sk(sk)->ep->asocs))
asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
struct sctp_association, asocs);
return asoc;
}
/* Otherwise this is a UDP-style socket. */
if (id <= SCTP_ALL_ASSOC)
return NULL;
spin_lock_bh(&sctp_assocs_id_lock);
asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
if (asoc && (asoc->base.sk != sk || asoc->base.dead))
asoc = NULL;
spin_unlock_bh(&sctp_assocs_id_lock);
return asoc;
}
/* Look up the transport from an address and an assoc id. If both address and
* id are specified, the associations matching the address and the id should be
* the same.
*/
static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
struct sockaddr_storage *addr,
sctp_assoc_t id)
{
struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
union sctp_addr *laddr = (union sctp_addr *)addr;
struct sctp_transport *transport;
if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
return NULL;
addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
laddr,
&transport);
if (!addr_asoc)
return NULL;
id_asoc = sctp_id2assoc(sk, id);
if (id_asoc && (id_asoc != addr_asoc))
return NULL;
sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
(union sctp_addr *)addr);
return transport;
}
/* API 3.1.2 bind() - UDP Style Syntax
* The syntax of bind() is,
*
* ret = bind(int sd, struct sockaddr *addr, int addrlen);
*
* sd - the socket descriptor returned by socket().
* addr - the address structure (struct sockaddr_in or struct
* sockaddr_in6 [RFC 2553]),
* addr_len - the size of the address structure.
*/
static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
{
int retval = 0;
lock_sock(sk);
pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
addr, addr_len);
/* Disallow binding twice. */
if (!sctp_sk(sk)->ep->base.bind_addr.port)
retval = sctp_do_bind(sk, (union sctp_addr *)addr,
addr_len);
else
retval = -EINVAL;
release_sock(sk);
return retval;
}
static int sctp_get_port_local(struct sock *, union sctp_addr *);
/* Verify this is a valid sockaddr. */
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
union sctp_addr *addr, int len)
{
struct sctp_af *af;
/* Check minimum size. */
if (len < sizeof (struct sockaddr))
return NULL;
if (!opt->pf->af_supported(addr->sa.sa_family, opt))
return NULL;
if (addr->sa.sa_family == AF_INET6) {
if (len < SIN6_LEN_RFC2133)
return NULL;
/* V4 mapped address are really of AF_INET family */
if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
!opt->pf->af_supported(AF_INET, opt))
return NULL;
}
/* If we get this far, af is valid. */
af = sctp_get_af_specific(addr->sa.sa_family);
if (len < af->sockaddr_len)
return NULL;
return af;
}
static void sctp_auto_asconf_init(struct sctp_sock *sp)
{
struct net *net = sock_net(&sp->inet.sk);
if (net->sctp.default_auto_asconf) {
spin_lock(&net->sctp.addr_wq_lock);
list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
spin_unlock(&net->sctp.addr_wq_lock);
sp->do_auto_asconf = 1;
}
}
/* Bind a local address either to an endpoint or to an association. */
static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
{
struct net *net = sock_net(sk);
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
struct sctp_bind_addr *bp = &ep->base.bind_addr;
struct sctp_af *af;
unsigned short snum;
int ret = 0;
/* Common sockaddr verification. */
af = sctp_sockaddr_af(sp, addr, len);
if (!af) {
pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
__func__, sk, addr, len);
return -EINVAL;
}
snum = ntohs(addr->v4.sin_port);
pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
__func__, sk, &addr->sa, bp->port, snum, len);
/* PF specific bind() address verification. */
if (!sp->pf->bind_verify(sp, addr))
return -EADDRNOTAVAIL;
/* We must either be unbound, or bind to the same port.
* It's OK to allow 0 ports if we are already bound.
* We'll just inhert an already bound port in this case
*/
if (bp->port) {
if (!snum)
snum = bp->port;
else if (snum != bp->port) {
pr_debug("%s: new port %d doesn't match existing port "
"%d\n", __func__, snum, bp->port);
return -EINVAL;
}
}
if (snum && inet_port_requires_bind_service(net, snum) &&
!ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
return -EACCES;
/* See if the address matches any of the addresses we may have
* already bound before checking against other endpoints.
*/
if (sctp_bind_addr_match(bp, addr, sp))
return -EINVAL;
/* Make sure we are allowed to bind here.
* The function sctp_get_port_local() does duplicate address
* detection.
*/
addr->v4.sin_port = htons(snum);
if (sctp_get_port_local(sk, addr))
return -EADDRINUSE;
/* Refresh ephemeral port. */
if (!bp->port) {
bp->port = inet_sk(sk)->inet_num;
sctp_auto_asconf_init(sp);
}
/* Add the address to the bind address list.
* Use GFP_ATOMIC since BHs will be disabled.
*/
ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
SCTP_ADDR_SRC, GFP_ATOMIC);
if (ret) {
sctp_put_port(sk);
return ret;
}
/* Copy back into socket for getsockname() use. */
inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
sp->pf->to_sk_saddr(addr, sk);
return ret;
}
/* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
*
* R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
* at any one time. If a sender, after sending an ASCONF chunk, decides
* it needs to transfer another ASCONF Chunk, it MUST wait until the
* ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
* subsequent ASCONF. Note this restriction binds each side, so at any
* time two ASCONF may be in-transit on any given association (one sent
* from each endpoint).
*/
static int sctp_send_asconf(struct sctp_association *asoc,
struct sctp_chunk *chunk)
{
int retval = 0;
/* If there is an outstanding ASCONF chunk, queue it for later
* transmission.
*/
if (asoc->addip_last_asconf) {
list_add_tail(&chunk->list, &asoc->addip_chunk_list);
goto out;
}
/* Hold the chunk until an ASCONF_ACK is received. */
sctp_chunk_hold(chunk);
retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
if (retval)
sctp_chunk_free(chunk);
else
asoc->addip_last_asconf = chunk;
out:
return retval;
}
/* Add a list of addresses as bind addresses to local endpoint or
* association.
*
* Basically run through each address specified in the addrs/addrcnt
* array/length pair, determine if it is IPv6 or IPv4 and call
* sctp_do_bind() on it.
*
* If any of them fails, then the operation will be reversed and the
* ones that were added will be removed.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
{
int cnt;
int retval = 0;
void *addr_buf;
struct sockaddr *sa_addr;
struct sctp_af *af;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
addrs, addrcnt);
addr_buf = addrs;
for (cnt = 0; cnt < addrcnt; cnt++) {
/* The list may contain either IPv4 or IPv6 address;
* determine the address length for walking thru the list.
*/
sa_addr = addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
if (!af) {
retval = -EINVAL;
goto err_bindx_add;
}
retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
af->sockaddr_len);
addr_buf += af->sockaddr_len;
err_bindx_add:
if (retval < 0) {
/* Failed. Cleanup the ones that have been added */
if (cnt > 0)
sctp_bindx_rem(sk, addrs, cnt);
return retval;
}
}
return retval;
}
/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
* associations that are part of the endpoint indicating that a list of local
* addresses are added to the endpoint.
*
* If any of the addresses is already in the bind address list of the
* association, we do not send the chunk for that association. But it will not
* affect other associations.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_send_asconf_add_ip(struct sock *sk,
struct sockaddr *addrs,
int addrcnt)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct sctp_bind_addr *bp;
struct sctp_chunk *chunk;
struct sctp_sockaddr_entry *laddr;
union sctp_addr *addr;
union sctp_addr saveaddr;
void *addr_buf;
struct sctp_af *af;
struct list_head *p;
int i;
int retval = 0;
sp = sctp_sk(sk);
ep = sp->ep;
if (!ep->asconf_enable)
return retval;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
__func__, sk, addrs, addrcnt);
list_for_each_entry(asoc, &ep->asocs, asocs) {
if (!asoc->peer.asconf_capable)
continue;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
continue;
if (!sctp_state(asoc, ESTABLISHED))
continue;
/* Check if any address in the packed array of addresses is
* in the bind address list of the association. If so,
* do not send the asconf chunk to its peer, but continue with
* other associations.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
addr = addr_buf;
af = sctp_get_af_specific(addr->v4.sin_family);
if (!af) {
retval = -EINVAL;
goto out;
}
if (sctp_assoc_lookup_laddr(asoc, addr))
break;
addr_buf += af->sockaddr_len;
}
if (i < addrcnt)
continue;
/* Use the first valid address in bind addr list of
* association as Address Parameter of ASCONF CHUNK.
*/
bp = &asoc->base.bind_addr;
p = bp->address_list.next;
laddr = list_entry(p, struct sctp_sockaddr_entry, list);
chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
addrcnt, SCTP_PARAM_ADD_IP);
if (!chunk) {
retval = -ENOMEM;
goto out;
}
/* Add the new addresses to the bind address list with
* use_as_src set to 0.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
addr = addr_buf;
af = sctp_get_af_specific(addr->v4.sin_family);
memcpy(&saveaddr, addr, af->sockaddr_len);
retval = sctp_add_bind_addr(bp, &saveaddr,
sizeof(saveaddr),
SCTP_ADDR_NEW, GFP_ATOMIC);
addr_buf += af->sockaddr_len;
}
if (asoc->src_out_of_asoc_ok) {
struct sctp_transport *trans;
list_for_each_entry(trans,
&asoc->peer.transport_addr_list, transports) {
trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
2*asoc->pathmtu, 4380));
trans->ssthresh = asoc->peer.i.a_rwnd;
trans->rto = asoc->rto_initial;
sctp_max_rto(asoc, trans);
trans->rtt = trans->srtt = trans->rttvar = 0;
/* Clear the source and route cache */
sctp_transport_route(trans, NULL,
sctp_sk(asoc->base.sk));
}
}
retval = sctp_send_asconf(asoc, chunk);
}
out:
return retval;
}
/* Remove a list of addresses from bind addresses list. Do not remove the
* last address.
*
* Basically run through each address specified in the addrs/addrcnt
* array/length pair, determine if it is IPv6 or IPv4 and call
* sctp_del_bind() on it.
*
* If any of them fails, then the operation will be reversed and the
* ones that were removed will be added back.
*
* At least one address has to be left; if only one address is
* available, the operation will return -EBUSY.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
int cnt;
struct sctp_bind_addr *bp = &ep->base.bind_addr;
int retval = 0;
void *addr_buf;
union sctp_addr *sa_addr;
struct sctp_af *af;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
__func__, sk, addrs, addrcnt);
addr_buf = addrs;
for (cnt = 0; cnt < addrcnt; cnt++) {
/* If the bind address list is empty or if there is only one
* bind address, there is nothing more to be removed (we need
* at least one address here).
*/
if (list_empty(&bp->address_list) ||
(sctp_list_single_entry(&bp->address_list))) {
retval = -EBUSY;
goto err_bindx_rem;
}
sa_addr = addr_buf;
af = sctp_get_af_specific(sa_addr->sa.sa_family);
if (!af) {
retval = -EINVAL;
goto err_bindx_rem;
}
if (!af->addr_valid(sa_addr, sp, NULL)) {
retval = -EADDRNOTAVAIL;
goto err_bindx_rem;
}
if (sa_addr->v4.sin_port &&
sa_addr->v4.sin_port != htons(bp->port)) {
retval = -EINVAL;
goto err_bindx_rem;
}
if (!sa_addr->v4.sin_port)
sa_addr->v4.sin_port = htons(bp->port);
/* FIXME - There is probably a need to check if sk->sk_saddr and
* sk->sk_rcv_addr are currently set to one of the addresses to
* be removed. This is something which needs to be looked into
* when we are fixing the outstanding issues with multi-homing
* socket routing and failover schemes. Refer to comments in
* sctp_do_bind(). -daisy
*/
retval = sctp_del_bind_addr(bp, sa_addr);
addr_buf += af->sockaddr_len;
err_bindx_rem:
if (retval < 0) {
/* Failed. Add the ones that has been removed back */
if (cnt > 0)
sctp_bindx_add(sk, addrs, cnt);
return retval;
}
}
return retval;
}
/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
* the associations that are part of the endpoint indicating that a list of
* local addresses are removed from the endpoint.
*
* If any of the addresses is already in the bind address list of the
* association, we do not send the chunk for that association. But it will not
* affect other associations.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_send_asconf_del_ip(struct sock *sk,
struct sockaddr *addrs,
int addrcnt)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct sctp_transport *transport;
struct sctp_bind_addr *bp;
struct sctp_chunk *chunk;
union sctp_addr *laddr;
void *addr_buf;
struct sctp_af *af;
struct sctp_sockaddr_entry *saddr;
int i;
int retval = 0;
int stored = 0;
chunk = NULL;
sp = sctp_sk(sk);
ep = sp->ep;
if (!ep->asconf_enable)
return retval;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
__func__, sk, addrs, addrcnt);
list_for_each_entry(asoc, &ep->asocs, asocs) {
if (!asoc->peer.asconf_capable)
continue;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
continue;
if (!sctp_state(asoc, ESTABLISHED))
continue;
/* Check if any address in the packed array of addresses is
* not present in the bind address list of the association.
* If so, do not send the asconf chunk to its peer, but
* continue with other associations.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
laddr = addr_buf;
af = sctp_get_af_specific(laddr->v4.sin_family);
if (!af) {
retval = -EINVAL;
goto out;
}
if (!sctp_assoc_lookup_laddr(asoc, laddr))
break;
addr_buf += af->sockaddr_len;
}
if (i < addrcnt)
continue;
/* Find one address in the association's bind address list
* that is not in the packed array of addresses. This is to
* make sure that we do not delete all the addresses in the
* association.
*/
bp = &asoc->base.bind_addr;
laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
addrcnt, sp);
if ((laddr == NULL) && (addrcnt == 1)) {
if (asoc->asconf_addr_del_pending)
continue;
asoc->asconf_addr_del_pending =
kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
if (asoc->asconf_addr_del_pending == NULL) {
retval = -ENOMEM;
goto out;
}
asoc->asconf_addr_del_pending->sa.sa_family =
addrs->sa_family;
asoc->asconf_addr_del_pending->v4.sin_port =
htons(bp->port);
if (addrs->sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)addrs;
asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
} else if (addrs->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)addrs;
asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
}
pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
__func__, asoc, &asoc->asconf_addr_del_pending->sa,
asoc->asconf_addr_del_pending);
asoc->src_out_of_asoc_ok = 1;
stored = 1;
goto skip_mkasconf;
}
if (laddr == NULL)
return -EINVAL;
/* We do not need RCU protection throughout this loop
* because this is done under a socket lock from the
* setsockopt call.
*/
chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
SCTP_PARAM_DEL_IP);
if (!chunk) {
retval = -ENOMEM;
goto out;
}
skip_mkasconf:
/* Reset use_as_src flag for the addresses in the bind address
* list that are to be deleted.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
laddr = addr_buf;
af = sctp_get_af_specific(laddr->v4.sin_family);
list_for_each_entry(saddr, &bp->address_list, list) {
if (sctp_cmp_addr_exact(&saddr->a, laddr))
saddr->state = SCTP_ADDR_DEL;
}
addr_buf += af->sockaddr_len;
}
/* Update the route and saddr entries for all the transports
* as some of the addresses in the bind address list are
* about to be deleted and cannot be used as source addresses.
*/
list_for_each_entry(transport, &asoc->peer.transport_addr_list,
transports) {
sctp_transport_route(transport, NULL,
sctp_sk(asoc->base.sk));
}
if (stored)
/* We don't need to transmit ASCONF */
continue;
retval = sctp_send_asconf(asoc, chunk);
}
out:
return retval;
}
/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
{
struct sock *sk = sctp_opt2sk(sp);
union sctp_addr *addr;
struct sctp_af *af;
/* It is safe to write port space in caller. */
addr = &addrw->a;
addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
af = sctp_get_af_specific(addr->sa.sa_family);
if (!af)
return -EINVAL;
if (sctp_verify_addr(sk, addr, af->sockaddr_len))
return -EINVAL;
if (addrw->state == SCTP_ADDR_NEW)
return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
else
return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
}
/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
*
* API 8.1
* int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
* int flags);
*
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
* or IPv6 addresses.
*
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
* Section 3.1.2 for this usage.
*
* addrs is a pointer to an array of one or more socket addresses. Each
* address is contained in its appropriate structure (i.e. struct
* sockaddr_in or struct sockaddr_in6) the family of the address type
* must be used to distinguish the address length (note that this
* representation is termed a "packed array" of addresses). The caller
* specifies the number of addresses in the array with addrcnt.
*
* On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
* -1, and sets errno to the appropriate error code.
*
* For SCTP, the port given in each socket address must be the same, or
* sctp_bindx() will fail, setting errno to EINVAL.
*
* The flags parameter is formed from the bitwise OR of zero or more of
* the following currently defined flags:
*
* SCTP_BINDX_ADD_ADDR
*
* SCTP_BINDX_REM_ADDR
*
* SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
* association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
* addresses from the association. The two flags are mutually exclusive;
* if both are given, sctp_bindx() will fail with EINVAL. A caller may
* not remove all addresses from an association; sctp_bindx() will
* reject such an attempt with EINVAL.
*
* An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
* additional addresses with an endpoint after calling bind(). Or use
* sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
* socket is associated with so that no new association accepted will be
* associated with those addresses. If the endpoint supports dynamic
* address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
* endpoint to send the appropriate message to the peer to change the
* peers address lists.
*
* Adding and removing addresses from a connected association is
* optional functionality. Implementations that do not support this
* functionality should return EOPNOTSUPP.
*
* Basically do nothing but copying the addresses from user to kernel
* land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
* This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
* from userspace.
*
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
* it.
*
* sk The sk of the socket
* addrs The pointer to the addresses
* addrssize Size of the addrs buffer
* op Operation to perform (add or remove, see the flags of
* sctp_bindx)
*
* Returns 0 if ok, <0 errno code on error.
*/
static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
int addrs_size, int op)
{
int err;
int addrcnt = 0;
int walk_size = 0;
struct sockaddr *sa_addr;
void *addr_buf = addrs;
struct sctp_af *af;
pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
__func__, sk, addr_buf, addrs_size, op);
if (unlikely(addrs_size <= 0))
return -EINVAL;
/* Walk through the addrs buffer and count the number of addresses. */
while (walk_size < addrs_size) {
if (walk_size + sizeof(sa_family_t) > addrs_size)
return -EINVAL;
sa_addr = addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
/* If the address family is not supported or if this address
* causes the address buffer to overflow return EINVAL.
*/
if (!af || (walk_size + af->sockaddr_len) > addrs_size)
return -EINVAL;
addrcnt++;
addr_buf += af->sockaddr_len;
walk_size += af->sockaddr_len;
}
/* Do the work. */
switch (op) {
case SCTP_BINDX_ADD_ADDR:
/* Allow security module to validate bindx addresses. */
err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
addrs, addrs_size);
if (err)
return err;
err = sctp_bindx_add(sk, addrs, addrcnt);
if (err)
return err;
return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
case SCTP_BINDX_REM_ADDR:
err = sctp_bindx_rem(sk, addrs, addrcnt);
if (err)
return err;
return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
default:
return -EINVAL;
}
}
static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
int addrlen)
{
int err;
lock_sock(sk);
err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
release_sock(sk);
return err;
}
static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
const union sctp_addr *daddr,
const struct sctp_initmsg *init,
struct sctp_transport **tp)
{
struct sctp_association *asoc;
struct sock *sk = ep->base.sk;
struct net *net = sock_net(sk);
enum sctp_scope scope;
int err;
if (sctp_endpoint_is_peeled_off(ep, daddr))
return -EADDRNOTAVAIL;
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk))
return -EAGAIN;
} else {
if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
!ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
return -EACCES;
}
scope = sctp_scope(daddr);
asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
if (!asoc)
return -ENOMEM;
err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
if (err < 0)
goto free;
*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
if (!*tp) {
err = -ENOMEM;
goto free;
}
if (!init)
return 0;
if (init->sinit_num_ostreams) {
__u16 outcnt = init->sinit_num_ostreams;
asoc->c.sinit_num_ostreams = outcnt;
/* outcnt has been changed, need to re-init stream */
err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
if (err)
goto free;
}
if (init->sinit_max_instreams)
asoc->c.sinit_max_instreams = init->sinit_max_instreams;
if (init->sinit_max_attempts)
asoc->max_init_attempts = init->sinit_max_attempts;
if (init->sinit_max_init_timeo)
asoc->max_init_timeo =
msecs_to_jiffies(init->sinit_max_init_timeo);
return 0;
free:
sctp_association_free(asoc);
return err;
}
static int sctp_connect_add_peer(struct sctp_association *asoc,
union sctp_addr *daddr, int addr_len)
{
struct sctp_endpoint *ep = asoc->ep;
struct sctp_association *old;
struct sctp_transport *t;
int err;
err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
if (err)
return err;
old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
if (old && old != asoc)
return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
: -EALREADY;
if (sctp_endpoint_is_peeled_off(ep, daddr))
return -EADDRNOTAVAIL;
t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
if (!t)
return -ENOMEM;
return 0;
}
/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
*
* Common routine for handling connect() and sctp_connectx().
* Connect will come in with just a single address.
*/
static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
int addrs_size, int flags, sctp_assoc_t *assoc_id)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
struct sctp_transport *transport;
struct sctp_association *asoc;
void *addr_buf = kaddrs;
union sctp_addr *daddr;
struct sctp_af *af;
int walk_size, err;
long timeo;
if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
(sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
return -EISCONN;
daddr = addr_buf;
af = sctp_get_af_specific(daddr->sa.sa_family);
if (!af || af->sockaddr_len > addrs_size)
return -EINVAL;
err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
if (err)
return err;
asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
if (asoc)
return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
: -EALREADY;
err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
if (err)
return err;
asoc = transport->asoc;
addr_buf += af->sockaddr_len;
walk_size = af->sockaddr_len;
while (walk_size < addrs_size) {
err = -EINVAL;
if (walk_size + sizeof(sa_family_t) > addrs_size)
goto out_free;
daddr = addr_buf;
af = sctp_get_af_specific(daddr->sa.sa_family);
if (!af || af->sockaddr_len + walk_size > addrs_size)
goto out_free;
if (asoc->peer.port != ntohs(daddr->v4.sin_port))
goto out_free;
err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
if (err)
goto out_free;
addr_buf += af->sockaddr_len;
walk_size += af->sockaddr_len;
}
/* In case the user of sctp_connectx() wants an association
* id back, assign one now.
*/
if (assoc_id) {
err = sctp_assoc_set_id(asoc, GFP_KERNEL);
if (err < 0)
goto out_free;
}
err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
if (err < 0)
goto out_free;
/* Initialize sk's dport and daddr for getpeername() */
inet_sk(sk)->inet_dport = htons(asoc->peer.port);
sp->pf->to_sk_daddr(daddr, sk);
sk->sk_err = 0;
if (assoc_id)
*assoc_id = asoc->assoc_id;
timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
return sctp_wait_for_connect(asoc, &timeo);
out_free:
pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
__func__, asoc, kaddrs, err);
sctp_association_free(asoc);
return err;
}
/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
*
* API 8.9
* int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
* sctp_assoc_t *asoc);
*
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
* or IPv6 addresses.
*
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
* Section 3.1.2 for this usage.
*
* addrs is a pointer to an array of one or more socket addresses. Each
* address is contained in its appropriate structure (i.e. struct
* sockaddr_in or struct sockaddr_in6) the family of the address type
* must be used to distengish the address length (note that this
* representation is termed a "packed array" of addresses). The caller
* specifies the number of addresses in the array with addrcnt.
*
* On success, sctp_connectx() returns 0. It also sets the assoc_id to
* the association id of the new association. On failure, sctp_connectx()
* returns -1, and sets errno to the appropriate error code. The assoc_id
* is not touched by the kernel.
*
* For SCTP, the port given in each socket address must be the same, or
* sctp_connectx() will fail, setting errno to EINVAL.
*
* An application can use sctp_connectx to initiate an association with
* an endpoint that is multi-homed. Much like sctp_bindx() this call
* allows a caller to specify multiple addresses at which a peer can be
* reached. The way the SCTP stack uses the list of addresses to set up
* the association is implementation dependent. This function only
* specifies that the stack will try to make use of all the addresses in
* the list when needed.
*
* Note that the list of addresses passed in is only used for setting up
* the association. It does not necessarily equal the set of addresses
* the peer uses for the resulting association. If the caller wants to
* find out the set of peer addresses, it must use sctp_getpaddrs() to
* retrieve them after the association has been set up.
*
* Basically do nothing but copying the addresses from user to kernel
* land and invoking either sctp_connectx(). This is used for tunneling
* the sctp_connectx() request through sctp_setsockopt() from userspace.
*
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
* it.
*
* sk The sk of the socket
* addrs The pointer to the addresses
* addrssize Size of the addrs buffer
*
* Returns >=0 if ok, <0 errno code on error.
*/
static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
int addrs_size, sctp_assoc_t *assoc_id)
{
int err = 0, flags = 0;
pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
__func__, sk, kaddrs, addrs_size);
/* make sure the 1st addr's sa_family is accessible later */
if (unlikely(addrs_size < sizeof(sa_family_t)))
return -EINVAL;
/* Allow security module to validate connectx addresses. */
err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
(struct sockaddr *)kaddrs,
addrs_size);
if (err)
return err;
/* in-kernel sockets don't generally have a file allocated to them
* if all they do is call sock_create_kern().
*/
if (sk->sk_socket->file)
flags = sk->sk_socket->file->f_flags;
return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
}
/*
* This is an older interface. It's kept for backward compatibility
* to the option that doesn't provide association id.
*/
static int sctp_setsockopt_connectx_old(struct sock *sk,
struct sockaddr *kaddrs,
int addrs_size)
{
return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
}
/*
* New interface for the API. The since the API is done with a socket
* option, to make it simple we feed back the association id is as a return
* indication to the call. Error is always negative and association id is
* always positive.
*/
static int sctp_setsockopt_connectx(struct sock *sk,
struct sockaddr *kaddrs,
int addrs_size)
{
sctp_assoc_t assoc_id = 0;
int err = 0;
err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
if (err)
return err;
else
return assoc_id;
}
/*
* New (hopefully final) interface for the API.
* We use the sctp_getaddrs_old structure so that use-space library
* can avoid any unnecessary allocations. The only different part
* is that we store the actual length of the address buffer into the
* addrs_num structure member. That way we can re-use the existing
* code.
*/
#ifdef CONFIG_COMPAT
struct compat_sctp_getaddrs_old {
sctp_assoc_t assoc_id;
s32 addr_num;
compat_uptr_t addrs; /* struct sockaddr * */
};
#endif
static int sctp_getsockopt_connectx3(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_getaddrs_old param;
sctp_assoc_t assoc_id = 0;
struct sockaddr *kaddrs;
int err = 0;
#ifdef CONFIG_COMPAT
if (in_compat_syscall()) {
struct compat_sctp_getaddrs_old param32;
if (len < sizeof(param32))
return -EINVAL;
if (copy_from_user(&param32, optval, sizeof(param32)))
return -EFAULT;
param.assoc_id = param32.assoc_id;
param.addr_num = param32.addr_num;
param.addrs = compat_ptr(param32.addrs);
} else
#endif
{
if (len < sizeof(param))
return -EINVAL;
if (copy_from_user(&param, optval, sizeof(param)))
return -EFAULT;
}
kaddrs = memdup_user(param.addrs, param.addr_num);
if (IS_ERR(kaddrs))
return PTR_ERR(kaddrs);
err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
kfree(kaddrs);
if (err == 0 || err == -EINPROGRESS) {
if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
return -EFAULT;
if (put_user(sizeof(assoc_id), optlen))
return -EFAULT;
}
return err;
}
/* API 3.1.4 close() - UDP Style Syntax
* Applications use close() to perform graceful shutdown (as described in
* Section 10.1 of [SCTP]) on ALL the associations currently represented
* by a UDP-style socket.
*
* The syntax is
*
* ret = close(int sd);
*
* sd - the socket descriptor of the associations to be closed.
*
* To gracefully shutdown a specific association represented by the
* UDP-style socket, an application should use the sendmsg() call,
* passing no user data, but including the appropriate flag in the
* ancillary data (see Section xxxx).
*
* If sd in the close() call is a branched-off socket representing only
* one association, the shutdown is performed on that association only.
*
* 4.1.6 close() - TCP Style Syntax
*
* Applications use close() to gracefully close down an association.
*
* The syntax is:
*
* int close(int sd);
*
* sd - the socket descriptor of the association to be closed.
*
* After an application calls close() on a socket descriptor, no further
* socket operations will succeed on that descriptor.
*
* API 7.1.4 SO_LINGER
*
* An application using the TCP-style socket can use this option to
* perform the SCTP ABORT primitive. The linger option structure is:
*
* struct linger {
* int l_onoff; // option on/off
* int l_linger; // linger time
* };
*
* To enable the option, set l_onoff to 1. If the l_linger value is set
* to 0, calling close() is the same as the ABORT primitive. If the
* value is set to a negative value, the setsockopt() call will return
* an error. If the value is set to a positive value linger_time, the
* close() can be blocked for at most linger_time ms. If the graceful
* shutdown phase does not finish during this period, close() will
* return but the graceful shutdown phase continues in the system.
*/
static void sctp_close(struct sock *sk, long timeout)
{
struct net *net = sock_net(sk);
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct list_head *pos, *temp;
unsigned int data_was_unread;
pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
sk->sk_shutdown = SHUTDOWN_MASK;
inet_sk_set_state(sk, SCTP_SS_CLOSING);
ep = sctp_sk(sk)->ep;
/* Clean up any skbs sitting on the receive queue. */
data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
/* Walk all associations on an endpoint. */
list_for_each_safe(pos, temp, &ep->asocs) {
asoc = list_entry(pos, struct sctp_association, asocs);
if (sctp_style(sk, TCP)) {
/* A closed association can still be in the list if
* it belongs to a TCP-style listening socket that is
* not yet accepted. If so, free it. If not, send an
* ABORT or SHUTDOWN based on the linger options.
*/
if (sctp_state(asoc, CLOSED)) {
sctp_association_free(asoc);
continue;
}
}
if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
!skb_queue_empty(&asoc->ulpq.reasm) ||
!skb_queue_empty(&asoc->ulpq.reasm_uo) ||
(sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
struct sctp_chunk *chunk;
chunk = sctp_make_abort_user(asoc, NULL, 0);
sctp_primitive_ABORT(net, asoc, chunk);
} else
sctp_primitive_SHUTDOWN(net, asoc, NULL);
}
/* On a TCP-style socket, block for at most linger_time if set. */
if (sctp_style(sk, TCP) && timeout)
sctp_wait_for_close(sk, timeout);
/* This will run the backlog queue. */
release_sock(sk);
/* Supposedly, no process has access to the socket, but
* the net layers still may.
* Also, sctp_destroy_sock() needs to be called with addr_wq_lock
* held and that should be grabbed before socket lock.
*/
spin_lock_bh(&net->sctp.addr_wq_lock);
bh_lock_sock_nested(sk);
/* Hold the sock, since sk_common_release() will put sock_put()
* and we have just a little more cleanup.
*/
sock_hold(sk);
sk_common_release(sk);
bh_unlock_sock(sk);
spin_unlock_bh(&net->sctp.addr_wq_lock);
sock_put(sk);
SCTP_DBG_OBJCNT_DEC(sock);
}
/* Handle EPIPE error. */
static int sctp_error(struct sock *sk, int flags, int err)
{
if (err == -EPIPE)
err = sock_error(sk) ? : -EPIPE;
if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
send_sig(SIGPIPE, current, 0);
return err;
}
/* API 3.1.3 sendmsg() - UDP Style Syntax
*
* An application uses sendmsg() and recvmsg() calls to transmit data to
* and receive data from its peer.
*
* ssize_t sendmsg(int socket, const struct msghdr *message,
* int flags);
*
* socket - the socket descriptor of the endpoint.
* message - pointer to the msghdr structure which contains a single
* user message and possibly some ancillary data.
*
* See Section 5 for complete description of the data
* structures.
*
* flags - flags sent or received with the user message, see Section
* 5 for complete description of the flags.
*
* Note: This function could use a rewrite especially when explicit
* connect support comes in.
*/
/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
static int sctp_msghdr_parse(const struct msghdr *msg,
struct sctp_cmsgs *cmsgs);
static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
struct sctp_sndrcvinfo *srinfo,
const struct msghdr *msg, size_t msg_len)
{
__u16 sflags;
int err;
if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
return -EPIPE;
if (msg_len > sk->sk_sndbuf)
return -EMSGSIZE;
memset(cmsgs, 0, sizeof(*cmsgs));
err = sctp_msghdr_parse(msg, cmsgs);
if (err) {
pr_debug("%s: msghdr parse err:%x\n", __func__, err);
return err;
}
memset(srinfo, 0, sizeof(*srinfo));
if (cmsgs->srinfo) {
srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
}
if (cmsgs->sinfo) {
srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
srinfo->sinfo_context = cmsgs->sinfo->snd_context;
srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
}
if (cmsgs->prinfo) {
srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
cmsgs->prinfo->pr_policy);
}
sflags = srinfo->sinfo_flags;
if (!sflags && msg_len)
return 0;
if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
return -EINVAL;
if (((sflags & SCTP_EOF) && msg_len > 0) ||
(!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
return -EINVAL;
if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
return -EINVAL;
return 0;
}
static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
struct sctp_cmsgs *cmsgs,
union sctp_addr *daddr,
struct sctp_transport **tp)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_association *asoc;
struct cmsghdr *cmsg;
__be32 flowinfo = 0;
struct sctp_af *af;
int err;
*tp = NULL;
if (sflags & (SCTP_EOF | SCTP_ABORT))
return -EINVAL;
if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
sctp_sstate(sk, CLOSING)))
return -EADDRNOTAVAIL;
/* Label connection socket for first association 1-to-many
* style for client sequence socket()->sendmsg(). This
* needs to be done before sctp_assoc_add_peer() as that will
* set up the initial packet that needs to account for any
* security ip options (CIPSO/CALIPSO) added to the packet.
*/
af = sctp_get_af_specific(daddr->sa.sa_family);
if (!af)
return -EINVAL;
err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
(struct sockaddr *)daddr,
af->sockaddr_len);
if (err < 0)
return err;
err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
if (err)
return err;
asoc = (*tp)->asoc;
if (!cmsgs->addrs_msg)
return 0;
if (daddr->sa.sa_family == AF_INET6)
flowinfo = daddr->v6.sin6_flowinfo;
/* sendv addr list parse */
for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
union sctp_addr _daddr;
int dlen;
if (cmsg->cmsg_level != IPPROTO_SCTP ||
(cmsg->cmsg_type != SCTP_DSTADDRV4 &&
cmsg->cmsg_type != SCTP_DSTADDRV6))
continue;
daddr = &_daddr;
memset(daddr, 0, sizeof(*daddr));
dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
if (dlen < sizeof(struct in_addr)) {
err = -EINVAL;
goto free;
}
dlen = sizeof(struct in_addr);
daddr->v4.sin_family = AF_INET;
daddr->v4.sin_port = htons(asoc->peer.port);
memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
} else {
if (dlen < sizeof(struct in6_addr)) {
err = -EINVAL;
goto free;
}
dlen = sizeof(struct in6_addr);
daddr->v6.sin6_flowinfo = flowinfo;
daddr->v6.sin6_family = AF_INET6;
daddr->v6.sin6_port = htons(asoc->peer.port);
memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
}
err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
if (err)
goto free;
}
return 0;
free:
sctp_association_free(asoc);
return err;
}
static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
__u16 sflags, struct msghdr *msg,
size_t msg_len)
{
struct sock *sk = asoc->base.sk;
struct net *net = sock_net(sk);
if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
return -EPIPE;
if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
!sctp_state(asoc, ESTABLISHED))
return 0;
if (sflags & SCTP_EOF) {
pr_debug("%s: shutting down association:%p\n", __func__, asoc);
sctp_primitive_SHUTDOWN(net, asoc, NULL);
return 0;
}
if (sflags & SCTP_ABORT) {
struct sctp_chunk *chunk;
chunk = sctp_make_abort_user(asoc, msg, msg_len);
if (!chunk)
return -ENOMEM;
pr_debug("%s: aborting association:%p\n", __func__, asoc);
sctp_primitive_ABORT(net, asoc, chunk);
iov_iter_revert(&msg->msg_iter, msg_len);
return 0;
}
return 1;
}
static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
struct msghdr *msg, size_t msg_len,
struct sctp_transport *transport,
struct sctp_sndrcvinfo *sinfo)
{
struct sock *sk = asoc->base.sk;
struct sctp_sock *sp = sctp_sk(sk);
struct net *net = sock_net(sk);
struct sctp_datamsg *datamsg;
bool wait_connect = false;
struct sctp_chunk *chunk;
long timeo;
int err;
if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
err = -EINVAL;
goto err;
}
if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
if (err)
goto err;
}
if (sp->disable_fragments && msg_len > asoc->frag_point) {
err = -EMSGSIZE;
goto err;
}
if (asoc->pmtu_pending) {
if (sp->param_flags & SPP_PMTUD_ENABLE)
sctp_assoc_sync_pmtu(asoc);
asoc->pmtu_pending = 0;
}
if (sctp_wspace(asoc) < (int)msg_len)
sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
if (sk_under_memory_pressure(sk))
sk_mem_reclaim(sk);
if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
if (err)
goto err;
}
if (sctp_state(asoc, CLOSED)) {
err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
if (err)
goto err;
if (asoc->ep->intl_enable) {
timeo = sock_sndtimeo(sk, 0);
err = sctp_wait_for_connect(asoc, &timeo);
if (err) {
err = -ESRCH;
goto err;
}
} else {
wait_connect = true;
}
pr_debug("%s: we associated primitively\n", __func__);
}
datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
if (IS_ERR(datamsg)) {
err = PTR_ERR(datamsg);
goto err;
}
asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
sctp_chunk_hold(chunk);
sctp_set_owner_w(chunk);
chunk->transport = transport;
}
err = sctp_primitive_SEND(net, asoc, datamsg);
if (err) {
sctp_datamsg_free(datamsg);
goto err;
}
pr_debug("%s: we sent primitively\n", __func__);
sctp_datamsg_put(datamsg);
if (unlikely(wait_connect)) {
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
sctp_wait_for_connect(asoc, &timeo);
}
err = msg_len;
err:
return err;
}
static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
const struct msghdr *msg,
struct sctp_cmsgs *cmsgs)
{
union sctp_addr *daddr = NULL;
int err;
if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
int len = msg->msg_namelen;
if (len > sizeof(*daddr))
len = sizeof(*daddr);
daddr = (union sctp_addr *)msg->msg_name;
err = sctp_verify_addr(sk, daddr, len);
if (err)
return ERR_PTR(err);
}
return daddr;
}
static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
struct sctp_sndrcvinfo *sinfo,
struct sctp_cmsgs *cmsgs)
{
if (!cmsgs->srinfo && !cmsgs->sinfo) {
sinfo->sinfo_stream = asoc->default_stream;
sinfo->sinfo_ppid = asoc->default_ppid;
sinfo->sinfo_context = asoc->default_context;
sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
if (!cmsgs->prinfo)
sinfo->sinfo_flags = asoc->default_flags;
}
if (!cmsgs->srinfo && !cmsgs->prinfo)
sinfo->sinfo_timetolive = asoc->default_timetolive;
if (cmsgs->authinfo) {
/* Reuse sinfo_tsn to indicate that authinfo was set and
* sinfo_ssn to save the keyid on tx path.
*/
sinfo->sinfo_tsn = 1;
sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
}
}
static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_transport *transport = NULL;
struct sctp_sndrcvinfo _sinfo, *sinfo;
struct sctp_association *asoc, *tmp;
struct sctp_cmsgs cmsgs;
union sctp_addr *daddr;
bool new = false;
__u16 sflags;
int err;
/* Parse and get snd_info */
err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
if (err)
goto out;
sinfo = &_sinfo;
sflags = sinfo->sinfo_flags;
/* Get daddr from msg */
daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
if (IS_ERR(daddr)) {
err = PTR_ERR(daddr);
goto out;
}
lock_sock(sk);
/* SCTP_SENDALL process */
if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
msg_len);
if (err == 0)
continue;
if (err < 0)
goto out_unlock;
sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
NULL, sinfo);
if (err < 0)
goto out_unlock;
iov_iter_revert(&msg->msg_iter, err);
}
goto out_unlock;
}
/* Get and check or create asoc */
if (daddr) {
asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
if (asoc) {
err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
msg_len);
if (err <= 0)
goto out_unlock;
} else {
err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
&transport);
if (err)
goto out_unlock;
asoc = transport->asoc;
new = true;
}
if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
transport = NULL;
} else {
asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
if (!asoc) {
err = -EPIPE;
goto out_unlock;
}
err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
if (err <= 0)
goto out_unlock;
}
/* Update snd_info with the asoc */
sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
/* Send msg to the asoc */
err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
if (err < 0 && err != -ESRCH && new)
sctp_association_free(asoc);
out_unlock:
release_sock(sk);
out:
return sctp_error(sk, msg->msg_flags, err);
}
/* This is an extended version of skb_pull() that removes the data from the
* start of a skb even when data is spread across the list of skb's in the
* frag_list. len specifies the total amount of data that needs to be removed.
* when 'len' bytes could be removed from the skb, it returns 0.
* If 'len' exceeds the total skb length, it returns the no. of bytes that
* could not be removed.
*/
static int sctp_skb_pull(struct sk_buff *skb, int len)
{
struct sk_buff *list;
int skb_len = skb_headlen(skb);
int rlen;
if (len <= skb_len) {
__skb_pull(skb, len);
return 0;
}
len -= skb_len;
__skb_pull(skb, skb_len);
skb_walk_frags(skb, list) {
rlen = sctp_skb_pull(list, len);
skb->len -= (len-rlen);
skb->data_len -= (len-rlen);
if (!rlen)
return 0;
len = rlen;
}
return len;
}
/* API 3.1.3 recvmsg() - UDP Style Syntax
*
* ssize_t recvmsg(int socket, struct msghdr *message,
* int flags);
*
* socket - the socket descriptor of the endpoint.
* message - pointer to the msghdr structure which contains a single
* user message and possibly some ancillary data.
*
* See Section 5 for complete description of the data
* structures.
*
* flags - flags sent or received with the user message, see Section
* 5 for complete description of the flags.
*/
static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int noblock, int flags, int *addr_len)
{
struct sctp_ulpevent *event = NULL;
struct sctp_sock *sp = sctp_sk(sk);
struct sk_buff *skb, *head_skb;
int copied;
int err = 0;
int skb_len;
pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
"addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
addr_len);
lock_sock(sk);
if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
!sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
err = -ENOTCONN;
goto out;
}
skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
if (!skb)
goto out;
/* Get the total length of the skb including any skb's in the
* frag_list.
*/
skb_len = skb->len;
copied = skb_len;
if (copied > len)
copied = len;
err = skb_copy_datagram_msg(skb, 0, msg, copied);
event = sctp_skb2event(skb);
if (err)
goto out_free;
if (event->chunk && event->chunk->head_skb)
head_skb = event->chunk->head_skb;
else
head_skb = skb;
sock_recv_ts_and_drops(msg, sk, head_skb);
if (sctp_ulpevent_is_notification(event)) {
msg->msg_flags |= MSG_NOTIFICATION;
sp->pf->event_msgname(event, msg->msg_name, addr_len);
} else {
sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
}
/* Check if we allow SCTP_NXTINFO. */
if (sp->recvnxtinfo)
sctp_ulpevent_read_nxtinfo(event, msg, sk);
/* Check if we allow SCTP_RCVINFO. */
if (sp->recvrcvinfo)
sctp_ulpevent_read_rcvinfo(event, msg);
/* Check if we allow SCTP_SNDRCVINFO. */
if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
sctp_ulpevent_read_sndrcvinfo(event, msg);
err = copied;
/* If skb's length exceeds the user's buffer, update the skb and
* push it back to the receive_queue so that the next call to
* recvmsg() will return the remaining data. Don't set MSG_EOR.
*/
if (skb_len > copied) {
msg->msg_flags &= ~MSG_EOR;
if (flags & MSG_PEEK)
goto out_free;
sctp_skb_pull(skb, copied);
skb_queue_head(&sk->sk_receive_queue, skb);
/* When only partial message is copied to the user, increase
* rwnd by that amount. If all the data in the skb is read,
* rwnd is updated when the event is freed.
*/
if (!sctp_ulpevent_is_notification(event))
sctp_assoc_rwnd_increase(event->asoc, copied);
goto out;
} else if ((event->msg_flags & MSG_NOTIFICATION) ||
(event->msg_flags & MSG_EOR))
msg->msg_flags |= MSG_EOR;
else
msg->msg_flags &= ~MSG_EOR;
out_free:
if (flags & MSG_PEEK) {
/* Release the skb reference acquired after peeking the skb in
* sctp_skb_recv_datagram().
*/
kfree_skb(skb);
} else {
/* Free the event which includes releasing the reference to
* the owner of the skb, freeing the skb and updating the
* rwnd.
*/
sctp_ulpevent_free(event);
}
out:
release_sock(sk);
return err;
}
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
*
* This option is a on/off flag. If enabled no SCTP message
* fragmentation will be performed. Instead if a message being sent
* exceeds the current PMTU size, the message will NOT be sent and
* instead a error will be indicated to the user.
*/
static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
unsigned int optlen)
{
if (optlen < sizeof(int))
return -EINVAL;
sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
return 0;
}
static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
int i;
if (optlen > sizeof(struct sctp_event_subscribe))
return -EINVAL;
for (i = 0; i < optlen; i++)
sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
sn_type[i]);
list_for_each_entry(asoc, &sp->ep->asocs, asocs)
asoc->subscribe = sctp_sk(sk)->subscribe;
/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
* if there is no data to be sent or retransmit, the stack will
* immediately send up this notification.
*/
if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
struct sctp_ulpevent *event;
asoc = sctp_id2assoc(sk, 0);
if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
event = sctp_ulpevent_make_sender_dry_event(asoc,
GFP_USER | __GFP_NOWARN);
if (!event)
return -ENOMEM;
asoc->stream.si->enqueue_event(&asoc->ulpq, event);
}
}
return 0;
}
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
*
* This socket option is applicable to the UDP-style socket only. When
* set it will cause associations that are idle for more than the
* specified number of seconds to automatically close. An association
* being idle is defined an association that has NOT sent or received
* user data. The special value of '0' indicates that no automatic
* close of any associations should be performed. The option expects an
* integer defining the number of seconds of idle time before an
* association is closed.
*/
static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct net *net = sock_net(sk);
/* Applicable to UDP-style socket only */
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (optlen != sizeof(int))
return -EINVAL;
sp->autoclose = *optval;
if (sp->autoclose > net->sctp.max_autoclose)
sp->autoclose = net->sctp.max_autoclose;
return 0;
}
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
*
* Applications can enable or disable heartbeats for any peer address of
* an association, modify an address's heartbeat interval, force a
* heartbeat to be sent immediately, and adjust the address's maximum
* number of retransmissions sent before an address is considered
* unreachable. The following structure is used to access and modify an
* address's parameters:
*
* struct sctp_paddrparams {
* sctp_assoc_t spp_assoc_id;
* struct sockaddr_storage spp_address;
* uint32_t spp_hbinterval;
* uint16_t spp_pathmaxrxt;
* uint32_t spp_pathmtu;
* uint32_t spp_sackdelay;
* uint32_t spp_flags;
* uint32_t spp_ipv6_flowlabel;
* uint8_t spp_dscp;
* };
*
* spp_assoc_id - (one-to-many style socket) This is filled in the
* application, and identifies the association for
* this query.
* spp_address - This specifies which address is of interest.
* spp_hbinterval - This contains the value of the heartbeat interval,
* in milliseconds. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmaxrxt - This contains the maximum number of
* retransmissions before this address shall be
* considered unreachable. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmtu - When Path MTU discovery is disabled the value
* specified here will be the "fixed" path mtu.
* Note that if the spp_address field is empty
* then all associations on this address will
* have this fixed path mtu set upon them.
*
* spp_sackdelay - When delayed sack is enabled, this value specifies
* the number of milliseconds that sacks will be delayed
* for. This value will apply to all addresses of an
* association if the spp_address field is empty. Note
* also, that if delayed sack is enabled and this
* value is set to 0, no change is made to the last
* recorded delayed sack timer value.
*
* spp_flags - These flags are used to control various features
* on an association. The flag field may contain
* zero or more of the following options.
*
* SPP_HB_ENABLE - Enable heartbeats on the
* specified address. Note that if the address
* field is empty all addresses for the association
* have heartbeats enabled upon them.
*
* SPP_HB_DISABLE - Disable heartbeats on the
* speicifed address. Note that if the address
* field is empty all addresses for the association
* will have their heartbeats disabled. Note also
* that SPP_HB_ENABLE and SPP_HB_DISABLE are
* mutually exclusive, only one of these two should
* be specified. Enabling both fields will have
* undetermined results.
*
* SPP_HB_DEMAND - Request a user initiated heartbeat
* to be made immediately.
*
* SPP_HB_TIME_IS_ZERO - Specify's that the time for
* heartbeat delayis to be set to the value of 0
* milliseconds.
*
* SPP_PMTUD_ENABLE - This field will enable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected.
*
* SPP_PMTUD_DISABLE - This field will disable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected. Not also that
* SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
* exclusive. Enabling both will have undetermined
* results.
*
* SPP_SACKDELAY_ENABLE - Setting this flag turns
* on delayed sack. The time specified in spp_sackdelay
* is used to specify the sack delay for this address. Note
* that if spp_address is empty then all addresses will
* enable delayed sack and take on the sack delay
* value specified in spp_sackdelay.
* SPP_SACKDELAY_DISABLE - Setting this flag turns
* off delayed sack. If the spp_address field is blank then
* delayed sack is disabled for the entire association. Note
* also that this field is mutually exclusive to
* SPP_SACKDELAY_ENABLE, setting both will have undefined
* results.
*
* SPP_IPV6_FLOWLABEL: Setting this flag enables the
* setting of the IPV6 flow label value. The value is
* contained in the spp_ipv6_flowlabel field.
* Upon retrieval, this flag will be set to indicate that
* the spp_ipv6_flowlabel field has a valid value returned.
* If a specific destination address is set (in the
* spp_address field), then the value returned is that of
* the address. If just an association is specified (and
* no address), then the association's default flow label
* is returned. If neither an association nor a destination
* is specified, then the socket's default flow label is
* returned. For non-IPv6 sockets, this flag will be left
* cleared.
*
* SPP_DSCP: Setting this flag enables the setting of the
* Differentiated Services Code Point (DSCP) value
* associated with either the association or a specific
* address. The value is obtained in the spp_dscp field.
* Upon retrieval, this flag will be set to indicate that
* the spp_dscp field has a valid value returned. If a
* specific destination address is set when called (in the
* spp_address field), then that specific destination
* address's DSCP value is returned. If just an association
* is specified, then the association's default DSCP is
* returned. If neither an association nor a destination is
* specified, then the socket's default DSCP is returned.
*
* spp_ipv6_flowlabel
* - This field is used in conjunction with the
* SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
* The 20 least significant bits are used for the flow
* label. This setting has precedence over any IPv6-layer
* setting.
*
* spp_dscp - This field is used in conjunction with the SPP_DSCP flag
* and contains the DSCP. The 6 most significant bits are
* used for the DSCP. This setting has precedence over any
* IPv4- or IPv6- layer setting.
*/
static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
struct sctp_transport *trans,
struct sctp_association *asoc,
struct sctp_sock *sp,
int hb_change,
int pmtud_change,
int sackdelay_change)
{
int error;
if (params->spp_flags & SPP_HB_DEMAND && trans) {
error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
trans->asoc, trans);
if (error)
return error;
}
/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
* this field is ignored. Note also that a value of zero indicates
* the current setting should be left unchanged.
*/
if (params->spp_flags & SPP_HB_ENABLE) {
/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
* set. This lets us use 0 value when this flag
* is set.
*/
if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
params->spp_hbinterval = 0;
if (params->spp_hbinterval ||
(params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
if (trans) {
trans->hbinterval =
msecs_to_jiffies(params->spp_hbinterval);
} else if (asoc) {
asoc->hbinterval =
msecs_to_jiffies(params->spp_hbinterval);
} else {
sp->hbinterval = params->spp_hbinterval;
}
}
}
if (hb_change) {
if (trans) {
trans->param_flags =
(trans->param_flags & ~SPP_HB) | hb_change;
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_HB) | hb_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_HB) | hb_change;
}
}
/* When Path MTU discovery is disabled the value specified here will
* be the "fixed" path mtu (i.e. the value of the spp_flags field must
* include the flag SPP_PMTUD_DISABLE for this field to have any
* effect).
*/
if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
if (trans) {
trans->pathmtu = params->spp_pathmtu;
sctp_assoc_sync_pmtu(asoc);
} else if (asoc) {
sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
} else {
sp->pathmtu = params->spp_pathmtu;
}
}
if (pmtud_change) {
if (trans) {
int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
(params->spp_flags & SPP_PMTUD_ENABLE);
trans->param_flags =
(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
if (update) {
sctp_transport_pmtu(trans, sctp_opt2sk(sp));
sctp_assoc_sync_pmtu(asoc);
}
sctp_transport_pl_reset(trans);
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
}
}
/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
* value of this field is ignored. Note also that a value of zero
* indicates the current setting should be left unchanged.
*/
if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
if (trans) {
trans->sackdelay =
msecs_to_jiffies(params->spp_sackdelay);
} else if (asoc) {
asoc->sackdelay =
msecs_to_jiffies(params->spp_sackdelay);
} else {
sp->sackdelay = params->spp_sackdelay;
}
}
if (sackdelay_change) {
if (trans) {
trans->param_flags =
(trans->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
}
}
/* Note that a value of zero indicates the current setting should be
left unchanged.
*/
if (params->spp_pathmaxrxt) {
if (trans) {
trans->pathmaxrxt = params->spp_pathmaxrxt;
} else if (asoc) {
asoc->pathmaxrxt = params->spp_pathmaxrxt;
} else {
sp->pathmaxrxt = params->spp_pathmaxrxt;
}
}
if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
if (trans) {
if (trans->ipaddr.sa.sa_family == AF_INET6) {
trans->flowlabel = params->spp_ipv6_flowlabel &
SCTP_FLOWLABEL_VAL_MASK;
trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
}
} else if (asoc) {
struct sctp_transport *t;
list_for_each_entry(t, &asoc->peer.transport_addr_list,
transports) {
if (t->ipaddr.sa.sa_family != AF_INET6)
continue;
t->flowlabel = params->spp_ipv6_flowlabel &
SCTP_FLOWLABEL_VAL_MASK;
t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
}
asoc->flowlabel = params->spp_ipv6_flowlabel &
SCTP_FLOWLABEL_VAL_MASK;
asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
sp->flowlabel = params->spp_ipv6_flowlabel &
SCTP_FLOWLABEL_VAL_MASK;
sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
}
}
if (params->spp_flags & SPP_DSCP) {
if (trans) {
trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
trans->dscp |= SCTP_DSCP_SET_MASK;
} else if (asoc) {
struct sctp_transport *t;
list_for_each_entry(t, &asoc->peer.transport_addr_list,
transports) {
t->dscp = params->spp_dscp &
SCTP_DSCP_VAL_MASK;
t->dscp |= SCTP_DSCP_SET_MASK;
}
asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
asoc->dscp |= SCTP_DSCP_SET_MASK;
} else {
sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
sp->dscp |= SCTP_DSCP_SET_MASK;
}
}
return 0;
}
static int sctp_setsockopt_peer_addr_params(struct sock *sk,
struct sctp_paddrparams *params,
unsigned int optlen)
{
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
int error;
int hb_change, pmtud_change, sackdelay_change;
if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
spp_ipv6_flowlabel), 4)) {
if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
return -EINVAL;
} else if (optlen != sizeof(*params)) {
return -EINVAL;
}
/* Validate flags and value parameters. */
hb_change = params->spp_flags & SPP_HB;
pmtud_change = params->spp_flags & SPP_PMTUD;
sackdelay_change = params->spp_flags & SPP_SACKDELAY;
if (hb_change == SPP_HB ||
pmtud_change == SPP_PMTUD ||
sackdelay_change == SPP_SACKDELAY ||
params->spp_sackdelay > 500 ||
(params->spp_pathmtu &&
params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
return -EINVAL;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(sk, (union sctp_addr *)&params->spp_address)) {
trans = sctp_addr_id2transport(sk, &params->spp_address,
params->spp_assoc_id);
if (!trans)
return -EINVAL;
}
/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
* socket is a one to many style socket, and an association
* was not found, then the id was invalid.
*/
asoc = sctp_id2assoc(sk, params->spp_assoc_id);
if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
/* Heartbeat demand can only be sent on a transport or
* association, but not a socket.
*/
if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
return -EINVAL;
/* Process parameters. */
error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
hb_change, pmtud_change,
sackdelay_change);
if (error)
return error;
/* If changes are for association, also apply parameters to each
* transport.
*/
if (!trans && asoc) {
list_for_each_entry(trans, &asoc->peer.transport_addr_list,
transports) {
sctp_apply_peer_addr_params(params, trans, asoc, sp,
hb_change, pmtud_change,
sackdelay_change);
}
}
return 0;
}
static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
{
return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
}
static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
{
return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
}
static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
struct sctp_association *asoc)
{
struct sctp_transport *trans;
if (params->sack_delay) {
asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
asoc->param_flags =
sctp_spp_sackdelay_enable(asoc->param_flags);
}
if (params->sack_freq == 1) {
asoc->param_flags =
sctp_spp_sackdelay_disable(asoc->param_flags);
} else if (params->sack_freq > 1) {
asoc->sackfreq = params->sack_freq;
asoc->param_flags =
sctp_spp_sackdelay_enable(asoc->param_flags);
}
list_for_each_entry(trans, &asoc->peer.transport_addr_list,
transports) {
if (params->sack_delay) {
trans->sackdelay = msecs_to_jiffies(params->sack_delay);
trans->param_flags =
sctp_spp_sackdelay_enable(trans->param_flags);
}
if (params->sack_freq == 1) {
trans->param_flags =
sctp_spp_sackdelay_disable(trans->param_flags);
} else if (params->sack_freq > 1) {
trans->sackfreq = params->sack_freq;
trans->param_flags =
sctp_spp_sackdelay_enable(trans->param_flags);
}
}
}
/*
* 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
*
* This option will effect the way delayed acks are performed. This
* option allows you to get or set the delayed ack time, in
* milliseconds. It also allows changing the delayed ack frequency.
* Changing the frequency to 1 disables the delayed sack algorithm. If
* the assoc_id is 0, then this sets or gets the endpoints default
* values. If the assoc_id field is non-zero, then the set or get
* effects the specified association for the one to many model (the
* assoc_id field is ignored by the one to one model). Note that if
* sack_delay or sack_freq are 0 when setting this option, then the
* current values will remain unchanged.
*
* struct sctp_sack_info {
* sctp_assoc_t sack_assoc_id;
* uint32_t sack_delay;
* uint32_t sack_freq;
* };
*
* sack_assoc_id - This parameter, indicates which association the user
* is performing an action upon. Note that if this field's value is
* zero then the endpoints default value is changed (effecting future
* associations only).
*
* sack_delay - This parameter contains the number of milliseconds that
* the user is requesting the delayed ACK timer be set to. Note that
* this value is defined in the standard to be between 200 and 500
* milliseconds.
*
* sack_freq - This parameter contains the number of packets that must
* be received before a sack is sent without waiting for the delay
* timer to expire. The default value for this is 2, setting this
* value to 1 will disable the delayed sack algorithm.
*/
static int __sctp_setsockopt_delayed_ack(struct sock *sk,
struct sctp_sack_info *params)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
/* Validate value parameter. */
if (params->sack_delay > 500)
return -EINVAL;
/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
* socket is a one to many style socket, and an association
* was not found, then the id was invalid.
*/
asoc = sctp_id2assoc(sk, params->sack_assoc_id);
if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
sctp_apply_asoc_delayed_ack(params, asoc);
return 0;
}
if (sctp_style(sk, TCP))
params->sack_assoc_id = SCTP_FUTURE_ASSOC;
if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
params->sack_assoc_id == SCTP_ALL_ASSOC) {
if (params->sack_delay) {
sp->sackdelay = params->sack_delay;
sp->param_flags =
sctp_spp_sackdelay_enable(sp->param_flags);
}
if (params->sack_freq == 1) {
sp->param_flags =
sctp_spp_sackdelay_disable(sp->param_flags);
} else if (params->sack_freq > 1) {
sp->sackfreq = params->sack_freq;
sp->param_flags =
sctp_spp_sackdelay_enable(sp->param_flags);
}
}
if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
params->sack_assoc_id == SCTP_ALL_ASSOC)
list_for_each_entry(asoc, &sp->ep->asocs, asocs)
sctp_apply_asoc_delayed_ack(params, asoc);
return 0;
}
static int sctp_setsockopt_delayed_ack(struct sock *sk,
struct sctp_sack_info *params,
unsigned int optlen)
{
if (optlen == sizeof(struct sctp_assoc_value)) {
struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
struct sctp_sack_info p;
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n",
current->comm, task_pid_nr(current));
p.sack_assoc_id = v->assoc_id;
p.sack_delay = v->assoc_value;
p.sack_freq = v->assoc_value ? 0 : 1;
return __sctp_setsockopt_delayed_ack(sk, &p);
}
if (optlen != sizeof(struct sctp_sack_info))
return -EINVAL;
if (params->sack_delay == 0 && params->sack_freq == 0)
return 0;
return __sctp_setsockopt_delayed_ack(sk, params);
}
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
*
* Applications can specify protocol parameters for the default association
* initialization. The option name argument to setsockopt() and getsockopt()
* is SCTP_INITMSG.
*
* Setting initialization parameters is effective only on an unconnected
* socket (for UDP-style sockets only future associations are effected
* by the change). With TCP-style sockets, this option is inherited by
* sockets derived from a listener socket.
*/
static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof(struct sctp_initmsg))
return -EINVAL;
if (sinit->sinit_num_ostreams)
sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
if (sinit->sinit_max_instreams)
sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
if (sinit->sinit_max_attempts)
sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
if (sinit->sinit_max_init_timeo)
sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
return 0;
}
/*
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
*
* Applications that wish to use the sendto() system call may wish to
* specify a default set of parameters that would normally be supplied
* through the inclusion of ancillary data. This socket option allows
* such an application to set the default sctp_sndrcvinfo structure.
* The application that wishes to use this socket option simply passes
* in to this call the sctp_sndrcvinfo structure defined in Section
* 5.2.2) The input parameters accepted by this call include
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
* to this call if the caller is using the UDP model.
*/
static int sctp_setsockopt_default_send_param(struct sock *sk,
struct sctp_sndrcvinfo *info,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
if (optlen != sizeof(*info))
return -EINVAL;
if (info->sinfo_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_ABORT | SCTP_EOF))
return -EINVAL;
asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
asoc->default_stream = info->sinfo_stream;
asoc->default_flags = info->sinfo_flags;
asoc->default_ppid = info->sinfo_ppid;
asoc->default_context = info->sinfo_context;
asoc->default_timetolive = info->sinfo_timetolive;
return 0;
}
if (sctp_style(sk, TCP))
info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
sp->default_stream = info->sinfo_stream;
sp->default_flags = info->sinfo_flags;
sp->default_ppid = info->sinfo_ppid;
sp->default_context = info->sinfo_context;
sp->default_timetolive = info->sinfo_timetolive;
}
if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
asoc->default_stream = info->sinfo_stream;
asoc->default_flags = info->sinfo_flags;
asoc->default_ppid = info->sinfo_ppid;
asoc->default_context = info->sinfo_context;
asoc->default_timetolive = info->sinfo_timetolive;
}
}
return 0;
}
/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
* (SCTP_DEFAULT_SNDINFO)
*/
static int sctp_setsockopt_default_sndinfo(struct sock *sk,
struct sctp_sndinfo *info,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
if (optlen != sizeof(*info))
return -EINVAL;
if (info->snd_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_ABORT | SCTP_EOF))
return -EINVAL;
asoc = sctp_id2assoc(sk, info->snd_assoc_id);
if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
asoc->default_stream = info->snd_sid;
asoc->default_flags = info->snd_flags;
asoc->default_ppid = info->snd_ppid;
asoc->default_context = info->snd_context;
return 0;
}
if (sctp_style(sk, TCP))
info->snd_assoc_id = SCTP_FUTURE_ASSOC;
if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
info->snd_assoc_id == SCTP_ALL_ASSOC) {
sp->default_stream = info->snd_sid;
sp->default_flags = info->snd_flags;
sp->default_ppid = info->snd_ppid;
sp->default_context = info->snd_context;
}
if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
info->snd_assoc_id == SCTP_ALL_ASSOC) {
list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
asoc->default_stream = info->snd_sid;
asoc->default_flags = info->snd_flags;
asoc->default_ppid = info->snd_ppid;
asoc->default_context = info->snd_context;
}
}
return 0;
}
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
*
* Requests that the local SCTP stack use the enclosed peer address as
* the association primary. The enclosed address must be one of the
* association peer's addresses.
*/
static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
unsigned int optlen)
{
struct sctp_transport *trans;
struct sctp_af *af;
int err;
if (optlen != sizeof(struct sctp_prim))
return -EINVAL;
/* Allow security module to validate address but need address len. */
af = sctp_get_af_specific(prim->ssp_addr.ss_family);
if (!af)
return -EINVAL;
err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
(struct sockaddr *)&prim->ssp_addr,
af->sockaddr_len);
if (err)
return err;
trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
if (!trans)
return -EINVAL;
sctp_assoc_set_primary(trans->asoc, trans);
return 0;
}
/*
* 7.1.5 SCTP_NODELAY
*
* Turn on/off any Nagle-like algorithm. This means that packets are
* generally sent as soon as possible and no unnecessary delays are
* introduced, at the cost of more packets in the network. Expects an
* integer boolean flag.
*/
static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
unsigned int optlen)
{
if (optlen < sizeof(int))
return -EINVAL;
sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
return 0;
}
/*
*
* 7.1.1 SCTP_RTOINFO
*
* The protocol parameters used to initialize and bound retransmission
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
* and modify these parameters.
* All parameters are time values, in milliseconds. A value of 0, when
* modifying the parameters, indicates that the current value should not
* be changed.
*
*/
static int sctp_setsockopt_rtoinfo(struct sock *sk,
struct sctp_rtoinfo *rtoinfo,
unsigned int optlen)
{
struct sctp_association *asoc;
unsigned long rto_min, rto_max;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof (struct sctp_rtoinfo))
return -EINVAL;
asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
/* Set the values to the specific association */
if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
rto_max = rtoinfo->srto_max;
rto_min = rtoinfo->srto_min;
if (rto_max)
rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
else
rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
if (rto_min)
rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
else
rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
if (rto_min > rto_max)
return -EINVAL;
if (asoc) {
if (rtoinfo->srto_initial != 0)
asoc->rto_initial =
msecs_to_jiffies(rtoinfo->srto_initial);
asoc->rto_max = rto_max;
asoc->rto_min = rto_min;
} else {
/* If there is no association or the association-id = 0
* set the values to the endpoint.
*/
if (rtoinfo->srto_initial != 0)
sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
sp->rtoinfo.srto_max = rto_max;
sp->rtoinfo.srto_min = rto_min;
}
return 0;
}
/*
*
* 7.1.2 SCTP_ASSOCINFO
*
* This option is used to tune the maximum retransmission attempts
* of the association.
* Returns an error if the new association retransmission value is
* greater than the sum of the retransmission value of the peer.
* See [SCTP] for more information.
*
*/
static int sctp_setsockopt_associnfo(struct sock *sk,
struct sctp_assocparams *assocparams,
unsigned int optlen)
{
struct sctp_association *asoc;
if (optlen != sizeof(struct sctp_assocparams))
return -EINVAL;
asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
/* Set the values to the specific association */
if (asoc) {
if (assocparams->sasoc_asocmaxrxt != 0) {
__u32 path_sum = 0;
int paths = 0;
struct sctp_transport *peer_addr;
list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
transports) {
path_sum += peer_addr->pathmaxrxt;
paths++;
}
/* Only validate asocmaxrxt if we have more than
* one path/transport. We do this because path
* retransmissions are only counted when we have more
* then one path.
*/
if (paths > 1 &&
assocparams->sasoc_asocmaxrxt > path_sum)
return -EINVAL;
asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
}
if (assocparams->sasoc_cookie_life != 0)
asoc->cookie_life =
ms_to_ktime(assocparams->sasoc_cookie_life);
} else {
/* Set the values to the endpoint */
struct sctp_sock *sp = sctp_sk(sk);
if (assocparams->sasoc_asocmaxrxt != 0)
sp->assocparams.sasoc_asocmaxrxt =
assocparams->sasoc_asocmaxrxt;
if (assocparams->sasoc_cookie_life != 0)
sp->assocparams.sasoc_cookie_life =
assocparams->sasoc_cookie_life;
}
return 0;
}
/*
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
*
* This socket option is a boolean flag which turns on or off mapped V4
* addresses. If this option is turned on and the socket is type
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
* If this option is turned off, then no mapping will be done of V4
* addresses and a user will receive both PF_INET6 and PF_INET type
* addresses on the socket.
*/
static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
if (optlen < sizeof(int))
return -EINVAL;
if (*val)
sp->v4mapped = 1;
else
sp->v4mapped = 0;
return 0;
}
/*
* 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
* This option will get or set the maximum size to put in any outgoing
* SCTP DATA chunk. If a message is larger than this size it will be
* fragmented by SCTP into the specified size. Note that the underlying
* SCTP implementation may fragment into smaller sized chunks when the
* PMTU of the underlying association is smaller than the value set by
* the user. The default value for this option is '0' which indicates
* the user is NOT limiting fragmentation and only the PMTU will effect
* SCTP's choice of DATA chunk size. Note also that values set larger
* than the maximum size of an IP datagram will effectively let SCTP
* control fragmentation (i.e. the same as setting this option to 0).
*
* The following structure is used to access and modify this parameter:
*
* struct sctp_assoc_value {
* sctp_assoc_t assoc_id;
* uint32_t assoc_value;
* };
*
* assoc_id: This parameter is ignored for one-to-one style sockets.
* For one-to-many style sockets this parameter indicates which
* association the user is performing an action upon. Note that if
* this field's value is zero then the endpoints default value is
* changed (effecting future associations only).
* assoc_value: This parameter specifies the maximum size in bytes.
*/
static int sctp_setsockopt_maxseg(struct sock *sk,
struct sctp_assoc_value *params,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
sctp_assoc_t assoc_id;
int val;
if (optlen == sizeof(int)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of int in maxseg socket option.\n"
"Use struct sctp_assoc_value instead\n",
current->comm, task_pid_nr(current));
assoc_id = SCTP_FUTURE_ASSOC;
val = *(int *)params;
} else if (optlen == sizeof(struct sctp_assoc_value)) {
assoc_id = params->assoc_id;
val = params->assoc_value;
} else {
return -EINVAL;
}
asoc = sctp_id2assoc(sk, assoc_id);
if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (val) {
int min_len, max_len;
__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
sizeof(struct sctp_data_chunk);
min_len = sctp_min_frag_point(sp, datasize);
max_len = SCTP_MAX_CHUNK_LEN - datasize;
if (val < min_len || val > max_len)
return -EINVAL;
}
if (asoc) {
asoc->user_frag = val;
sctp_assoc_update_frag_point(asoc);
} else {
sp->user_frag = val;
}
return 0;
}
/*
* 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
*
* Requests that the peer mark the enclosed address as the association
* primary. The enclosed address must be one of the association's
* locally bound addresses. The following structure is used to make a
* set primary request:
*/
static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
struct sctp_setpeerprim *prim,
unsigned int optlen)
{
struct sctp_sock *sp;
struct sctp_association *asoc = NULL;
struct sctp_chunk *chunk;
struct sctp_af *af;
int err;
sp = sctp_sk(sk);
if (!sp->ep->asconf_enable)
return -EPERM;
if (optlen != sizeof(struct sctp_setpeerprim))
return -EINVAL;
asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
if (!asoc)
return -EINVAL;
if (!asoc->peer.asconf_capable)
return -EPERM;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
return -EPERM;
if (!sctp_state(asoc, ESTABLISHED))
return -ENOTCONN;
af = sctp_get_af_specific(prim->sspp_addr.ss_family);
if (!af)
return -EINVAL;
if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
return -EADDRNOTAVAIL;
if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
return -EADDRNOTAVAIL;
/* Allow security module to validate address. */
err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
(struct sockaddr *)&prim->sspp_addr,
af->sockaddr_len);
if (err)
return err;
/* Create an ASCONF chunk with SET_PRIMARY parameter */
chunk = sctp_make_asconf_set_prim(asoc,
(union sctp_addr *)&prim->sspp_addr);
if (!chunk)
return -ENOMEM;
err = sctp_send_asconf(asoc, chunk);
pr_debug("%s: we set peer primary addr primitively\n", __func__);
return err;
}
static int sctp_setsockopt_adaptation_layer(struct sock *sk,
struct sctp_setadaptation *adapt,
unsigned int optlen)
{
if (optlen != sizeof(struct sctp_setadaptation))
return -EINVAL;
sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
return 0;
}
/*
* 7.1.29. Set or Get the default context (SCTP_CONTEXT)
*
* The context field in the sctp_sndrcvinfo structure is normally only
* used when a failed message is retrieved holding the value that was
* sent down on the actual send call. This option allows the setting of
* a default context on an association basis that will be received on
* reading messages from the peer. This is especially helpful in the
* one-2-many model for an application to keep some reference to an
* internal state machine that is processing messages on the
* association. Note that the setting of this value only effects
* received messages from the peer and does not effect the value that is
* saved with outbound messages.
*/
static int sctp_setsockopt_context(struct sock *sk,
struct sctp_assoc_value *params,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
if (optlen != sizeof(struct sctp_assoc_value))
return -EINVAL;
asoc = sctp_id2assoc(sk, params->assoc_id);
if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
asoc->default_rcv_context = params->assoc_value;
return 0;
}
if (sctp_style(sk, TCP))
params->assoc_id = SCTP_FUTURE_ASSOC;
if (params->assoc_id == SCTP_FUTURE_ASSOC ||
params->assoc_id == SCTP_ALL_ASSOC)
sp->default_rcv_context = params->assoc_value;
if (params->assoc_id == SCTP_CURRENT_ASSOC ||
params->assoc_id == SCTP_ALL_ASSOC)
list_for_each_entry(asoc, &sp->ep->asocs, asocs)
asoc->default_rcv_context = params->assoc_value;
return 0;
}
/*
* 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
*
* This options will at a minimum specify if the implementation is doing
* fragmented interleave. Fragmented interleave, for a one to many
* socket, is when subsequent calls to receive a message may return
* parts of messages from different associations. Some implementations
* may allow you to turn this value on or off. If so, when turned off,
* no fragment interleave will occur (which will cause a head of line
* blocking amongst multiple associations sharing the same one to many
* socket). When this option is turned on, then each receive call may
* come from a different association (thus the user must receive data
* with the extended calls (e.g. sctp_recvmsg) to keep track of which
* association each receive belongs to.
*
* This option takes a boolean value. A non-zero value indicates that
* fragmented interleave is on. A value of zero indicates that
* fragmented interleave is off.
*
* Note that it is important that an implementation that allows this
* option to be turned on, have it off by default. Otherwise an unaware
* application using the one to many model may become confused and act
* incorrectly.
*/
static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
unsigned int optlen)
{
if (optlen != sizeof(int))
return -EINVAL;
sctp_sk(sk)->frag_interleave = !!*val;
if (!sctp_sk(sk)->frag_interleave)
sctp_sk(sk)->ep->intl_enable = 0;
return 0;
}
/*
* 8.1.21. Set or Get the SCTP Partial Delivery Point
* (SCTP_PARTIAL_DELIVERY_POINT)
*
* This option will set or get the SCTP partial delivery point. This
* point is the size of a message where the partial delivery API will be
* invoked to help free up rwnd space for the peer. Setting this to a
* lower value will cause partial deliveries to happen more often. The
* calls argument is an integer that sets or gets the partial delivery
* point. Note also that the call will fail if the user attempts to set
* this value larger than the socket receive buffer size.
*
* Note that any single message having a length smaller than or equal to
* the SCTP partial delivery point will be delivered in one single read
* call as long as the user provided buffer is large enough to hold the
* message.
*/
static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
unsigned int optlen)
{
if (optlen != sizeof(u32))
return -EINVAL;
/* Note: We double the receive buffer from what the user sets
* it to be, also initial rwnd is based on rcvbuf/2.
*/
if (*val > (sk->sk_rcvbuf >> 1))
return -EINVAL;
sctp_sk(sk)->pd_point = *val;
return 0; /* is this the right error code? */
}
/*
* 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
*
* This option will allow a user to change the maximum burst of packets
* that can be emitted by this association. Note that the default value
* is 4, and some implementations may restrict this setting so that it
* can only be lowered.
*
* NOTE: This text doesn't seem right. Do this on a socket basis with
* future associations inheriting the socket value.
*/
static int sctp_setsockopt_maxburst(struct sock *sk,
struct sctp_assoc_value *params,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
sctp_assoc_t assoc_id;
u32 assoc_value;
if (optlen == sizeof(int)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of int in max_burst socket option deprecated.\n"
"Use struct sctp_assoc_value instead\n",
current->comm, task_pid_nr(current));
assoc_id = SCTP_FUTURE_ASSOC;
assoc_value = *((int *)params);
} else if (optlen == sizeof(struct sctp_assoc_value)) {
assoc_id = params->assoc_id;
assoc_value = params->assoc_value;
} else
return -EINVAL;
asoc = sctp_id2assoc(sk, assoc_id);
if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
asoc->max_burst = assoc_value;
return 0;
}
if (sctp_style(sk, TCP))
assoc_id = SCTP_FUTURE_ASSOC;
if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
sp->max_burst = assoc_value;
if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
list_for_each_entry(asoc, &sp->ep->asocs, asocs)
asoc->max_burst = assoc_value;
return 0;
}
/*
* 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
*
* This set option adds a chunk type that the user is requesting to be
* received only in an authenticated way. Changes to the list of chunks
* will only effect future associations on the socket.
*/
static int sctp_setsockopt_auth_chunk(struct sock *sk,
struct sctp_authchunk *val,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
if (!ep->auth_enable)
return -EACCES;
if (optlen != sizeof(struct sctp_authchunk))
return -EINVAL;
switch (val->sauth_chunk) {
case SCTP_CID_INIT:
case SCTP_CID_INIT_ACK:
case SCTP_CID_SHUTDOWN_COMPLETE:
case SCTP_CID_AUTH:
return -EINVAL;
}
/* add this chunk id to the endpoint */
return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
}
/*
* 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
*
* This option gets or sets the list of HMAC algorithms that the local
* endpoint requires the peer to use.
*/
static int sctp_setsockopt_hmac_ident(struct sock *sk,
struct sctp_hmacalgo *hmacs,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
u32 idents;
if (!ep->auth_enable)
return -EACCES;
if (optlen < sizeof(struct sctp_hmacalgo))
return -EINVAL;
optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
SCTP_AUTH_NUM_HMACS * sizeof(u16));
idents = hmacs->shmac_num_idents;
if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
(idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
return -EINVAL;
return sctp_auth_ep_set_hmacs(ep, hmacs);
}
/*
* 7.1.20. Set a shared key (SCTP_AUTH_KEY)
*
* This option will set a shared secret key which is used to build an
* association shared key.
*/
static int sctp_setsockopt_auth_key(struct sock *sk,
struct sctp_authkey *authkey,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_association *asoc;
int ret = -EINVAL;
if (optlen <= sizeof(struct sctp_authkey))
return -EINVAL;
/* authkey->sca_keylength is u16, so optlen can't be bigger than
* this.
*/
optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
if (authkey->sca_keylength > optlen - sizeof(*authkey))
goto out;
asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
goto out;
if (asoc) {
ret = sctp_auth_set_key(ep, asoc, authkey);
goto out;
}
if (sctp_style(sk, TCP))
authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
ret = sctp_auth_set_key(ep, asoc, authkey);
if (ret)
goto out;
}
ret = 0;
if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
list_for_each_entry(asoc, &ep->asocs, asocs) {
int res = sctp_auth_set_key(ep, asoc, authkey);
if (res && !ret)
ret = res;
}
}
out:
memzero_explicit(authkey, optlen);
return ret;
}
/*
* 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
*
* This option will get or set the active shared key to be used to build
* the association shared key.
*/
static int sctp_setsockopt_active_key(struct sock *sk,
struct sctp_authkeyid *val,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_association *asoc;
int ret = 0;
if (optlen != sizeof(struct sctp_authkeyid))
return -EINVAL;
asoc = sctp_id2assoc(sk, val->scact_assoc_id);
if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
if (sctp_style(sk, TCP))
val->scact_assoc_id = SCTP_FUTURE_ASSOC;
if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
val->scact_assoc_id == SCTP_ALL_ASSOC) {
ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
if (ret)
return ret;
}
if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
val->scact_assoc_id == SCTP_ALL_ASSOC) {
list_for_each_entry(asoc, &ep->asocs, asocs) {
int res = sctp_auth_set_active_key(ep, asoc,
val->scact_keynumber);
if (res && !ret)
ret = res;
}
}
return ret;
}
/*
* 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
*
* This set option will delete a shared secret key from use.
*/
static int sctp_setsockopt_del_key(struct sock *sk,
struct sctp_authkeyid *val,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_association *asoc;
int ret = 0;
if (optlen != sizeof(struct sctp_authkeyid))
return -EINVAL;
asoc = sctp_id2assoc(sk, val->scact_assoc_id);
if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
if (sctp_style(sk, TCP))
val->scact_assoc_id = SCTP_FUTURE_ASSOC;
if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
val->scact_assoc_id == SCTP_ALL_ASSOC) {
ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
if (ret)
return ret;
}
if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
val->scact_assoc_id == SCTP_ALL_ASSOC) {
list_for_each_entry(asoc, &ep->asocs, asocs) {
int res = sctp_auth_del_key_id(ep, asoc,
val->scact_keynumber);
if (res && !ret)
ret = res;
}
}
return ret;
}
/*
* 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
*
* This set option will deactivate a shared secret key.
*/
static int sctp_setsockopt_deactivate_key(struct sock *sk,
struct sctp_authkeyid *val,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_association *asoc;
int ret = 0;
if (optlen != sizeof(struct sctp_authkeyid))
return -EINVAL;
asoc = sctp_id2assoc(sk, val->scact_assoc_id);
if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
if (sctp_style(sk, TCP))
val->scact_assoc_id = SCTP_FUTURE_ASSOC;
if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
val->scact_assoc_id == SCTP_ALL_ASSOC) {
ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
if (ret)
return ret;
}
if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
val->scact_assoc_id == SCTP_ALL_ASSOC) {
list_for_each_entry(asoc, &ep->asocs, asocs) {
int res = sctp_auth_deact_key_id(ep, asoc,
val->scact_keynumber);
if (res && !ret)
ret = res;
}
}
return ret;
}
/*
* 8.1.23 SCTP_AUTO_ASCONF
*
* This option will enable or disable the use of the automatic generation of
* ASCONF chunks to add and delete addresses to an existing association. Note
* that this option has two caveats namely: a) it only affects sockets that
* are bound to all addresses available to the SCTP stack, and b) the system
* administrator may have an overriding control that turns the ASCONF feature
* off no matter what setting the socket option may have.
* This option expects an integer boolean flag, where a non-zero value turns on
* the option, and a zero value turns off the option.
* Note. In this implementation, socket operation overrides default parameter
* being set by sysctl as well as FreeBSD implementation
*/
static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
if (optlen < sizeof(int))
return -EINVAL;
if (!sctp_is_ep_boundall(sk) && *val)
return -EINVAL;
if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
return 0;
spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
if (*val == 0 && sp->do_auto_asconf) {
list_del(&sp->auto_asconf_list);
sp->do_auto_asconf = 0;
} else if (*val && !sp->do_auto_asconf) {
list_add_tail(&sp->auto_asconf_list,
&sock_net(sk)->sctp.auto_asconf_splist);
sp->do_auto_asconf = 1;
}
spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
return 0;
}
/*
* SCTP_PEER_ADDR_THLDS
*
* This option allows us to alter the partially failed threshold for one or all
* transports in an association. See Section 6.1 of:
* http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
*/
static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
struct sctp_paddrthlds_v2 *val,
unsigned int optlen, bool v2)
{
struct sctp_transport *trans;
struct sctp_association *asoc;
int len;
len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
if (optlen < len)
return -EINVAL;
if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
return -EINVAL;
if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
trans = sctp_addr_id2transport(sk, &val->spt_address,
val->spt_assoc_id);
if (!trans)
return -ENOENT;
if (val->spt_pathmaxrxt)
trans->pathmaxrxt = val->spt_pathmaxrxt;
if (v2)
trans->ps_retrans = val->spt_pathcpthld;
trans->pf_retrans = val->spt_pathpfthld;
return 0;
}
asoc = sctp_id2assoc(sk, val->spt_assoc_id);
if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
list_for_each_entry(trans, &asoc->peer.transport_addr_list,
transports) {
if (val->spt_pathmaxrxt)
trans->pathmaxrxt = val->spt_pathmaxrxt;
if (v2)
trans->ps_retrans = val->spt_pathcpthld;
trans->pf_retrans = val->spt_pathpfthld;
}
if (val->spt_pathmaxrxt)
asoc->pathmaxrxt = val->spt_pathmaxrxt;
if (v2)
asoc->ps_retrans = val->spt_pathcpthld;
asoc->pf_retrans = val->spt_pathpfthld;
} else {
struct sctp_sock *sp = sctp_sk(sk);
if (val->spt_pathmaxrxt)
sp->pathmaxrxt = val->spt_pathmaxrxt;
if (v2)
sp->ps_retrans = val->spt_pathcpthld;
sp->pf_retrans = val->spt_pathpfthld;
}
return 0;
}
static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
unsigned int optlen)
{
if (optlen < sizeof(int))
return -EINVAL;
sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
return 0;
}
static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
unsigned int optlen)
{
if (optlen < sizeof(int))
return -EINVAL;
sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
return 0;
}
static int sctp_setsockopt_pr_supported(struct sock *sk,
struct sctp_assoc_value *params,
unsigned int optlen)
{
struct sctp_association *asoc;
if (optlen != sizeof(*params))
return -EINVAL;
asoc = sctp_id2assoc(sk, params->assoc_id);
if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
return 0;
}
static int sctp_setsockopt_default_prinfo(struct sock *sk,
struct sctp_default_prinfo *info,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
int retval = -EINVAL;
if (optlen != sizeof(*info))
goto out;
if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
goto out;
if (info->pr_policy == SCTP_PR_SCTP_NONE)
info->pr_value = 0;
asoc = sctp_id2assoc(sk, info->pr_assoc_id);
if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
goto out;
retval = 0;
if (asoc) {
SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
asoc->default_timetolive = info->pr_value;
goto out;
}
if (sctp_style(sk, TCP))
info->pr_assoc_id = SCTP_FUTURE_ASSOC;
if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
info->pr_assoc_id == SCTP_ALL_ASSOC) {
SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
sp->default_timetolive = info->pr_value;
}
if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
info->pr_assoc_id == SCTP_ALL_ASSOC) {
list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
SCTP_PR_SET_POLICY(asoc->default_flags,
info->pr_policy);
asoc->default_timetolive = info->pr_value;
}
}
out:
return retval;
}
static int sctp_setsockopt_reconfig_supported(struct sock *sk,
struct sctp_assoc_value *params,
unsigned int optlen)
{
struct sctp_association *asoc;
int retval = -EINVAL;
if (optlen != sizeof(*params))
goto out;
asoc = sctp_id2assoc(sk, params->assoc_id);
if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
goto out;
sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
retval = 0;
out:
return retval;
}
static int sctp_setsockopt_enable_strreset(struct sock *sk,
struct sctp_assoc_value *params,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_association *asoc;
int retval = -EINVAL;
if (optlen != sizeof(*params))
goto out;
if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
goto out;
asoc = sctp_id2assoc(sk, params->assoc_id);
if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
goto out;
retval = 0;
if (asoc) {
asoc->strreset_enable = params->assoc_value;
goto out;
}
if (sctp_style(sk, TCP))
params->assoc_id = SCTP_FUTURE_ASSOC;
if (params->assoc_id == SCTP_FUTURE_ASSOC ||
params->assoc_id == SCTP_ALL_ASSOC)
ep->strreset_enable = params->assoc_value;
if (params->assoc_id == SCTP_CURRENT_ASSOC ||
params->assoc_id == SCTP_ALL_ASSOC)
list_for_each_entry(asoc, &ep->asocs, asocs)
asoc->strreset_enable = params->assoc_value;
out:
return retval;
}
static int sctp_setsockopt_reset_streams(struct sock *sk,
struct sctp_reset_streams *params,
unsigned int optlen)
{
struct sctp_association *asoc;
if (optlen < sizeof(*params))
return -EINVAL;
/* srs_number_streams is u16, so optlen can't be bigger than this. */
optlen = min_t(unsigned int, optlen, USHRT_MAX +
sizeof(__u16) * sizeof(*params));
if (params->srs_number_streams * sizeof(__u16) >
optlen - sizeof(*params))
return -EINVAL;
asoc = sctp_id2assoc(sk, params->srs_assoc_id);
if (!asoc)
return -EINVAL;
return sctp_send_reset_streams(asoc, params);
}
static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
unsigned int optlen)
{
struct sctp_association *asoc;
if (optlen != sizeof(*associd))
return -EINVAL;
asoc = sctp_id2assoc(sk, *associd);
if (!asoc)
return -EINVAL;
return sctp_send_reset_assoc(asoc);
}
static int sctp_setsockopt_add_streams(struct sock *sk,
struct sctp_add_streams *params,
unsigned int optlen)
{
struct sctp_association *asoc;
if (optlen != sizeof(*params))
return -EINVAL;
asoc = sctp_id2assoc(sk, params->sas_assoc_id);
if (!asoc)
return -EINVAL;
return sctp_send_add_streams(asoc, params);
}
static int sctp_setsockopt_scheduler(struct sock *sk,
struct sctp_assoc_value *params,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
int retval = 0;
if (optlen < sizeof(*params))
return -EINVAL;
if (params->assoc_value > SCTP_SS_MAX)
return -EINVAL;
asoc = sctp_id2assoc(sk, params->assoc_id);
if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
return sctp_sched_set_sched(asoc, params->assoc_value);
if (sctp_style(sk, TCP))
params->assoc_id = SCTP_FUTURE_ASSOC;
if (params->assoc_id == SCTP_FUTURE_ASSOC ||
params->assoc_id == SCTP_ALL_ASSOC)
sp->default_ss = params->assoc_value;
if (params->assoc_id == SCTP_CURRENT_ASSOC ||
params->assoc_id == SCTP_ALL_ASSOC) {
list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
int ret = sctp_sched_set_sched(asoc,
params->assoc_value);
if (ret && !retval)
retval = ret;
}
}
return retval;
}
static int sctp_setsockopt_scheduler_value(struct sock *sk,
struct sctp_stream_value *params,
unsigned int optlen)
{
struct sctp_association *asoc;
int retval = -EINVAL;
if (optlen < sizeof(*params))
goto out;
asoc = sctp_id2assoc(sk, params->assoc_id);
if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
sctp_style(sk, UDP))
goto out;
if (asoc) {
retval = sctp_sched_set_value(asoc, params->stream_id,
params->stream_value, GFP_KERNEL);
goto out;
}
retval = 0;
list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
int ret = sctp_sched_set_value(asoc, params->stream_id,
params->stream_value,
GFP_KERNEL);
if (ret && !retval) /* try to return the 1st error. */
retval = ret;
}
out:
return retval;
}
static int sctp_setsockopt_interleaving_supported(struct sock *sk,
struct sctp_assoc_value *p,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
if (optlen < sizeof(*p))
return -EINVAL;
asoc = sctp_id2assoc(sk, p->assoc_id);
if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
return -EINVAL;
if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
return -EPERM;
}
sp->ep->intl_enable = !!p->assoc_value;
return 0;
}
static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
unsigned int optlen)
{
if (!sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (sctp_sk(sk)->ep->base.bind_addr.port)
return -EFAULT;
if (optlen < sizeof(int))
return -EINVAL;
sctp_sk(sk)->reuse = !!*val;
return 0;
}
static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
struct sctp_association *asoc)
{
struct sctp_ulpevent *event;
sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
if (sctp_outq_is_empty(&asoc->outqueue)) {
event = sctp_ulpevent_make_sender_dry_event(asoc,
GFP_USER | __GFP_NOWARN);
if (!event)
return -ENOMEM;
asoc->stream.si->enqueue_event(&asoc->ulpq, event);
}
}
return 0;
}
static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
int retval = 0;
if (optlen < sizeof(*param))
return -EINVAL;
if (param->se_type < SCTP_SN_TYPE_BASE ||
param->se_type > SCTP_SN_TYPE_MAX)
return -EINVAL;
asoc = sctp_id2assoc(sk, param->se_assoc_id);
if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
return sctp_assoc_ulpevent_type_set(param, asoc);
if (sctp_style(sk, TCP))
param->se_assoc_id = SCTP_FUTURE_ASSOC;
if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
param->se_assoc_id == SCTP_ALL_ASSOC)
sctp_ulpevent_type_set(&sp->subscribe,
param->se_type, param->se_on);
if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
param->se_assoc_id == SCTP_ALL_ASSOC) {
list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
int ret = sctp_assoc_ulpevent_type_set(param, asoc);
if (ret && !retval)
retval = ret;
}
}
return retval;
}
static int sctp_setsockopt_asconf_supported(struct sock *sk,
struct sctp_assoc_value *params,
unsigned int optlen)
{
struct sctp_association *asoc;
struct sctp_endpoint *ep;
int retval = -EINVAL;
if (optlen != sizeof(*params))
goto out;
asoc = sctp_id2assoc(sk, params->assoc_id);
if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
goto out;
ep = sctp_sk(sk)->ep;
ep->asconf_enable = !!params->assoc_value;
if (ep->asconf_enable && ep->auth_enable) {
sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
}
retval = 0;
out:
return retval;
}
static int sctp_setsockopt_auth_supported(struct sock *sk,
struct sctp_assoc_value *params,
unsigned int optlen)
{
struct sctp_association *asoc;
struct sctp_endpoint *ep;
int retval = -EINVAL;
if (optlen != sizeof(*params))
goto out;
asoc = sctp_id2assoc(sk, params->assoc_id);
if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
goto out;
ep = sctp_sk(sk)->ep;
if (params->assoc_value) {
retval = sctp_auth_init(ep, GFP_KERNEL);
if (retval)
goto out;
if (ep->asconf_enable) {
sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
}
}
ep->auth_enable = !!params->assoc_value;
retval = 0;
out:
return retval;
}
static int sctp_setsockopt_ecn_supported(struct sock *sk,
struct sctp_assoc_value *params,
unsigned int optlen)
{
struct sctp_association *asoc;
int retval = -EINVAL;
if (optlen != sizeof(*params))
goto out;
asoc = sctp_id2assoc(sk, params->assoc_id);
if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
goto out;
sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
retval = 0;
out:
return retval;
}
static int sctp_setsockopt_pf_expose(struct sock *sk,
struct sctp_assoc_value *params,
unsigned int optlen)
{
struct sctp_association *asoc;
int retval = -EINVAL;
if (optlen != sizeof(*params))
goto out;
if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
goto out;
asoc = sctp_id2assoc(sk, params->assoc_id);
if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
goto out;
if (asoc)
asoc->pf_expose = params->assoc_value;
else
sctp_sk(sk)->pf_expose = params->assoc_value;
retval = 0;
out:
return retval;
}
static int sctp_setsockopt_encap_port(struct sock *sk,
struct sctp_udpencaps *encap,
unsigned int optlen)
{
struct sctp_association *asoc;
struct sctp_transport *t;
__be16 encap_port;
if (optlen != sizeof(*encap))
return -EINVAL;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
encap_port = (__force __be16)encap->sue_port;
if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
t = sctp_addr_id2transport(sk, &encap->sue_address,
encap->sue_assoc_id);
if (!t)
return -EINVAL;
t->encap_port = encap_port;
return 0;
}
/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
* socket is a one to many style socket, and an association
* was not found, then the id was invalid.
*/
asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
/* If changes are for association, also apply encap_port to
* each transport.
*/
if (asoc) {
list_for_each_entry(t, &asoc->peer.transport_addr_list,
transports)
t->encap_port = encap_port;
asoc->encap_port = encap_port;
return 0;
}
sctp_sk(sk)->encap_port = encap_port;
return 0;
}
static int sctp_setsockopt_probe_interval(struct sock *sk,
struct sctp_probeinterval *params,
unsigned int optlen)
{
struct sctp_association *asoc;
struct sctp_transport *t;
__u32 probe_interval;
if (optlen != sizeof(*params))
return -EINVAL;
probe_interval = params->spi_interval;
if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
return -EINVAL;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(sk, (union sctp_addr *)&params->spi_address)) {
t = sctp_addr_id2transport(sk, &params->spi_address,
params->spi_assoc_id);
if (!t)
return -EINVAL;
t->probe_interval = msecs_to_jiffies(probe_interval);
sctp_transport_pl_reset(t);
return 0;
}
/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
* socket is a one to many style socket, and an association
* was not found, then the id was invalid.
*/
asoc = sctp_id2assoc(sk, params->spi_assoc_id);
if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
/* If changes are for association, also apply probe_interval to
* each transport.
*/
if (asoc) {
list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
t->probe_interval = msecs_to_jiffies(probe_interval);
sctp_transport_pl_reset(t);
}
asoc->probe_interval = msecs_to_jiffies(probe_interval);
return 0;
}
sctp_sk(sk)->probe_interval = probe_interval;
return 0;
}
/* API 6.2 setsockopt(), getsockopt()
*
* Applications use setsockopt() and getsockopt() to set or retrieve
* socket options. Socket options are used to change the default
* behavior of sockets calls. They are described in Section 7.
*
* The syntax is:
*
* ret = getsockopt(int sd, int level, int optname, void __user *optval,
* int __user *optlen);
* ret = setsockopt(int sd, int level, int optname, const void __user *optval,
* int optlen);
*
* sd - the socket descript.
* level - set to IPPROTO_SCTP for all SCTP options.
* optname - the option name.
* optval - the buffer to store the value of the option.
* optlen - the size of the buffer.
*/
static int sctp_setsockopt(struct sock *sk, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
void *kopt = NULL;
int retval = 0;
pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
/* I can hardly begin to describe how wrong this is. This is
* so broken as to be worse than useless. The API draft
* REALLY is NOT helpful here... I am not convinced that the
* semantics of setsockopt() with a level OTHER THAN SOL_SCTP
* are at all well-founded.
*/
if (level != SOL_SCTP) {
struct sctp_af *af = sctp_sk(sk)->pf->af;
return af->setsockopt(sk, level, optname, optval, optlen);
}
if (optlen > 0) {
/* Trim it to the biggest size sctp sockopt may need if necessary */
optlen = min_t(unsigned int, optlen,
PAGE_ALIGN(USHRT_MAX +
sizeof(__u16) * sizeof(struct sctp_reset_streams)));
kopt = memdup_sockptr(optval, optlen);
if (IS_ERR(kopt))
return PTR_ERR(kopt);
}
lock_sock(sk);
switch (optname) {
case SCTP_SOCKOPT_BINDX_ADD:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_bindx(sk, kopt, optlen,
SCTP_BINDX_ADD_ADDR);
break;
case SCTP_SOCKOPT_BINDX_REM:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_bindx(sk, kopt, optlen,
SCTP_BINDX_REM_ADDR);
break;
case SCTP_SOCKOPT_CONNECTX_OLD:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
break;
case SCTP_SOCKOPT_CONNECTX:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_connectx(sk, kopt, optlen);
break;
case SCTP_DISABLE_FRAGMENTS:
retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
break;
case SCTP_EVENTS:
retval = sctp_setsockopt_events(sk, kopt, optlen);
break;
case SCTP_AUTOCLOSE:
retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
break;
case SCTP_PEER_ADDR_PARAMS:
retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
break;
case SCTP_DELAYED_SACK:
retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
break;
case SCTP_PARTIAL_DELIVERY_POINT:
retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
break;
case SCTP_INITMSG:
retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
break;
case SCTP_DEFAULT_SEND_PARAM:
retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
break;
case SCTP_DEFAULT_SNDINFO:
retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
break;
case SCTP_PRIMARY_ADDR:
retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
break;
case SCTP_SET_PEER_PRIMARY_ADDR:
retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
break;
case SCTP_NODELAY:
retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
break;
case SCTP_RTOINFO:
retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
break;
case SCTP_ASSOCINFO:
retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
break;
case SCTP_MAXSEG:
retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
break;
case SCTP_ADAPTATION_LAYER:
retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
break;
case SCTP_CONTEXT:
retval = sctp_setsockopt_context(sk, kopt, optlen);
break;
case SCTP_FRAGMENT_INTERLEAVE:
retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
break;
case SCTP_MAX_BURST:
retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
break;
case SCTP_AUTH_CHUNK:
retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
break;
case SCTP_HMAC_IDENT:
retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
break;
case SCTP_AUTH_KEY:
retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
break;
case SCTP_AUTH_ACTIVE_KEY:
retval = sctp_setsockopt_active_key(sk, kopt, optlen);
break;
case SCTP_AUTH_DELETE_KEY:
retval = sctp_setsockopt_del_key(sk, kopt, optlen);
break;
case SCTP_AUTH_DEACTIVATE_KEY:
retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
break;
case SCTP_AUTO_ASCONF:
retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
break;
case SCTP_PEER_ADDR_THLDS:
retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
false);
break;
case SCTP_PEER_ADDR_THLDS_V2:
retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
true);
break;
case SCTP_RECVRCVINFO:
retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
break;
case SCTP_RECVNXTINFO:
retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
break;
case SCTP_PR_SUPPORTED:
retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
break;
case SCTP_DEFAULT_PRINFO:
retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
break;
case SCTP_RECONFIG_SUPPORTED:
retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
break;
case SCTP_ENABLE_STREAM_RESET:
retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
break;
case SCTP_RESET_STREAMS:
retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
break;
case SCTP_RESET_ASSOC:
retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
break;
case SCTP_ADD_STREAMS:
retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
break;
case SCTP_STREAM_SCHEDULER:
retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
break;
case SCTP_STREAM_SCHEDULER_VALUE:
retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
break;
case SCTP_INTERLEAVING_SUPPORTED:
retval = sctp_setsockopt_interleaving_supported(sk, kopt,
optlen);
break;
case SCTP_REUSE_PORT:
retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
break;
case SCTP_EVENT:
retval = sctp_setsockopt_event(sk, kopt, optlen);
break;
case SCTP_ASCONF_SUPPORTED:
retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
break;
case SCTP_AUTH_SUPPORTED:
retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
break;
case SCTP_ECN_SUPPORTED:
retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
break;
case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
break;
case SCTP_REMOTE_UDP_ENCAPS_PORT:
retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
break;
case SCTP_PLPMTUD_PROBE_INTERVAL:
retval = sctp_setsockopt_probe_interval(sk, kopt, optlen);
break;
default:
retval = -ENOPROTOOPT;
break;
}
release_sock(sk);
kfree(kopt);
return retval;
}
/* API 3.1.6 connect() - UDP Style Syntax
*
* An application may use the connect() call in the UDP model to initiate an
* association without sending data.
*
* The syntax is:
*
* ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
*
* sd: the socket descriptor to have a new association added to.
*
* nam: the address structure (either struct sockaddr_in or struct
* sockaddr_in6 defined in RFC2553 [7]).
*
* len: the size of the address.
*/
static int sctp_connect(struct sock *sk, struct sockaddr *addr,
int addr_len, int flags)
{
struct sctp_af *af;
int err = -EINVAL;
lock_sock(sk);
pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
addr, addr_len);
/* Validate addr_len before calling common connect/connectx routine. */
af = sctp_get_af_specific(addr->sa_family);
if (af && addr_len >= af->sockaddr_len)
err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
release_sock(sk);
return err;
}
int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
if (addr_len < sizeof(uaddr->sa_family))
return -EINVAL;
if (uaddr->sa_family == AF_UNSPEC)
return -EOPNOTSUPP;
return sctp_connect(sock->sk, uaddr, addr_len, flags);
}
/* FIXME: Write comments. */
static int sctp_disconnect(struct sock *sk, int flags)
{
return -EOPNOTSUPP; /* STUB */
}
/* 4.1.4 accept() - TCP Style Syntax
*
* Applications use accept() call to remove an established SCTP
* association from the accept queue of the endpoint. A new socket
* descriptor will be returned from accept() to represent the newly
* formed association.
*/
static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sock *newsk = NULL;
struct sctp_association *asoc;
long timeo;
int error = 0;
lock_sock(sk);
sp = sctp_sk(sk);
ep = sp->ep;
if (!sctp_style(sk, TCP)) {
error = -EOPNOTSUPP;
goto out;
}
if (!sctp_sstate(sk, LISTENING)) {
error = -EINVAL;
goto out;
}
timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
error = sctp_wait_for_accept(sk, timeo);
if (error)
goto out;
/* We treat the list of associations on the endpoint as the accept
* queue and pick the first association on the list.
*/
asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
newsk = sp->pf->create_accept_sk(sk, asoc, kern);
if (!newsk) {
error = -ENOMEM;
goto out;
}
/* Populate the fields of the newsk from the oldsk and migrate the
* asoc to the newsk.
*/
error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
if (error) {
sk_common_release(newsk);
newsk = NULL;
}
out:
release_sock(sk);
*err = error;
return newsk;
}
/* The SCTP ioctl handler. */
static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
{
int rc = -ENOTCONN;
lock_sock(sk);
/*
* SEQPACKET-style sockets in LISTENING state are valid, for
* SCTP, so only discard TCP-style sockets in LISTENING state.
*/
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
goto out;
switch (cmd) {
case SIOCINQ: {
struct sk_buff *skb;
unsigned int amount = 0;
skb = skb_peek(&sk->sk_receive_queue);
if (skb != NULL) {
/*
* We will only return the amount of this packet since
* that is all that will be read.
*/
amount = skb->len;
}
rc = put_user(amount, (int __user *)arg);
break;
}
default:
rc = -ENOIOCTLCMD;
break;
}
out:
release_sock(sk);
return rc;
}
/* This is the function which gets called during socket creation to
* initialized the SCTP-specific portion of the sock.
* The sock structure should already be zero-filled memory.
*/
static int sctp_init_sock(struct sock *sk)
{
struct net *net = sock_net(sk);
struct sctp_sock *sp;
pr_debug("%s: sk:%p\n", __func__, sk);
sp = sctp_sk(sk);
/* Initialize the SCTP per socket area. */
switch (sk->sk_type) {
case SOCK_SEQPACKET:
sp->type = SCTP_SOCKET_UDP;
break;
case SOCK_STREAM:
sp->type = SCTP_SOCKET_TCP;
break;
default:
return -ESOCKTNOSUPPORT;
}
sk->sk_gso_type = SKB_GSO_SCTP;
/* Initialize default send parameters. These parameters can be
* modified with the SCTP_DEFAULT_SEND_PARAM socket option.
*/
sp->default_stream = 0;
sp->default_ppid = 0;
sp->default_flags = 0;
sp->default_context = 0;
sp->default_timetolive = 0;
sp->default_rcv_context = 0;
sp->max_burst = net->sctp.max_burst;
sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
/* Initialize default setup parameters. These parameters
* can be modified with the SCTP_INITMSG socket option or
* overridden by the SCTP_INIT CMSG.
*/
sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
sp->initmsg.sinit_max_instreams = sctp_max_instreams;
sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
/* Initialize default RTO related parameters. These parameters can
* be modified for with the SCTP_RTOINFO socket option.
*/
sp->rtoinfo.srto_initial = net->sctp.rto_initial;
sp->rtoinfo.srto_max = net->sctp.rto_max;
sp->rtoinfo.srto_min = net->sctp.rto_min;
/* Initialize default association related parameters. These parameters
* can be modified with the SCTP_ASSOCINFO socket option.
*/
sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
sp->assocparams.sasoc_number_peer_destinations = 0;
sp->assocparams.sasoc_peer_rwnd = 0;
sp->assocparams.sasoc_local_rwnd = 0;
sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
/* Initialize default event subscriptions. By default, all the
* options are off.
*/
sp->subscribe = 0;
/* Default Peer Address Parameters. These defaults can
* be modified via SCTP_PEER_ADDR_PARAMS
*/
sp->hbinterval = net->sctp.hb_interval;
sp->udp_port = htons(net->sctp.udp_port);
sp->encap_port = htons(net->sctp.encap_port);
sp->pathmaxrxt = net->sctp.max_retrans_path;
sp->pf_retrans = net->sctp.pf_retrans;
sp->ps_retrans = net->sctp.ps_retrans;
sp->pf_expose = net->sctp.pf_expose;
sp->pathmtu = 0; /* allow default discovery */
sp->sackdelay = net->sctp.sack_timeout;
sp->sackfreq = 2;
sp->param_flags = SPP_HB_ENABLE |
SPP_PMTUD_ENABLE |
SPP_SACKDELAY_ENABLE;
sp->default_ss = SCTP_SS_DEFAULT;
/* If enabled no SCTP message fragmentation will be performed.
* Configure through SCTP_DISABLE_FRAGMENTS socket option.
*/
sp->disable_fragments = 0;
/* Enable Nagle algorithm by default. */
sp->nodelay = 0;
sp->recvrcvinfo = 0;
sp->recvnxtinfo = 0;
/* Enable by default. */
sp->v4mapped = 1;
/* Auto-close idle associations after the configured
* number of seconds. A value of 0 disables this
* feature. Configure through the SCTP_AUTOCLOSE socket option,
* for UDP-style sockets only.
*/
sp->autoclose = 0;
/* User specified fragmentation limit. */
sp->user_frag = 0;
sp->adaptation_ind = 0;
sp->pf = sctp_get_pf_specific(sk->sk_family);
/* Control variables for partial data delivery. */
atomic_set(&sp->pd_mode, 0);
skb_queue_head_init(&sp->pd_lobby);
sp->frag_interleave = 0;
sp->probe_interval = net->sctp.probe_interval;
/* Create a per socket endpoint structure. Even if we
* change the data structure relationships, this may still
* be useful for storing pre-connect address information.
*/
sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
if (!sp->ep)
return -ENOMEM;
sp->hmac = NULL;
sk->sk_destruct = sctp_destruct_sock;
SCTP_DBG_OBJCNT_INC(sock);
sk_sockets_allocated_inc(sk);
sock_prot_inuse_add(net, sk->sk_prot, 1);
return 0;
}
/* Cleanup any SCTP per socket resources. Must be called with
* sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
*/
static void sctp_destroy_sock(struct sock *sk)
{
struct sctp_sock *sp;
pr_debug("%s: sk:%p\n", __func__, sk);
/* Release our hold on the endpoint. */
sp = sctp_sk(sk);
/* This could happen during socket init, thus we bail out
* early, since the rest of the below is not setup either.
*/
if (sp->ep == NULL)
return;
if (sp->do_auto_asconf) {
sp->do_auto_asconf = 0;
list_del(&sp->auto_asconf_list);
}
sctp_endpoint_free(sp->ep);
sk_sockets_allocated_dec(sk);
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
}
/* Triggered when there are no references on the socket anymore */
static void sctp_destruct_sock(struct sock *sk)
{
struct sctp_sock *sp = sctp_sk(sk);
/* Free up the HMAC transform. */
crypto_free_shash(sp->hmac);
inet_sock_destruct(sk);
}
/* API 4.1.7 shutdown() - TCP Style Syntax
* int shutdown(int socket, int how);
*
* sd - the socket descriptor of the association to be closed.
* how - Specifies the type of shutdown. The values are
* as follows:
* SHUT_RD
* Disables further receive operations. No SCTP
* protocol action is taken.
* SHUT_WR
* Disables further send operations, and initiates
* the SCTP shutdown sequence.
* SHUT_RDWR
* Disables further send and receive operations
* and initiates the SCTP shutdown sequence.
*/
static void sctp_shutdown(struct sock *sk, int how)
{
struct net *net = sock_net(sk);
struct sctp_endpoint *ep;
if (!sctp_style(sk, TCP))
return;
ep = sctp_sk(sk)->ep;
if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
struct sctp_association *asoc;
inet_sk_set_state(sk, SCTP_SS_CLOSING);
asoc = list_entry(ep->asocs.next,
struct sctp_association, asocs);
sctp_primitive_SHUTDOWN(net, asoc, NULL);
}
}
int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
struct sctp_info *info)
{
struct sctp_transport *prim;
struct list_head *pos;
int mask;
memset(info, 0, sizeof(*info));
if (!asoc) {
struct sctp_sock *sp = sctp_sk(sk);
info->sctpi_s_autoclose = sp->autoclose;
info->sctpi_s_adaptation_ind = sp->adaptation_ind;
info->sctpi_s_pd_point = sp->pd_point;
info->sctpi_s_nodelay = sp->nodelay;
info->sctpi_s_disable_fragments = sp->disable_fragments;
info->sctpi_s_v4mapped = sp->v4mapped;
info->sctpi_s_frag_interleave = sp->frag_interleave;
info->sctpi_s_type = sp->type;
return 0;
}
info->sctpi_tag = asoc->c.my_vtag;
info->sctpi_state = asoc->state;
info->sctpi_rwnd = asoc->a_rwnd;
info->sctpi_unackdata = asoc->unack_data;
info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
info->sctpi_instrms = asoc->stream.incnt;
info->sctpi_outstrms = asoc->stream.outcnt;
list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
info->sctpi_inqueue++;
list_for_each(pos, &asoc->outqueue.out_chunk_list)
info->sctpi_outqueue++;
info->sctpi_overall_error = asoc->overall_error_count;
info->sctpi_max_burst = asoc->max_burst;
info->sctpi_maxseg = asoc->frag_point;
info->sctpi_peer_rwnd = asoc->peer.rwnd;
info->sctpi_peer_tag = asoc->c.peer_vtag;
mask = asoc->peer.ecn_capable << 1;
mask = (mask | asoc->peer.ipv4_address) << 1;
mask = (mask | asoc->peer.ipv6_address) << 1;
mask = (mask | asoc->peer.hostname_address) << 1;
mask = (mask | asoc->peer.asconf_capable) << 1;
mask = (mask | asoc->peer.prsctp_capable) << 1;
mask = (mask | asoc->peer.auth_capable);
info->sctpi_peer_capable = mask;
mask = asoc->peer.sack_needed << 1;
mask = (mask | asoc->peer.sack_generation) << 1;
mask = (mask | asoc->peer.zero_window_announced);
info->sctpi_peer_sack = mask;
info->sctpi_isacks = asoc->stats.isacks;
info->sctpi_osacks = asoc->stats.osacks;
info->sctpi_opackets = asoc->stats.opackets;
info->sctpi_ipackets = asoc->stats.ipackets;
info->sctpi_rtxchunks = asoc->stats.rtxchunks;
info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
info->sctpi_idupchunks = asoc->stats.idupchunks;
info->sctpi_gapcnt = asoc->stats.gapcnt;
info->sctpi_ouodchunks = asoc->stats.ouodchunks;
info->sctpi_iuodchunks = asoc->stats.iuodchunks;
info->sctpi_oodchunks = asoc->stats.oodchunks;
info->sctpi_iodchunks = asoc->stats.iodchunks;
info->sctpi_octrlchunks = asoc->stats.octrlchunks;
info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
prim = asoc->peer.primary_path;
memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
info->sctpi_p_state = prim->state;
info->sctpi_p_cwnd = prim->cwnd;
info->sctpi_p_srtt = prim->srtt;
info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
info->sctpi_p_hbinterval = prim->hbinterval;
info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
info->sctpi_p_ssthresh = prim->ssthresh;
info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
info->sctpi_p_flight_size = prim->flight_size;
info->sctpi_p_error = prim->error_count;
return 0;
}
EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
/* use callback to avoid exporting the core structure */
void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
{
rhltable_walk_enter(&sctp_transport_hashtable, iter);
rhashtable_walk_start(iter);
}
void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
{
rhashtable_walk_stop(iter);
rhashtable_walk_exit(iter);
}
struct sctp_transport *sctp_transport_get_next(struct net *net,
struct rhashtable_iter *iter)
{
struct sctp_transport *t;
t = rhashtable_walk_next(iter);
for (; t; t = rhashtable_walk_next(iter)) {
if (IS_ERR(t)) {
if (PTR_ERR(t) == -EAGAIN)
continue;
break;
}
if (!sctp_transport_hold(t))
continue;
if (net_eq(t->asoc->base.net, net) &&
t->asoc->peer.primary_path == t)
break;
sctp_transport_put(t);
}
return t;
}
struct sctp_transport *sctp_transport_get_idx(struct net *net,
struct rhashtable_iter *iter,
int pos)
{
struct sctp_transport *t;
if (!pos)
return SEQ_START_TOKEN;
while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
if (!--pos)
break;
sctp_transport_put(t);
}
return t;
}
int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
void *p) {
int err = 0;
int hash = 0;
struct sctp_ep_common *epb;
struct sctp_hashbucket *head;
for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
hash++, head++) {
read_lock_bh(&head->lock);
sctp_for_each_hentry(epb, &head->chain) {
err = cb(sctp_ep(epb), p);
if (err)
break;
}
read_unlock_bh(&head->lock);
}
return err;
}
EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
struct net *net,
const union sctp_addr *laddr,
const union sctp_addr *paddr, void *p)
{
struct sctp_transport *transport;
int err;
rcu_read_lock();
transport = sctp_addrs_lookup_transport(net, laddr, paddr);
rcu_read_unlock();
if (!transport)
return -ENOENT;
err = cb(transport, p);
sctp_transport_put(transport);
return err;
}
EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
int (*cb_done)(struct sctp_transport *, void *),
struct net *net, int *pos, void *p) {
struct rhashtable_iter hti;
struct sctp_transport *tsp;
int ret;
again:
ret = 0;
sctp_transport_walk_start(&hti);
tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
ret = cb(tsp, p);
if (ret)
break;
(*pos)++;
sctp_transport_put(tsp);
}
sctp_transport_walk_stop(&hti);
if (ret) {
if (cb_done && !cb_done(tsp, p)) {
(*pos)++;
sctp_transport_put(tsp);
goto again;
}
sctp_transport_put(tsp);
}
return ret;
}
EXPORT_SYMBOL_GPL(sctp_for_each_transport);
/* 7.2.1 Association Status (SCTP_STATUS)
* Applications can retrieve current status information about an
* association, including association state, peer receiver window size,
* number of unacked data chunks, and number of data chunks pending
* receipt. This information is read-only.
*/
static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_status status;
struct sctp_association *asoc = NULL;
struct sctp_transport *transport;
sctp_assoc_t associd;
int retval = 0;
if (len < sizeof(status)) {
retval = -EINVAL;
goto out;
}
len = sizeof(status);
if (copy_from_user(&status, optval, len)) {
retval = -EFAULT;
goto out;
}
associd = status.sstat_assoc_id;
asoc = sctp_id2assoc(sk, associd);
if (!asoc) {
retval = -EINVAL;
goto out;
}
transport = asoc->peer.primary_path;
status.sstat_assoc_id = sctp_assoc2id(asoc);
status.sstat_state = sctp_assoc_to_state(asoc);
status.sstat_rwnd = asoc->peer.rwnd;
status.sstat_unackdata = asoc->unack_data;
status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
status.sstat_instrms = asoc->stream.incnt;
status.sstat_outstrms = asoc->stream.outcnt;
status.sstat_fragmentation_point = asoc->frag_point;
status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
transport->af_specific->sockaddr_len);
/* Map ipv4 address into v4-mapped-on-v6 address. */
sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
(union sctp_addr *)&status.sstat_primary.spinfo_address);
status.sstat_primary.spinfo_state = transport->state;
status.sstat_primary.spinfo_cwnd = transport->cwnd;
status.sstat_primary.spinfo_srtt = transport->srtt;
status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
status.sstat_primary.spinfo_mtu = transport->pathmtu;
if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
status.sstat_primary.spinfo_state = SCTP_ACTIVE;
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
__func__, len, status.sstat_state, status.sstat_rwnd,
status.sstat_assoc_id);
if (copy_to_user(optval, &status, len)) {
retval = -EFAULT;
goto out;
}
out:
return retval;
}
/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
*
* Applications can retrieve information about a specific peer address
* of an association, including its reachability state, congestion
* window, and retransmission timer values. This information is
* read-only.
*/
static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_paddrinfo pinfo;
struct sctp_transport *transport;
int retval = 0;
if (len < sizeof(pinfo)) {
retval = -EINVAL;
goto out;
}
len = sizeof(pinfo);
if (copy_from_user(&pinfo, optval, len)) {
retval = -EFAULT;
goto out;
}
transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
pinfo.spinfo_assoc_id);
if (!transport) {
retval = -EINVAL;
goto out;
}
if (transport->state == SCTP_PF &&
transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
retval = -EACCES;
goto out;
}
pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
pinfo.spinfo_state = transport->state;
pinfo.spinfo_cwnd = transport->cwnd;
pinfo.spinfo_srtt = transport->srtt;
pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
pinfo.spinfo_mtu = transport->pathmtu;
if (pinfo.spinfo_state == SCTP_UNKNOWN)
pinfo.spinfo_state = SCTP_ACTIVE;
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
if (copy_to_user(optval, &pinfo, len)) {
retval = -EFAULT;
goto out;
}
out:
return retval;
}
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
*
* This option is a on/off flag. If enabled no SCTP message
* fragmentation will be performed. Instead if a message being sent
* exceeds the current PMTU size, the message will NOT be sent and
* instead a error will be indicated to the user.
*/
static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = (sctp_sk(sk)->disable_fragments == 1);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
*
* This socket option is used to specify various notifications and
* ancillary data the user wishes to receive.
*/
static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
int __user *optlen)
{
struct sctp_event_subscribe subscribe;
__u8 *sn_type = (__u8 *)&subscribe;
int i;
if (len == 0)
return -EINVAL;
if (len > sizeof(struct sctp_event_subscribe))
len = sizeof(struct sctp_event_subscribe);
if (put_user(len, optlen))
return -EFAULT;
for (i = 0; i < len; i++)
sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
SCTP_SN_TYPE_BASE + i);
if (copy_to_user(optval, &subscribe, len))
return -EFAULT;
return 0;
}
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
*
* This socket option is applicable to the UDP-style socket only. When
* set it will cause associations that are idle for more than the
* specified number of seconds to automatically close. An association
* being idle is defined an association that has NOT sent or received
* user data. The special value of '0' indicates that no automatic
* close of any associations should be performed. The option expects an
* integer defining the number of seconds of idle time before an
* association is closed.
*/
static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
/* Applicable to UDP-style socket only */
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
if (put_user(len, optlen))
return -EFAULT;
if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
return -EFAULT;
return 0;
}
/* Helper routine to branch off an association to a new socket. */
int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
{
struct sctp_association *asoc = sctp_id2assoc(sk, id);
struct sctp_sock *sp = sctp_sk(sk);
struct socket *sock;
int err = 0;
/* Do not peel off from one netns to another one. */
if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
return -EINVAL;
if (!asoc)
return -EINVAL;
/* An association cannot be branched off from an already peeled-off
* socket, nor is this supported for tcp style sockets.
*/
if (!sctp_style(sk, UDP))
return -EINVAL;
/* Create a new socket. */
err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
if (err < 0)
return err;
sctp_copy_sock(sock->sk, sk, asoc);
/* Make peeled-off sockets more like 1-1 accepted sockets.
* Set the daddr and initialize id to something more random and also
* copy over any ip options.
*/
sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
sp->pf->copy_ip_options(sk, sock->sk);
/* Populate the fields of the newsk from the oldsk and migrate the
* asoc to the newsk.
*/
err = sctp_sock_migrate(sk, sock->sk, asoc,
SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
if (err) {
sock_release(sock);
sock = NULL;
}
*sockp = sock;
return err;
}
EXPORT_SYMBOL(sctp_do_peeloff);
static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
struct file **newfile, unsigned flags)
{
struct socket *newsock;
int retval;
retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
if (retval < 0)
goto out;
/* Map the socket to an unused fd that can be returned to the user. */
retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
if (retval < 0) {
sock_release(newsock);
goto out;
}
*newfile = sock_alloc_file(newsock, 0, NULL);
if (IS_ERR(*newfile)) {
put_unused_fd(retval);
retval = PTR_ERR(*newfile);
*newfile = NULL;
return retval;
}
pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
retval);
peeloff->sd = retval;
if (flags & SOCK_NONBLOCK)
(*newfile)->f_flags |= O_NONBLOCK;
out:
return retval;
}
static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
sctp_peeloff_arg_t peeloff;
struct file *newfile = NULL;
int retval = 0;
if (len < sizeof(sctp_peeloff_arg_t))
return -EINVAL;
len = sizeof(sctp_peeloff_arg_t);
if (copy_from_user(&peeloff, optval, len))
return -EFAULT;
retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
if (retval < 0)
goto out;
/* Return the fd mapped to the new socket. */
if (put_user(len, optlen)) {
fput(newfile);
put_unused_fd(retval);
return -EFAULT;
}
if (copy_to_user(optval, &peeloff, len)) {
fput(newfile);
put_unused_fd(retval);
return -EFAULT;
}
fd_install(retval, newfile);
out:
return retval;
}
static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
sctp_peeloff_flags_arg_t peeloff;
struct file *newfile = NULL;
int retval = 0;
if (len < sizeof(sctp_peeloff_flags_arg_t))
return -EINVAL;
len = sizeof(sctp_peeloff_flags_arg_t);
if (copy_from_user(&peeloff, optval, len))
return -EFAULT;
retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
&newfile, peeloff.flags);
if (retval < 0)
goto out;
/* Return the fd mapped to the new socket. */
if (put_user(len, optlen)) {
fput(newfile);
put_unused_fd(retval);
return -EFAULT;
}
if (copy_to_user(optval, &peeloff, len)) {
fput(newfile);
put_unused_fd(retval);
return -EFAULT;
}
fd_install(retval, newfile);
out:
return retval;
}
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
*
* Applications can enable or disable heartbeats for any peer address of
* an association, modify an address's heartbeat interval, force a
* heartbeat to be sent immediately, and adjust the address's maximum
* number of retransmissions sent before an address is considered
* unreachable. The following structure is used to access and modify an
* address's parameters:
*
* struct sctp_paddrparams {
* sctp_assoc_t spp_assoc_id;
* struct sockaddr_storage spp_address;
* uint32_t spp_hbinterval;
* uint16_t spp_pathmaxrxt;
* uint32_t spp_pathmtu;
* uint32_t spp_sackdelay;
* uint32_t spp_flags;
* };
*
* spp_assoc_id - (one-to-many style socket) This is filled in the
* application, and identifies the association for
* this query.
* spp_address - This specifies which address is of interest.
* spp_hbinterval - This contains the value of the heartbeat interval,
* in milliseconds. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmaxrxt - This contains the maximum number of
* retransmissions before this address shall be
* considered unreachable. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmtu - When Path MTU discovery is disabled the value
* specified here will be the "fixed" path mtu.
* Note that if the spp_address field is empty
* then all associations on this address will
* have this fixed path mtu set upon them.
*
* spp_sackdelay - When delayed sack is enabled, this value specifies
* the number of milliseconds that sacks will be delayed
* for. This value will apply to all addresses of an
* association if the spp_address field is empty. Note
* also, that if delayed sack is enabled and this
* value is set to 0, no change is made to the last
* recorded delayed sack timer value.
*
* spp_flags - These flags are used to control various features
* on an association. The flag field may contain
* zero or more of the following options.
*
* SPP_HB_ENABLE - Enable heartbeats on the
* specified address. Note that if the address
* field is empty all addresses for the association
* have heartbeats enabled upon them.
*
* SPP_HB_DISABLE - Disable heartbeats on the
* speicifed address. Note that if the address
* field is empty all addresses for the association
* will have their heartbeats disabled. Note also
* that SPP_HB_ENABLE and SPP_HB_DISABLE are
* mutually exclusive, only one of these two should
* be specified. Enabling both fields will have
* undetermined results.
*
* SPP_HB_DEMAND - Request a user initiated heartbeat
* to be made immediately.
*
* SPP_PMTUD_ENABLE - This field will enable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected.
*
* SPP_PMTUD_DISABLE - This field will disable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected. Not also that
* SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
* exclusive. Enabling both will have undetermined
* results.
*
* SPP_SACKDELAY_ENABLE - Setting this flag turns
* on delayed sack. The time specified in spp_sackdelay
* is used to specify the sack delay for this address. Note
* that if spp_address is empty then all addresses will
* enable delayed sack and take on the sack delay
* value specified in spp_sackdelay.
* SPP_SACKDELAY_DISABLE - Setting this flag turns
* off delayed sack. If the spp_address field is blank then
* delayed sack is disabled for the entire association. Note
* also that this field is mutually exclusive to
* SPP_SACKDELAY_ENABLE, setting both will have undefined
* results.
*
* SPP_IPV6_FLOWLABEL: Setting this flag enables the
* setting of the IPV6 flow label value. The value is
* contained in the spp_ipv6_flowlabel field.
* Upon retrieval, this flag will be set to indicate that
* the spp_ipv6_flowlabel field has a valid value returned.
* If a specific destination address is set (in the
* spp_address field), then the value returned is that of
* the address. If just an association is specified (and
* no address), then the association's default flow label
* is returned. If neither an association nor a destination
* is specified, then the socket's default flow label is
* returned. For non-IPv6 sockets, this flag will be left
* cleared.
*
* SPP_DSCP: Setting this flag enables the setting of the
* Differentiated Services Code Point (DSCP) value
* associated with either the association or a specific
* address. The value is obtained in the spp_dscp field.
* Upon retrieval, this flag will be set to indicate that
* the spp_dscp field has a valid value returned. If a
* specific destination address is set when called (in the
* spp_address field), then that specific destination
* address's DSCP value is returned. If just an association
* is specified, then the association's default DSCP is
* returned. If neither an association nor a destination is
* specified, then the socket's default DSCP is returned.
*
* spp_ipv6_flowlabel
* - This field is used in conjunction with the
* SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
* The 20 least significant bits are used for the flow
* label. This setting has precedence over any IPv6-layer
* setting.
*
* spp_dscp - This field is used in conjunction with the SPP_DSCP flag
* and contains the DSCP. The 6 most significant bits are
* used for the DSCP. This setting has precedence over any
* IPv4- or IPv6- layer setting.
*/
static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_paddrparams params;
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
if (len >= sizeof(params))
len = sizeof(params);
else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
spp_ipv6_flowlabel), 4))
len = ALIGN(offsetof(struct sctp_paddrparams,
spp_ipv6_flowlabel), 4);
else
return -EINVAL;
if (copy_from_user(&params, optval, len))
return -EFAULT;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
trans = sctp_addr_id2transport(sk, &params.spp_address,
params.spp_assoc_id);
if (!trans) {
pr_debug("%s: failed no transport\n", __func__);
return -EINVAL;
}
}
/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
* socket is a one to many style socket, and an association
* was not found, then the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.spp_assoc_id);
if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
pr_debug("%s: failed no association\n", __func__);
return -EINVAL;
}
if (trans) {
/* Fetch transport values. */
params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
params.spp_pathmtu = trans->pathmtu;
params.spp_pathmaxrxt = trans->pathmaxrxt;
params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = trans->param_flags;
if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
params.spp_ipv6_flowlabel = trans->flowlabel &
SCTP_FLOWLABEL_VAL_MASK;
params.spp_flags |= SPP_IPV6_FLOWLABEL;
}
if (trans->dscp & SCTP_DSCP_SET_MASK) {
params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
params.spp_flags |= SPP_DSCP;
}
} else if (asoc) {
/* Fetch association values. */
params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
params.spp_pathmtu = asoc->pathmtu;
params.spp_pathmaxrxt = asoc->pathmaxrxt;
params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = asoc->param_flags;
if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
params.spp_ipv6_flowlabel = asoc->flowlabel &
SCTP_FLOWLABEL_VAL_MASK;
params.spp_flags |= SPP_IPV6_FLOWLABEL;
}
if (asoc->dscp & SCTP_DSCP_SET_MASK) {
params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
params.spp_flags |= SPP_DSCP;
}
} else {
/* Fetch socket values. */
params.spp_hbinterval = sp->hbinterval;
params.spp_pathmtu = sp->pathmtu;
params.spp_sackdelay = sp->sackdelay;
params.spp_pathmaxrxt = sp->pathmaxrxt;
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = sp->param_flags;
if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
params.spp_ipv6_flowlabel = sp->flowlabel &
SCTP_FLOWLABEL_VAL_MASK;
params.spp_flags |= SPP_IPV6_FLOWLABEL;
}
if (sp->dscp & SCTP_DSCP_SET_MASK) {
params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
params.spp_flags |= SPP_DSCP;
}
}
if (copy_to_user(optval, &params, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
/*
* 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
*
* This option will effect the way delayed acks are performed. This
* option allows you to get or set the delayed ack time, in
* milliseconds. It also allows changing the delayed ack frequency.
* Changing the frequency to 1 disables the delayed sack algorithm. If
* the assoc_id is 0, then this sets or gets the endpoints default
* values. If the assoc_id field is non-zero, then the set or get
* effects the specified association for the one to many model (the
* assoc_id field is ignored by the one to one model). Note that if
* sack_delay or sack_freq are 0 when setting this option, then the
* current values will remain unchanged.
*
* struct sctp_sack_info {
* sctp_assoc_t sack_assoc_id;
* uint32_t sack_delay;
* uint32_t sack_freq;
* };
*
* sack_assoc_id - This parameter, indicates which association the user
* is performing an action upon. Note that if this field's value is
* zero then the endpoints default value is changed (effecting future
* associations only).
*
* sack_delay - This parameter contains the number of milliseconds that
* the user is requesting the delayed ACK timer be set to. Note that
* this value is defined in the standard to be between 200 and 500
* milliseconds.
*
* sack_freq - This parameter contains the number of packets that must
* be received before a sack is sent without waiting for the delay
* timer to expire. The default value for this is 2, setting this
* value to 1 will disable the delayed sack algorithm.
*/
static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_sack_info params;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
if (len >= sizeof(struct sctp_sack_info)) {
len = sizeof(struct sctp_sack_info);
if (copy_from_user(&params, optval, len))
return -EFAULT;
} else if (len == sizeof(struct sctp_assoc_value)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n",
current->comm, task_pid_nr(current));
if (copy_from_user(&params, optval, len))
return -EFAULT;
} else
return -EINVAL;
/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
* socket is a one to many style socket, and an association
* was not found, then the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.sack_assoc_id);
if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
/* Fetch association values. */
if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
params.sack_freq = asoc->sackfreq;
} else {
params.sack_delay = 0;
params.sack_freq = 1;
}
} else {
/* Fetch socket values. */
if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
params.sack_delay = sp->sackdelay;
params.sack_freq = sp->sackfreq;
} else {
params.sack_delay = 0;
params.sack_freq = 1;
}
}
if (copy_to_user(optval, &params, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
*
* Applications can specify protocol parameters for the default association
* initialization. The option name argument to setsockopt() and getsockopt()
* is SCTP_INITMSG.
*
* Setting initialization parameters is effective only on an unconnected
* socket (for UDP-style sockets only future associations are effected
* by the change). With TCP-style sockets, this option is inherited by
* sockets derived from a listener socket.
*/
static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
if (len < sizeof(struct sctp_initmsg))
return -EINVAL;
len = sizeof(struct sctp_initmsg);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_association *asoc;
int cnt = 0;
struct sctp_getaddrs getaddrs;
struct sctp_transport *from;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
size_t space_left;
int bytes_copied;
if (len < sizeof(struct sctp_getaddrs))
return -EINVAL;
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
return -EFAULT;
/* For UDP-style sockets, id specifies the association to query. */
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
to = optval + offsetof(struct sctp_getaddrs, addrs);
space_left = len - offsetof(struct sctp_getaddrs, addrs);
list_for_each_entry(from, &asoc->peer.transport_addr_list,
transports) {
memcpy(&temp, &from->ipaddr, sizeof(temp));
addrlen = sctp_get_pf_specific(sk->sk_family)
->addr_to_user(sp, &temp);
if (space_left < addrlen)
return -ENOMEM;
if (copy_to_user(to, &temp, addrlen))
return -EFAULT;
to += addrlen;
cnt++;
space_left -= addrlen;
}
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
return -EFAULT;
bytes_copied = ((char __user *)to) - optval;
if (put_user(bytes_copied, optlen))
return -EFAULT;
return 0;
}
static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
size_t space_left, int *bytes_copied)
{
struct sctp_sockaddr_entry *addr;
union sctp_addr temp;
int cnt = 0;
int addrlen;
struct net *net = sock_net(sk);
rcu_read_lock();
list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
if (!addr->valid)
continue;
if ((PF_INET == sk->sk_family) &&
(AF_INET6 == addr->a.sa.sa_family))
continue;
if ((PF_INET6 == sk->sk_family) &&
inet_v6_ipv6only(sk) &&
(AF_INET == addr->a.sa.sa_family))
continue;
memcpy(&temp, &addr->a, sizeof(temp));
if (!temp.v4.sin_port)
temp.v4.sin_port = htons(port);
addrlen = sctp_get_pf_specific(sk->sk_family)
->addr_to_user(sctp_sk(sk), &temp);
if (space_left < addrlen) {
cnt = -ENOMEM;
break;
}
memcpy(to, &temp, addrlen);
to += addrlen;
cnt++;
space_left -= addrlen;
*bytes_copied += addrlen;
}
rcu_read_unlock();
return cnt;
}
static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_bind_addr *bp;
struct sctp_association *asoc;
int cnt = 0;
struct sctp_getaddrs getaddrs;
struct sctp_sockaddr_entry *addr;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
int err = 0;
size_t space_left;
int bytes_copied = 0;
void *addrs;
void *buf;
if (len < sizeof(struct sctp_getaddrs))
return -EINVAL;
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
return -EFAULT;
/*
* For UDP-style sockets, id specifies the association to query.
* If the id field is set to the value '0' then the locally bound
* addresses are returned without regard to any particular
* association.
*/
if (0 == getaddrs.assoc_id) {
bp = &sctp_sk(sk)->ep->base.bind_addr;
} else {
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
bp = &asoc->base.bind_addr;
}
to = optval + offsetof(struct sctp_getaddrs, addrs);
space_left = len - offsetof(struct sctp_getaddrs, addrs);
addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
if (!addrs)
return -ENOMEM;
/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
* addresses from the global local address list.
*/
if (sctp_list_single_entry(&bp->address_list)) {
addr = list_entry(bp->address_list.next,
struct sctp_sockaddr_entry, list);
if (sctp_is_any(sk, &addr->a)) {
cnt = sctp_copy_laddrs(sk, bp->port, addrs,
space_left, &bytes_copied);
if (cnt < 0) {
err = cnt;
goto out;
}
goto copy_getaddrs;
}
}
buf = addrs;
/* Protection on the bound address list is not needed since
* in the socket option context we hold a socket lock and
* thus the bound address list can't change.
*/
list_for_each_entry(addr, &bp->address_list, list) {
memcpy(&temp, &addr->a, sizeof(temp));
addrlen = sctp_get_pf_specific(sk->sk_family)
->addr_to_user(sp, &temp);
if (space_left < addrlen) {
err = -ENOMEM; /*fixme: right error?*/
goto out;
}
memcpy(buf, &temp, addrlen);
buf += addrlen;
bytes_copied += addrlen;
cnt++;
space_left -= addrlen;
}
copy_getaddrs:
if (copy_to_user(to, addrs, bytes_copied)) {
err = -EFAULT;
goto out;
}
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
err = -EFAULT;
goto out;
}
/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
* but we can't change it anymore.
*/
if (put_user(bytes_copied, optlen))
err = -EFAULT;
out:
kfree(addrs);
return err;
}
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
*
* Requests that the local SCTP stack use the enclosed peer address as
* the association primary. The enclosed address must be one of the
* association peer's addresses.
*/
static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_prim prim;
struct sctp_association *asoc;
struct sctp_sock *sp = sctp_sk(sk);
if (len < sizeof(struct sctp_prim))
return -EINVAL;
len = sizeof(struct sctp_prim);
if (copy_from_user(&prim, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
if (!asoc)
return -EINVAL;
if (!asoc->peer.primary_path)
return -ENOTCONN;
memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
asoc->peer.primary_path->af_specific->sockaddr_len);
sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
(union sctp_addr *)&prim.ssp_addr);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &prim, len))
return -EFAULT;
return 0;
}
/*
* 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
*
* Requests that the local endpoint set the specified Adaptation Layer
* Indication parameter for all future INIT and INIT-ACK exchanges.
*/
static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_setadaptation adaptation;
if (len < sizeof(struct sctp_setadaptation))
return -EINVAL;
len = sizeof(struct sctp_setadaptation);
adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &adaptation, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
*
* Applications that wish to use the sendto() system call may wish to
* specify a default set of parameters that would normally be supplied
* through the inclusion of ancillary data. This socket option allows
* such an application to set the default sctp_sndrcvinfo structure.
* The application that wishes to use this socket option simply passes
* in to this call the sctp_sndrcvinfo structure defined in Section
* 5.2.2) The input parameters accepted by this call include
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
* to this call if the caller is using the UDP model.
*
* For getsockopt, it get the default sctp_sndrcvinfo structure.
*/
static int sctp_getsockopt_default_send_param(struct sock *sk,
int len, char __user *optval,
int __user *optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
struct sctp_sndrcvinfo info;
if (len < sizeof(info))
return -EINVAL;
len = sizeof(info);
if (copy_from_user(&info, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
info.sinfo_stream = asoc->default_stream;
info.sinfo_flags = asoc->default_flags;
info.sinfo_ppid = asoc->default_ppid;
info.sinfo_context = asoc->default_context;
info.sinfo_timetolive = asoc->default_timetolive;
} else {
info.sinfo_stream = sp->default_stream;
info.sinfo_flags = sp->default_flags;
info.sinfo_ppid = sp->default_ppid;
info.sinfo_context = sp->default_context;
info.sinfo_timetolive = sp->default_timetolive;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &info, len))
return -EFAULT;
return 0;
}
/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
* (SCTP_DEFAULT_SNDINFO)
*/
static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
struct sctp_sndinfo info;
if (len < sizeof(info))
return -EINVAL;
len = sizeof(info);
if (copy_from_user(&info, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, info.snd_assoc_id);
if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
info.snd_sid = asoc->default_stream;
info.snd_flags = asoc->default_flags;
info.snd_ppid = asoc->default_ppid;
info.snd_context = asoc->default_context;
} else {
info.snd_sid = sp->default_stream;
info.snd_flags = sp->default_flags;
info.snd_ppid = sp->default_ppid;
info.snd_context = sp->default_context;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &info, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.5 SCTP_NODELAY
*
* Turn on/off any Nagle-like algorithm. This means that packets are
* generally sent as soon as possible and no unnecessary delays are
* introduced, at the cost of more packets in the network. Expects an
* integer boolean flag.
*/
static int sctp_getsockopt_nodelay(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = (sctp_sk(sk)->nodelay == 1);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.1 SCTP_RTOINFO
*
* The protocol parameters used to initialize and bound retransmission
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
* and modify these parameters.
* All parameters are time values, in milliseconds. A value of 0, when
* modifying the parameters, indicates that the current value should not
* be changed.
*
*/
static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen) {
struct sctp_rtoinfo rtoinfo;
struct sctp_association *asoc;
if (len < sizeof (struct sctp_rtoinfo))
return -EINVAL;
len = sizeof(struct sctp_rtoinfo);
if (copy_from_user(&rtoinfo, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
/* Values corresponding to the specific association. */
if (asoc) {
rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
} else {
/* Values corresponding to the endpoint. */
struct sctp_sock *sp = sctp_sk(sk);
rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
rtoinfo.srto_max = sp->rtoinfo.srto_max;
rtoinfo.srto_min = sp->rtoinfo.srto_min;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &rtoinfo, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.2 SCTP_ASSOCINFO
*
* This option is used to tune the maximum retransmission attempts
* of the association.
* Returns an error if the new association retransmission value is
* greater than the sum of the retransmission value of the peer.
* See [SCTP] for more information.
*
*/
static int sctp_getsockopt_associnfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assocparams assocparams;
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
if (len < sizeof (struct sctp_assocparams))
return -EINVAL;
len = sizeof(struct sctp_assocparams);
if (copy_from_user(&assocparams, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
/* Values correspoinding to the specific association */
if (asoc) {
assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
assocparams.sasoc_local_rwnd = asoc->a_rwnd;
assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
list_for_each(pos, &asoc->peer.transport_addr_list) {
cnt++;
}
assocparams.sasoc_number_peer_destinations = cnt;
} else {
/* Values corresponding to the endpoint */
struct sctp_sock *sp = sctp_sk(sk);
assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
assocparams.sasoc_cookie_life =
sp->assocparams.sasoc_cookie_life;
assocparams.sasoc_number_peer_destinations =
sp->assocparams.
sasoc_number_peer_destinations;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &assocparams, len))
return -EFAULT;
return 0;
}
/*
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
*
* This socket option is a boolean flag which turns on or off mapped V4
* addresses. If this option is turned on and the socket is type
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
* If this option is turned off, then no mapping will be done of V4
* addresses and a user will receive both PF_INET6 and PF_INET type
* addresses on the socket.
*/
static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
struct sctp_sock *sp = sctp_sk(sk);
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = sp->v4mapped;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 7.1.29. Set or Get the default context (SCTP_CONTEXT)
* (chapter and verse is quoted at sctp_setsockopt_context())
*/
static int sctp_getsockopt_context(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
if (len < sizeof(struct sctp_assoc_value))
return -EINVAL;
len = sizeof(struct sctp_assoc_value);
if (copy_from_user(&params, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
params.assoc_value = asoc ? asoc->default_rcv_context
: sctp_sk(sk)->default_rcv_context;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &params, len))
return -EFAULT;
return 0;
}
/*
* 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
* This option will get or set the maximum size to put in any outgoing
* SCTP DATA chunk. If a message is larger than this size it will be
* fragmented by SCTP into the specified size. Note that the underlying
* SCTP implementation may fragment into smaller sized chunks when the
* PMTU of the underlying association is smaller than the value set by
* the user. The default value for this option is '0' which indicates
* the user is NOT limiting fragmentation and only the PMTU will effect
* SCTP's choice of DATA chunk size. Note also that values set larger
* than the maximum size of an IP datagram will effectively let SCTP
* control fragmentation (i.e. the same as setting this option to 0).
*
* The following structure is used to access and modify this parameter:
*
* struct sctp_assoc_value {
* sctp_assoc_t assoc_id;
* uint32_t assoc_value;
* };
*
* assoc_id: This parameter is ignored for one-to-one style sockets.
* For one-to-many style sockets this parameter indicates which
* association the user is performing an action upon. Note that if
* this field's value is zero then the endpoints default value is
* changed (effecting future associations only).
* assoc_value: This parameter specifies the maximum size in bytes.
*/
static int sctp_getsockopt_maxseg(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
if (len == sizeof(int)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of int in maxseg socket option.\n"
"Use struct sctp_assoc_value instead\n",
current->comm, task_pid_nr(current));
params.assoc_id = SCTP_FUTURE_ASSOC;
} else if (len >= sizeof(struct sctp_assoc_value)) {
len = sizeof(struct sctp_assoc_value);
if (copy_from_user(&params, optval, len))
return -EFAULT;
} else
return -EINVAL;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
params.assoc_value = asoc->frag_point;
else
params.assoc_value = sctp_sk(sk)->user_frag;
if (put_user(len, optlen))
return -EFAULT;
if (len == sizeof(int)) {
if (copy_to_user(optval, &params.assoc_value, len))
return -EFAULT;
} else {
if (copy_to_user(optval, &params, len))
return -EFAULT;
}
return 0;
}
/*
* 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
* (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
*/
static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = sctp_sk(sk)->frag_interleave;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 7.1.25. Set or Get the sctp partial delivery point
* (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
*/
static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
u32 val;
if (len < sizeof(u32))
return -EINVAL;
len = sizeof(u32);
val = sctp_sk(sk)->pd_point;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
* (chapter and verse is quoted at sctp_setsockopt_maxburst())
*/
static int sctp_getsockopt_maxburst(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
if (len == sizeof(int)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of int in max_burst socket option.\n"
"Use struct sctp_assoc_value instead\n",
current->comm, task_pid_nr(current));
params.assoc_id = SCTP_FUTURE_ASSOC;
} else if (len >= sizeof(struct sctp_assoc_value)) {
len = sizeof(struct sctp_assoc_value);
if (copy_from_user(&params, optval, len))
return -EFAULT;
} else
return -EINVAL;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
if (len == sizeof(int)) {
if (copy_to_user(optval, &params.assoc_value, len))
return -EFAULT;
} else {
if (copy_to_user(optval, &params, len))
return -EFAULT;
}
return 0;
}
static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_hmacalgo __user *p = (void __user *)optval;
struct sctp_hmac_algo_param *hmacs;
__u16 data_len = 0;
u32 num_idents;
int i;
if (!ep->auth_enable)
return -EACCES;
hmacs = ep->auth_hmacs_list;
data_len = ntohs(hmacs->param_hdr.length) -
sizeof(struct sctp_paramhdr);
if (len < sizeof(struct sctp_hmacalgo) + data_len)
return -EINVAL;
len = sizeof(struct sctp_hmacalgo) + data_len;
num_idents = data_len / sizeof(u16);
if (put_user(len, optlen))
return -EFAULT;
if (put_user(num_idents, &p->shmac_num_idents))
return -EFAULT;
for (i = 0; i < num_idents; i++) {
__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
return -EFAULT;
}
return 0;
}
static int sctp_getsockopt_active_key(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_authkeyid val;
struct sctp_association *asoc;
if (len < sizeof(struct sctp_authkeyid))
return -EINVAL;
len = sizeof(struct sctp_authkeyid);
if (copy_from_user(&val, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
if (!asoc->peer.auth_capable)
return -EACCES;
val.scact_keynumber = asoc->active_key_id;
} else {
if (!ep->auth_enable)
return -EACCES;
val.scact_keynumber = ep->active_key_id;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_authchunks __user *p = (void __user *)optval;
struct sctp_authchunks val;
struct sctp_association *asoc;
struct sctp_chunks_param *ch;
u32 num_chunks = 0;
char __user *to;
if (len < sizeof(struct sctp_authchunks))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
to = p->gauth_chunks;
asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
if (!asoc)
return -EINVAL;
if (!asoc->peer.auth_capable)
return -EACCES;
ch = asoc->peer.peer_chunks;
if (!ch)
goto num;
/* See if the user provided enough room for all the data */
num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
if (len < num_chunks)
return -EINVAL;
if (copy_to_user(to, ch->chunks, num_chunks))
return -EFAULT;
num:
len = sizeof(struct sctp_authchunks) + num_chunks;
if (put_user(len, optlen))
return -EFAULT;
if (put_user(num_chunks, &p->gauth_number_of_chunks))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_authchunks __user *p = (void __user *)optval;
struct sctp_authchunks val;
struct sctp_association *asoc;
struct sctp_chunks_param *ch;
u32 num_chunks = 0;
char __user *to;
if (len < sizeof(struct sctp_authchunks))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
to = p->gauth_chunks;
asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
if (!asoc->peer.auth_capable)
return -EACCES;
ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
} else {
if (!ep->auth_enable)
return -EACCES;
ch = ep->auth_chunk_list;
}
if (!ch)
goto num;
num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
if (len < sizeof(struct sctp_authchunks) + num_chunks)
return -EINVAL;
if (copy_to_user(to, ch->chunks, num_chunks))
return -EFAULT;
num:
len = sizeof(struct sctp_authchunks) + num_chunks;
if (put_user(len, optlen))
return -EFAULT;
if (put_user(num_chunks, &p->gauth_number_of_chunks))
return -EFAULT;
return 0;
}
/*
* 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
* This option gets the current number of associations that are attached
* to a one-to-many style socket. The option value is an uint32_t.
*/
static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
u32 val = 0;
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (len < sizeof(u32))
return -EINVAL;
len = sizeof(u32);
list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
val++;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 8.1.23 SCTP_AUTO_ASCONF
* See the corresponding setsockopt entry as description
*/
static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val = 0;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
val = 1;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 8.2.6. Get the Current Identifiers of Associations
* (SCTP_GET_ASSOC_ID_LIST)
*
* This option gets the current list of SCTP association identifiers of
* the SCTP associations handled by a one-to-many style socket.
*/
static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
struct sctp_assoc_ids *ids;
u32 num = 0;
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (len < sizeof(struct sctp_assoc_ids))
return -EINVAL;
list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
num++;
}
if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
return -EINVAL;
len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
if (unlikely(!ids))
return -ENOMEM;
ids->gaids_number_of_ids = num;
num = 0;
list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
ids->gaids_assoc_id[num++] = asoc->assoc_id;
}
if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
kfree(ids);
return -EFAULT;
}
kfree(ids);
return 0;
}
/*
* SCTP_PEER_ADDR_THLDS
*
* This option allows us to fetch the partially failed threshold for one or all
* transports in an association. See Section 6.1 of:
* http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
*/
static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
char __user *optval, int len,
int __user *optlen, bool v2)
{
struct sctp_paddrthlds_v2 val;
struct sctp_transport *trans;
struct sctp_association *asoc;
int min;
min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
if (len < min)
return -EINVAL;
len = min;
if (copy_from_user(&val, optval, len))
return -EFAULT;
if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
trans = sctp_addr_id2transport(sk, &val.spt_address,
val.spt_assoc_id);
if (!trans)
return -ENOENT;
val.spt_pathmaxrxt = trans->pathmaxrxt;
val.spt_pathpfthld = trans->pf_retrans;
val.spt_pathcpthld = trans->ps_retrans;
goto out;
}
asoc = sctp_id2assoc(sk, val.spt_assoc_id);
if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
val.spt_pathpfthld = asoc->pf_retrans;
val.spt_pathmaxrxt = asoc->pathmaxrxt;
val.spt_pathcpthld = asoc->ps_retrans;
} else {
struct sctp_sock *sp = sctp_sk(sk);
val.spt_pathpfthld = sp->pf_retrans;
val.spt_pathmaxrxt = sp->pathmaxrxt;
val.spt_pathcpthld = sp->ps_retrans;
}
out:
if (put_user(len, optlen) || copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* SCTP_GET_ASSOC_STATS
*
* This option retrieves local per endpoint statistics. It is modeled
* after OpenSolaris' implementation
*/
static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_stats sas;
struct sctp_association *asoc = NULL;
/* User must provide at least the assoc id */
if (len < sizeof(sctp_assoc_t))
return -EINVAL;
/* Allow the struct to grow and fill in as much as possible */
len = min_t(size_t, len, sizeof(sas));
if (copy_from_user(&sas, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
if (!asoc)
return -EINVAL;
sas.sas_rtxchunks = asoc->stats.rtxchunks;
sas.sas_gapcnt = asoc->stats.gapcnt;
sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
sas.sas_osacks = asoc->stats.osacks;
sas.sas_isacks = asoc->stats.isacks;
sas.sas_octrlchunks = asoc->stats.octrlchunks;
sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
sas.sas_oodchunks = asoc->stats.oodchunks;
sas.sas_iodchunks = asoc->stats.iodchunks;
sas.sas_ouodchunks = asoc->stats.ouodchunks;
sas.sas_iuodchunks = asoc->stats.iuodchunks;
sas.sas_idupchunks = asoc->stats.idupchunks;
sas.sas_opackets = asoc->stats.opackets;
sas.sas_ipackets = asoc->stats.ipackets;
/* New high max rto observed, will return 0 if not a single
* RTO update took place. obs_rto_ipaddr will be bogus
* in such a case
*/
sas.sas_maxrto = asoc->stats.max_obs_rto;
memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
sizeof(struct sockaddr_storage));
/* Mark beginning of a new observation period */
asoc->stats.max_obs_rto = asoc->rto_min;
if (put_user(len, optlen))
return -EFAULT;
pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
if (copy_to_user(optval, &sas, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
int val = 0;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
if (sctp_sk(sk)->recvrcvinfo)
val = 1;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
int val = 0;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
if (sctp_sk(sk)->recvnxtinfo)
val = 1;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
retval = -EINVAL;
goto out;
}
params.assoc_value = asoc ? asoc->peer.prsctp_capable
: sctp_sk(sk)->ep->prsctp_enable;
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_default_prinfo info;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(info)) {
retval = -EINVAL;
goto out;
}
len = sizeof(info);
if (copy_from_user(&info, optval, len))
goto out;
asoc = sctp_id2assoc(sk, info.pr_assoc_id);
if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
retval = -EINVAL;
goto out;
}
if (asoc) {
info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
info.pr_value = asoc->default_timetolive;
} else {
struct sctp_sock *sp = sctp_sk(sk);
info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
info.pr_value = sp->default_timetolive;
}
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &info, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_prstatus params;
struct sctp_association *asoc;
int policy;
int retval = -EINVAL;
if (len < sizeof(params))
goto out;
len = sizeof(params);
if (copy_from_user(&params, optval, len)) {
retval = -EFAULT;
goto out;
}
policy = params.sprstat_policy;
if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
goto out;
asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
if (!asoc)
goto out;
if (policy == SCTP_PR_SCTP_ALL) {
params.sprstat_abandoned_unsent = 0;
params.sprstat_abandoned_sent = 0;
for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
params.sprstat_abandoned_unsent +=
asoc->abandoned_unsent[policy];
params.sprstat_abandoned_sent +=
asoc->abandoned_sent[policy];
}
} else {
params.sprstat_abandoned_unsent =
asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
params.sprstat_abandoned_sent =
asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
}
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
if (copy_to_user(optval, &params, len)) {
retval = -EFAULT;
goto out;
}
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_stream_out_ext *streamoute;
struct sctp_association *asoc;
struct sctp_prstatus params;
int retval = -EINVAL;
int policy;
if (len < sizeof(params))
goto out;
len = sizeof(params);
if (copy_from_user(&params, optval, len)) {
retval = -EFAULT;
goto out;
}
policy = params.sprstat_policy;
if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
goto out;
asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
goto out;
streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
if (!streamoute) {
/* Not allocated yet, means all stats are 0 */
params.sprstat_abandoned_unsent = 0;
params.sprstat_abandoned_sent = 0;
retval = 0;
goto out;
}
if (policy == SCTP_PR_SCTP_ALL) {
params.sprstat_abandoned_unsent = 0;
params.sprstat_abandoned_sent = 0;
for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
params.sprstat_abandoned_unsent +=
streamoute->abandoned_unsent[policy];
params.sprstat_abandoned_sent +=
streamoute->abandoned_sent[policy];
}
} else {
params.sprstat_abandoned_unsent =
streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
params.sprstat_abandoned_sent =
streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
}
if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
retval = -EFAULT;
goto out;
}
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
retval = -EINVAL;
goto out;
}
params.assoc_value = asoc ? asoc->peer.reconf_capable
: sctp_sk(sk)->ep->reconf_enable;
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
retval = -EINVAL;
goto out;
}
params.assoc_value = asoc ? asoc->strreset_enable
: sctp_sk(sk)->ep->strreset_enable;
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_scheduler(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
retval = -EINVAL;
goto out;
}
params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
: sctp_sk(sk)->default_ss;
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_stream_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc) {
retval = -EINVAL;
goto out;
}
retval = sctp_sched_get_value(asoc, params.stream_id,
&params.stream_value);
if (retval)
goto out;
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
if (copy_to_user(optval, &params, len)) {
retval = -EFAULT;
goto out;
}
out:
return retval;
}
static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
retval = -EINVAL;
goto out;
}
params.assoc_value = asoc ? asoc->peer.intl_capable
: sctp_sk(sk)->ep->intl_enable;
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = sctp_sk(sk)->reuse;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
int __user *optlen)
{
struct sctp_association *asoc;
struct sctp_event param;
__u16 subscribe;
if (len < sizeof(param))
return -EINVAL;
len = sizeof(param);
if (copy_from_user(&param, optval, len))
return -EFAULT;
if (param.se_type < SCTP_SN_TYPE_BASE ||
param.se_type > SCTP_SN_TYPE_MAX)
return -EINVAL;
asoc = sctp_id2assoc(sk, param.se_assoc_id);
if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &param, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
retval = -EINVAL;
goto out;
}
params.assoc_value = asoc ? asoc->peer.asconf_capable
: sctp_sk(sk)->ep->asconf_enable;
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
retval = -EINVAL;
goto out;
}
params.assoc_value = asoc ? asoc->peer.auth_capable
: sctp_sk(sk)->ep->auth_enable;
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
retval = -EINVAL;
goto out;
}
params.assoc_value = asoc ? asoc->peer.ecn_capable
: sctp_sk(sk)->ep->ecn_enable;
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
retval = -EINVAL;
goto out;
}
params.assoc_value = asoc ? asoc->pf_expose
: sctp_sk(sk)->pf_expose;
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_encap_port(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_association *asoc;
struct sctp_udpencaps encap;
struct sctp_transport *t;
__be16 encap_port;
if (len < sizeof(encap))
return -EINVAL;
len = sizeof(encap);
if (copy_from_user(&encap, optval, len))
return -EFAULT;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
t = sctp_addr_id2transport(sk, &encap.sue_address,
encap.sue_assoc_id);
if (!t) {
pr_debug("%s: failed no transport\n", __func__);
return -EINVAL;
}
encap_port = t->encap_port;
goto out;
}
/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
* socket is a one to many style socket, and an association
* was not found, then the id was invalid.
*/
asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
pr_debug("%s: failed no association\n", __func__);
return -EINVAL;
}
if (asoc) {
encap_port = asoc->encap_port;
goto out;
}
encap_port = sctp_sk(sk)->encap_port;
out:
encap.sue_port = (__force uint16_t)encap_port;
if (copy_to_user(optval, &encap, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_probeinterval params;
struct sctp_association *asoc;
struct sctp_transport *t;
__u32 probe_interval;
if (len < sizeof(params))
return -EINVAL;
len = sizeof(params);
if (copy_from_user(&params, optval, len))
return -EFAULT;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(sk, (union sctp_addr *)&params.spi_address)) {
t = sctp_addr_id2transport(sk, &params.spi_address,
params.spi_assoc_id);
if (!t) {
pr_debug("%s: failed no transport\n", __func__);
return -EINVAL;
}
probe_interval = jiffies_to_msecs(t->probe_interval);
goto out;
}
/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
* socket is a one to many style socket, and an association
* was not found, then the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.spi_assoc_id);
if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP)) {
pr_debug("%s: failed no association\n", __func__);
return -EINVAL;
}
if (asoc) {
probe_interval = jiffies_to_msecs(asoc->probe_interval);
goto out;
}
probe_interval = sctp_sk(sk)->probe_interval;
out:
params.spi_interval = probe_interval;
if (copy_to_user(optval, &params, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
static int sctp_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
int retval = 0;
int len;
pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
/* I can hardly begin to describe how wrong this is. This is
* so broken as to be worse than useless. The API draft
* REALLY is NOT helpful here... I am not convinced that the
* semantics of getsockopt() with a level OTHER THAN SOL_SCTP
* are at all well-founded.
*/
if (level != SOL_SCTP) {
struct sctp_af *af = sctp_sk(sk)->pf->af;
retval = af->getsockopt(sk, level, optname, optval, optlen);
return retval;
}
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
lock_sock(sk);
switch (optname) {
case SCTP_STATUS:
retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
break;
case SCTP_DISABLE_FRAGMENTS:
retval = sctp_getsockopt_disable_fragments(sk, len, optval,
optlen);
break;
case SCTP_EVENTS:
retval = sctp_getsockopt_events(sk, len, optval, optlen);
break;
case SCTP_AUTOCLOSE:
retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
break;
case SCTP_SOCKOPT_PEELOFF:
retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
break;
case SCTP_SOCKOPT_PEELOFF_FLAGS:
retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
break;
case SCTP_PEER_ADDR_PARAMS:
retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
optlen);
break;
case SCTP_DELAYED_SACK:
retval = sctp_getsockopt_delayed_ack(sk, len, optval,
optlen);
break;
case SCTP_INITMSG:
retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
break;
case SCTP_GET_PEER_ADDRS:
retval = sctp_getsockopt_peer_addrs(sk, len, optval,
optlen);
break;
case SCTP_GET_LOCAL_ADDRS:
retval = sctp_getsockopt_local_addrs(sk, len, optval,
optlen);
break;
case SCTP_SOCKOPT_CONNECTX3:
retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
break;
case SCTP_DEFAULT_SEND_PARAM:
retval = sctp_getsockopt_default_send_param(sk, len,
optval, optlen);
break;
case SCTP_DEFAULT_SNDINFO:
retval = sctp_getsockopt_default_sndinfo(sk, len,
optval, optlen);
break;
case SCTP_PRIMARY_ADDR:
retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
break;
case SCTP_NODELAY:
retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
break;
case SCTP_RTOINFO:
retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
break;
case SCTP_ASSOCINFO:
retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
break;
case SCTP_MAXSEG:
retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
break;
case SCTP_GET_PEER_ADDR_INFO:
retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
optlen);
break;
case SCTP_ADAPTATION_LAYER:
retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
optlen);
break;
case SCTP_CONTEXT:
retval = sctp_getsockopt_context(sk, len, optval, optlen);
break;
case SCTP_FRAGMENT_INTERLEAVE:
retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
optlen);
break;
case SCTP_PARTIAL_DELIVERY_POINT:
retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
optlen);
break;
case SCTP_MAX_BURST:
retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
break;
case SCTP_AUTH_KEY:
case SCTP_AUTH_CHUNK:
case SCTP_AUTH_DELETE_KEY:
case SCTP_AUTH_DEACTIVATE_KEY:
retval = -EOPNOTSUPP;
break;
case SCTP_HMAC_IDENT:
retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
break;
case SCTP_AUTH_ACTIVE_KEY:
retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
break;
case SCTP_PEER_AUTH_CHUNKS:
retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
optlen);
break;
case SCTP_LOCAL_AUTH_CHUNKS:
retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
optlen);
break;
case SCTP_GET_ASSOC_NUMBER:
retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
break;
case SCTP_GET_ASSOC_ID_LIST:
retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
break;
case SCTP_AUTO_ASCONF:
retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
break;
case SCTP_PEER_ADDR_THLDS:
retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
optlen, false);
break;
case SCTP_PEER_ADDR_THLDS_V2:
retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
optlen, true);
break;
case SCTP_GET_ASSOC_STATS:
retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
break;
case SCTP_RECVRCVINFO:
retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
break;
case SCTP_RECVNXTINFO:
retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
break;
case SCTP_PR_SUPPORTED:
retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
break;
case SCTP_DEFAULT_PRINFO:
retval = sctp_getsockopt_default_prinfo(sk, len, optval,
optlen);
break;
case SCTP_PR_ASSOC_STATUS:
retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
optlen);
break;
case SCTP_PR_STREAM_STATUS:
retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
optlen);
break;
case SCTP_RECONFIG_SUPPORTED:
retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
optlen);
break;
case SCTP_ENABLE_STREAM_RESET:
retval = sctp_getsockopt_enable_strreset(sk, len, optval,
optlen);
break;
case SCTP_STREAM_SCHEDULER:
retval = sctp_getsockopt_scheduler(sk, len, optval,
optlen);
break;
case SCTP_STREAM_SCHEDULER_VALUE:
retval = sctp_getsockopt_scheduler_value(sk, len, optval,
optlen);
break;
case SCTP_INTERLEAVING_SUPPORTED:
retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
optlen);
break;
case SCTP_REUSE_PORT:
retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
break;
case SCTP_EVENT:
retval = sctp_getsockopt_event(sk, len, optval, optlen);
break;
case SCTP_ASCONF_SUPPORTED:
retval = sctp_getsockopt_asconf_supported(sk, len, optval,
optlen);
break;
case SCTP_AUTH_SUPPORTED:
retval = sctp_getsockopt_auth_supported(sk, len, optval,
optlen);
break;
case SCTP_ECN_SUPPORTED:
retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
break;
case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
break;
case SCTP_REMOTE_UDP_ENCAPS_PORT:
retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
break;
case SCTP_PLPMTUD_PROBE_INTERVAL:
retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
break;
default:
retval = -ENOPROTOOPT;
break;
}
release_sock(sk);
return retval;
}
static int sctp_hash(struct sock *sk)
{
/* STUB */
return 0;
}
static void sctp_unhash(struct sock *sk)
{
/* STUB */
}
/* Check if port is acceptable. Possibly find first available port.
*
* The port hash table (contained in the 'global' SCTP protocol storage
* returned by struct sctp_protocol *sctp_get_protocol()). The hash
* table is an array of 4096 lists (sctp_bind_hashbucket). Each
* list (the list number is the port number hashed out, so as you
* would expect from a hash function, all the ports in a given list have
* such a number that hashes out to the same list number; you were
* expecting that, right?); so each list has a set of ports, with a
* link to the socket (struct sock) that uses it, the port number and
* a fastreuse flag (FIXME: NPI ipg).
*/
static struct sctp_bind_bucket *sctp_bucket_create(
struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
{
struct sctp_sock *sp = sctp_sk(sk);
bool reuse = (sk->sk_reuse || sp->reuse);
struct sctp_bind_hashbucket *head; /* hash list */
struct net *net = sock_net(sk);
kuid_t uid = sock_i_uid(sk);
struct sctp_bind_bucket *pp;
unsigned short snum;
int ret;
snum = ntohs(addr->v4.sin_port);
pr_debug("%s: begins, snum:%d\n", __func__, snum);
if (snum == 0) {
/* Search for an available port. */
int low, high, remaining, index;
unsigned int rover;
inet_get_local_port_range(net, &low, &high);
remaining = (high - low) + 1;
rover = prandom_u32() % remaining + low;
do {
rover++;
if ((rover < low) || (rover > high))
rover = low;
if (inet_is_local_reserved_port(net, rover))
continue;
index = sctp_phashfn(net, rover);
head = &sctp_port_hashtable[index];
spin_lock_bh(&head->lock);
sctp_for_each_hentry(pp, &head->chain)
if ((pp->port == rover) &&
net_eq(net, pp->net))
goto next;
break;
next:
spin_unlock_bh(&head->lock);
cond_resched();
} while (--remaining > 0);
/* Exhausted local port range during search? */
ret = 1;
if (remaining <= 0)
return ret;
/* OK, here is the one we will use. HEAD (the port
* hash table list entry) is non-NULL and we hold it's
* mutex.
*/
snum = rover;
} else {
/* We are given an specific port number; we verify
* that it is not being used. If it is used, we will
* exahust the search in the hash list corresponding
* to the port number (snum) - we detect that with the
* port iterator, pp being NULL.
*/
head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
spin_lock_bh(&head->lock);
sctp_for_each_hentry(pp, &head->chain) {
if ((pp->port == snum) && net_eq(pp->net, net))
goto pp_found;
}
}
pp = NULL;
goto pp_not_found;
pp_found:
if (!hlist_empty(&pp->owner)) {
/* We had a port hash table hit - there is an
* available port (pp != NULL) and it is being
* used by other socket (pp->owner not empty); that other
* socket is going to be sk2.
*/
struct sock *sk2;
pr_debug("%s: found a possible match\n", __func__);
if ((pp->fastreuse && reuse &&
sk->sk_state != SCTP_SS_LISTENING) ||
(pp->fastreuseport && sk->sk_reuseport &&
uid_eq(pp->fastuid, uid)))
goto success;
/* Run through the list of sockets bound to the port
* (pp->port) [via the pointers bind_next and
* bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
* we get the endpoint they describe and run through
* the endpoint's list of IP (v4 or v6) addresses,
* comparing each of the addresses with the address of
* the socket sk. If we find a match, then that means
* that this port/socket (sk) combination are already
* in an endpoint.
*/
sk_for_each_bound(sk2, &pp->owner) {
struct sctp_sock *sp2 = sctp_sk(sk2);
struct sctp_endpoint *ep2 = sp2->ep;
if (sk == sk2 ||
(reuse && (sk2->sk_reuse || sp2->reuse) &&
sk2->sk_state != SCTP_SS_LISTENING) ||
(sk->sk_reuseport && sk2->sk_reuseport &&
uid_eq(uid, sock_i_uid(sk2))))
continue;
if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
addr, sp2, sp)) {
ret = 1;
goto fail_unlock;
}
}
pr_debug("%s: found a match\n", __func__);
}
pp_not_found:
/* If there was a hash table miss, create a new port. */
ret = 1;
if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
goto fail_unlock;
/* In either case (hit or miss), make sure fastreuse is 1 only
* if sk->sk_reuse is too (that is, if the caller requested
* SO_REUSEADDR on this socket -sk-).
*/
if (hlist_empty(&pp->owner)) {
if (reuse && sk->sk_state != SCTP_SS_LISTENING)
pp->fastreuse = 1;
else
pp->fastreuse = 0;
if (sk->sk_reuseport) {
pp->fastreuseport = 1;
pp->fastuid = uid;
} else {
pp->fastreuseport = 0;
}
} else {
if (pp->fastreuse &&
(!reuse || sk->sk_state == SCTP_SS_LISTENING))
pp->fastreuse = 0;
if (pp->fastreuseport &&
(!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
pp->fastreuseport = 0;
}
/* We are set, so fill up all the data in the hash table
* entry, tie the socket list information with the rest of the
* sockets FIXME: Blurry, NPI (ipg).
*/
success:
if (!sp->bind_hash) {
inet_sk(sk)->inet_num = snum;
sk_add_bind_node(sk, &pp->owner);
sp->bind_hash = pp;
}
ret = 0;
fail_unlock:
spin_unlock_bh(&head->lock);
return ret;
}
/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
* port is requested.
*/
static int sctp_get_port(struct sock *sk, unsigned short snum)
{
union sctp_addr addr;
struct sctp_af *af = sctp_sk(sk)->pf->af;
/* Set up a dummy address struct from the sk. */
af->from_sk(&addr, sk);
addr.v4.sin_port = htons(snum);
/* Note: sk->sk_num gets filled in if ephemeral port request. */
return sctp_get_port_local(sk, &addr);
}
/*
* Move a socket to LISTENING state.
*/
static int sctp_listen_start(struct sock *sk, int backlog)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
struct crypto_shash *tfm = NULL;
char alg[32];
/* Allocate HMAC for generating cookie. */
if (!sp->hmac && sp->sctp_hmac_alg) {
sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
tfm = crypto_alloc_shash(alg, 0, 0);
if (IS_ERR(tfm)) {
net_info_ratelimited("failed to load transform for %s: %ld\n",
sp->sctp_hmac_alg, PTR_ERR(tfm));
return -ENOSYS;
}
sctp_sk(sk)->hmac = tfm;
}
/*
* If a bind() or sctp_bindx() is not called prior to a listen()
* call that allows new associations to be accepted, the system
* picks an ephemeral port and will choose an address set equivalent
* to binding with a wildcard address.
*
* This is not currently spelled out in the SCTP sockets
* extensions draft, but follows the practice as seen in TCP
* sockets.
*
*/
inet_sk_set_state(sk, SCTP_SS_LISTENING);
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk))
return -EAGAIN;
} else {
if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
inet_sk_set_state(sk, SCTP_SS_CLOSED);
return -EADDRINUSE;
}
}
WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
return sctp_hash_endpoint(ep);
}
/*
* 4.1.3 / 5.1.3 listen()
*
* By default, new associations are not accepted for UDP style sockets.
* An application uses listen() to mark a socket as being able to
* accept new associations.
*
* On TCP style sockets, applications use listen() to ready the SCTP
* endpoint for accepting inbound associations.
*
* On both types of endpoints a backlog of '0' disables listening.
*
* Move a socket to LISTENING state.
*/
int sctp_inet_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
int err = -EINVAL;
if (unlikely(backlog < 0))
return err;
lock_sock(sk);
/* Peeled-off sockets are not allowed to listen(). */
if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
goto out;
if (sock->state != SS_UNCONNECTED)
goto out;
if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
goto out;
/* If backlog is zero, disable listening. */
if (!backlog) {
if (sctp_sstate(sk, CLOSED))
goto out;
err = 0;
sctp_unhash_endpoint(ep);
sk->sk_state = SCTP_SS_CLOSED;
if (sk->sk_reuse || sctp_sk(sk)->reuse)
sctp_sk(sk)->bind_hash->fastreuse = 1;
goto out;
}
/* If we are already listening, just update the backlog */
if (sctp_sstate(sk, LISTENING))
WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
else {
err = sctp_listen_start(sk, backlog);
if (err)
goto out;
}
err = 0;
out:
release_sock(sk);
return err;
}
/*
* This function is done by modeling the current datagram_poll() and the
* tcp_poll(). Note that, based on these implementations, we don't
* lock the socket in this function, even though it seems that,
* ideally, locking or some other mechanisms can be used to ensure
* the integrity of the counters (sndbuf and wmem_alloc) used
* in this place. We assume that we don't need locks either until proven
* otherwise.
*
* Another thing to note is that we include the Async I/O support
* here, again, by modeling the current TCP/UDP code. We don't have
* a good way to test with it yet.
*/
__poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
{
struct sock *sk = sock->sk;
struct sctp_sock *sp = sctp_sk(sk);
__poll_t mask;
poll_wait(file, sk_sleep(sk), wait);
sock_rps_record_flow(sk);
/* A TCP-style listening socket becomes readable when the accept queue
* is not empty.
*/
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
return (!list_empty(&sp->ep->asocs)) ?
(EPOLLIN | EPOLLRDNORM) : 0;
mask = 0;
/* Is there any exceptional events? */
if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
mask |= EPOLLERR |
(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
if (sk->sk_shutdown & RCV_SHUTDOWN)
mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
if (sk->sk_shutdown == SHUTDOWN_MASK)
mask |= EPOLLHUP;
/* Is it readable? Reconsider this code with TCP-style support. */
if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
mask |= EPOLLIN | EPOLLRDNORM;
/* The association is either gone or not ready. */
if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
return mask;
/* Is it writable? */
if (sctp_writeable(sk)) {
mask |= EPOLLOUT | EPOLLWRNORM;
} else {
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
/*
* Since the socket is not locked, the buffer
* might be made available after the writeable check and
* before the bit is set. This could cause a lost I/O
* signal. tcp_poll() has a race breaker for this race
* condition. Based on their implementation, we put
* in the following code to cover it as well.
*/
if (sctp_writeable(sk))
mask |= EPOLLOUT | EPOLLWRNORM;
}
return mask;
}
/********************************************************************
* 2nd Level Abstractions
********************************************************************/
static struct sctp_bind_bucket *sctp_bucket_create(
struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
{
struct sctp_bind_bucket *pp;
pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
if (pp) {
SCTP_DBG_OBJCNT_INC(bind_bucket);
pp->port = snum;
pp->fastreuse = 0;
INIT_HLIST_HEAD(&pp->owner);
pp->net = net;
hlist_add_head(&pp->node, &head->chain);
}
return pp;
}
/* Caller must hold hashbucket lock for this tb with local BH disabled */
static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
{
if (pp && hlist_empty(&pp->owner)) {
__hlist_del(&pp->node);
kmem_cache_free(sctp_bucket_cachep, pp);
SCTP_DBG_OBJCNT_DEC(bind_bucket);
}
}
/* Release this socket's reference to a local port. */
static inline void __sctp_put_port(struct sock *sk)
{
struct sctp_bind_hashbucket *head =
&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
inet_sk(sk)->inet_num)];
struct sctp_bind_bucket *pp;
spin_lock(&head->lock);
pp = sctp_sk(sk)->bind_hash;
__sk_del_bind_node(sk);
sctp_sk(sk)->bind_hash = NULL;
inet_sk(sk)->inet_num = 0;
sctp_bucket_destroy(pp);
spin_unlock(&head->lock);
}
void sctp_put_port(struct sock *sk)
{
local_bh_disable();
__sctp_put_port(sk);
local_bh_enable();
}
/*
* The system picks an ephemeral port and choose an address set equivalent
* to binding with a wildcard address.
* One of those addresses will be the primary address for the association.
* This automatically enables the multihoming capability of SCTP.
*/
static int sctp_autobind(struct sock *sk)
{
union sctp_addr autoaddr;
struct sctp_af *af;
__be16 port;
/* Initialize a local sockaddr structure to INADDR_ANY. */
af = sctp_sk(sk)->pf->af;
port = htons(inet_sk(sk)->inet_num);
af->inaddr_any(&autoaddr, port);
return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
}
/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
*
* From RFC 2292
* 4.2 The cmsghdr Structure *
*
* When ancillary data is sent or received, any number of ancillary data
* objects can be specified by the msg_control and msg_controllen members of
* the msghdr structure, because each object is preceded by
* a cmsghdr structure defining the object's length (the cmsg_len member).
* Historically Berkeley-derived implementations have passed only one object
* at a time, but this API allows multiple objects to be
* passed in a single call to sendmsg() or recvmsg(). The following example
* shows two ancillary data objects in a control buffer.
*
* |<--------------------------- msg_controllen -------------------------->|
* | |
*
* |<----- ancillary data object ----->|<----- ancillary data object ----->|
*
* |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
* | | |
*
* |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
*
* |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
* | | | | |
*
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
* |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
*
* |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
*
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
* ^
* |
*
* msg_control
* points here
*/
static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
{
struct msghdr *my_msg = (struct msghdr *)msg;
struct cmsghdr *cmsg;
for_each_cmsghdr(cmsg, my_msg) {
if (!CMSG_OK(my_msg, cmsg))
return -EINVAL;
/* Should we parse this header or ignore? */
if (cmsg->cmsg_level != IPPROTO_SCTP)
continue;
/* Strictly check lengths following example in SCM code. */
switch (cmsg->cmsg_type) {
case SCTP_INIT:
/* SCTP Socket API Extension
* 5.3.1 SCTP Initiation Structure (SCTP_INIT)
*
* This cmsghdr structure provides information for
* initializing new SCTP associations with sendmsg().
* The SCTP_INITMSG socket option uses this same data
* structure. This structure is not used for
* recvmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ----------------------
* IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
*/
if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
return -EINVAL;
cmsgs->init = CMSG_DATA(cmsg);
break;
case SCTP_SNDRCV:
/* SCTP Socket API Extension
* 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
*
* This cmsghdr structure specifies SCTP options for
* sendmsg() and describes SCTP header information
* about a received message through recvmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ----------------------
* IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
*/
if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
return -EINVAL;
cmsgs->srinfo = CMSG_DATA(cmsg);
if (cmsgs->srinfo->sinfo_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
return -EINVAL;
break;
case SCTP_SNDINFO:
/* SCTP Socket API Extension
* 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
*
* This cmsghdr structure specifies SCTP options for
* sendmsg(). This structure and SCTP_RCVINFO replaces
* SCTP_SNDRCV which has been deprecated.
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ---------------------
* IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
*/
if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
return -EINVAL;
cmsgs->sinfo = CMSG_DATA(cmsg);
if (cmsgs->sinfo->snd_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
return -EINVAL;
break;
case SCTP_PRINFO:
/* SCTP Socket API Extension
* 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
*
* This cmsghdr structure specifies SCTP options for sendmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ---------------------
* IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
*/
if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
return -EINVAL;
cmsgs->prinfo = CMSG_DATA(cmsg);
if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
return -EINVAL;
if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
cmsgs->prinfo->pr_value = 0;
break;
case SCTP_AUTHINFO:
/* SCTP Socket API Extension
* 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
*
* This cmsghdr structure specifies SCTP options for sendmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ---------------------
* IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
*/
if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
return -EINVAL;
cmsgs->authinfo = CMSG_DATA(cmsg);
break;
case SCTP_DSTADDRV4:
case SCTP_DSTADDRV6:
/* SCTP Socket API Extension
* 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
*
* This cmsghdr structure specifies SCTP options for sendmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ---------------------
* IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
* ------------ ------------ ---------------------
* IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
*/
cmsgs->addrs_msg = my_msg;
break;
default:
return -EINVAL;
}
}
return 0;
}
/*
* Wait for a packet..
* Note: This function is the same function as in core/datagram.c
* with a few modifications to make lksctp work.
*/
static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
{
int error;
DEFINE_WAIT(wait);
prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
/* Socket errors? */
error = sock_error(sk);
if (error)
goto out;
if (!skb_queue_empty(&sk->sk_receive_queue))
goto ready;
/* Socket shut down? */
if (sk->sk_shutdown & RCV_SHUTDOWN)
goto out;
/* Sequenced packets can come disconnected. If so we report the
* problem.
*/
error = -ENOTCONN;
/* Is there a good reason to think that we may receive some data? */
if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
goto out;
/* Handle signals. */
if (signal_pending(current))
goto interrupted;
/* Let another process have a go. Since we are going to sleep
* anyway. Note: This may cause odd behaviors if the message
* does not fit in the user's buffer, but this seems to be the
* only way to honor MSG_DONTWAIT realistically.
*/
release_sock(sk);
*timeo_p = schedule_timeout(*timeo_p);
lock_sock(sk);
ready:
finish_wait(sk_sleep(sk), &wait);
return 0;
interrupted:
error = sock_intr_errno(*timeo_p);
out:
finish_wait(sk_sleep(sk), &wait);
*err = error;
return error;
}
/* Receive a datagram.
* Note: This is pretty much the same routine as in core/datagram.c
* with a few changes to make lksctp work.
*/
struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
int noblock, int *err)
{
int error;
struct sk_buff *skb;
long timeo;
timeo = sock_rcvtimeo(sk, noblock);
pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
MAX_SCHEDULE_TIMEOUT);
do {
/* Again only user level code calls this function,
* so nothing interrupt level
* will suddenly eat the receive_queue.
*
* Look at current nfs client by the way...
* However, this function was correct in any case. 8)
*/
if (flags & MSG_PEEK) {
skb = skb_peek(&sk->sk_receive_queue);
if (skb)
refcount_inc(&skb->users);
} else {
skb = __skb_dequeue(&sk->sk_receive_queue);
}
if (skb)
return skb;
/* Caller is allowed not to check sk->sk_err before calling. */
error = sock_error(sk);
if (error)
goto no_packet;
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk_can_busy_loop(sk)) {
sk_busy_loop(sk, noblock);
if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
continue;
}
/* User doesn't want to wait. */
error = -EAGAIN;
if (!timeo)
goto no_packet;
} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
return NULL;
no_packet:
*err = error;
return NULL;
}
/* If sndbuf has changed, wake up per association sndbuf waiters. */
static void __sctp_write_space(struct sctp_association *asoc)
{
struct sock *sk = asoc->base.sk;
if (sctp_wspace(asoc) <= 0)
return;
if (waitqueue_active(&asoc->wait))
wake_up_interruptible(&asoc->wait);
if (sctp_writeable(sk)) {
struct socket_wq *wq;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (wq) {
if (waitqueue_active(&wq->wait))
wake_up_interruptible(&wq->wait);
/* Note that we try to include the Async I/O support
* here by modeling from the current TCP/UDP code.
* We have not tested with it yet.
*/
if (!(sk->sk_shutdown & SEND_SHUTDOWN))
sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
}
rcu_read_unlock();
}
}
static void sctp_wake_up_waiters(struct sock *sk,
struct sctp_association *asoc)
{
struct sctp_association *tmp = asoc;
/* We do accounting for the sndbuf space per association,
* so we only need to wake our own association.
*/
if (asoc->ep->sndbuf_policy)
return __sctp_write_space(asoc);
/* If association goes down and is just flushing its
* outq, then just normally notify others.
*/
if (asoc->base.dead)
return sctp_write_space(sk);
/* Accounting for the sndbuf space is per socket, so we
* need to wake up others, try to be fair and in case of
* other associations, let them have a go first instead
* of just doing a sctp_write_space() call.
*
* Note that we reach sctp_wake_up_waiters() only when
* associations free up queued chunks, thus we are under
* lock and the list of associations on a socket is
* guaranteed not to change.
*/
for (tmp = list_next_entry(tmp, asocs); 1;
tmp = list_next_entry(tmp, asocs)) {
/* Manually skip the head element. */
if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
continue;
/* Wake up association. */
__sctp_write_space(tmp);
/* We've reached the end. */
if (tmp == asoc)
break;
}
}
/* Do accounting for the sndbuf space.
* Decrement the used sndbuf space of the corresponding association by the
* data size which was just transmitted(freed).
*/
static void sctp_wfree(struct sk_buff *skb)
{
struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
struct sctp_association *asoc = chunk->asoc;
struct sock *sk = asoc->base.sk;
sk_mem_uncharge(sk, skb->truesize);
sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
&sk->sk_wmem_alloc));
if (chunk->shkey) {
struct sctp_shared_key *shkey = chunk->shkey;
/* refcnt == 2 and !list_empty mean after this release, it's
* not being used anywhere, and it's time to notify userland
* that this shkey can be freed if it's been deactivated.
*/
if (shkey->deactivated && !list_empty(&shkey->key_list) &&
refcount_read(&shkey->refcnt) == 2) {
struct sctp_ulpevent *ev;
ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
SCTP_AUTH_FREE_KEY,
GFP_KERNEL);
if (ev)
asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
}
sctp_auth_shkey_release(chunk->shkey);
}
sock_wfree(skb);
sctp_wake_up_waiters(sk, asoc);
sctp_association_put(asoc);
}
/* Do accounting for the receive space on the socket.
* Accounting for the association is done in ulpevent.c
* We set this as a destructor for the cloned data skbs so that
* accounting is done at the correct time.
*/
void sctp_sock_rfree(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
struct sctp_ulpevent *event = sctp_skb2event(skb);
atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
/*
* Mimic the behavior of sock_rfree
*/
sk_mem_uncharge(sk, event->rmem_len);
}
/* Helper function to wait for space in the sndbuf. */
static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
size_t msg_len)
{
struct sock *sk = asoc->base.sk;
long current_timeo = *timeo_p;
DEFINE_WAIT(wait);
int err = 0;
pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
*timeo_p, msg_len);
/* Increment the association's refcnt. */
sctp_association_hold(asoc);
/* Wait on the association specific sndbuf space. */
for (;;) {
prepare_to_wait_exclusive(&asoc->wait, &wait,
TASK_INTERRUPTIBLE);
if (asoc->base.dead)
goto do_dead;
if (!*timeo_p)
goto do_nonblock;
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
goto do_error;
if (signal_pending(current))
goto do_interrupted;
if (sk_under_memory_pressure(sk))
sk_mem_reclaim(sk);
if ((int)msg_len <= sctp_wspace(asoc) &&
sk_wmem_schedule(sk, msg_len))
break;
/* Let another process have a go. Since we are going
* to sleep anyway.
*/
release_sock(sk);
current_timeo = schedule_timeout(current_timeo);
lock_sock(sk);
if (sk != asoc->base.sk)
goto do_error;
*timeo_p = current_timeo;
}
out:
finish_wait(&asoc->wait, &wait);
/* Release the association's refcnt. */
sctp_association_put(asoc);
return err;
do_dead:
err = -ESRCH;
goto out;
do_error:
err = -EPIPE;
goto out;
do_interrupted:
err = sock_intr_errno(*timeo_p);
goto out;
do_nonblock:
err = -EAGAIN;
goto out;
}
void sctp_data_ready(struct sock *sk)
{
struct socket_wq *wq;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
EPOLLRDNORM | EPOLLRDBAND);
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
rcu_read_unlock();
}
/* If socket sndbuf has changed, wake up all per association waiters. */
void sctp_write_space(struct sock *sk)
{
struct sctp_association *asoc;
/* Wake up the tasks in each wait queue. */
list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
__sctp_write_space(asoc);
}
}
/* Is there any sndbuf space available on the socket?
*
* Note that sk_wmem_alloc is the sum of the send buffers on all of the
* associations on the same socket. For a UDP-style socket with
* multiple associations, it is possible for it to be "unwriteable"
* prematurely. I assume that this is acceptable because
* a premature "unwriteable" is better than an accidental "writeable" which
* would cause an unwanted block under certain circumstances. For the 1-1
* UDP-style sockets or TCP-style sockets, this code should work.
* - Daisy
*/
static bool sctp_writeable(struct sock *sk)
{
return sk->sk_sndbuf > sk->sk_wmem_queued;
}
/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
* returns immediately with EINPROGRESS.
*/
static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
{
struct sock *sk = asoc->base.sk;
int err = 0;
long current_timeo = *timeo_p;
DEFINE_WAIT(wait);
pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
/* Increment the association's refcnt. */
sctp_association_hold(asoc);
for (;;) {
prepare_to_wait_exclusive(&asoc->wait, &wait,
TASK_INTERRUPTIBLE);
if (!*timeo_p)
goto do_nonblock;
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
asoc->base.dead)
goto do_error;
if (signal_pending(current))
goto do_interrupted;
if (sctp_state(asoc, ESTABLISHED))
break;
/* Let another process have a go. Since we are going
* to sleep anyway.
*/
release_sock(sk);
current_timeo = schedule_timeout(current_timeo);
lock_sock(sk);
*timeo_p = current_timeo;
}
out:
finish_wait(&asoc->wait, &wait);
/* Release the association's refcnt. */
sctp_association_put(asoc);
return err;
do_error:
if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
err = -ETIMEDOUT;
else
err = -ECONNREFUSED;
goto out;
do_interrupted:
err = sock_intr_errno(*timeo_p);
goto out;
do_nonblock:
err = -EINPROGRESS;
goto out;
}
static int sctp_wait_for_accept(struct sock *sk, long timeo)
{
struct sctp_endpoint *ep;
int err = 0;
DEFINE_WAIT(wait);
ep = sctp_sk(sk)->ep;
for (;;) {
prepare_to_wait_exclusive(sk_sleep(sk), &wait,
TASK_INTERRUPTIBLE);
if (list_empty(&ep->asocs)) {
release_sock(sk);
timeo = schedule_timeout(timeo);
lock_sock(sk);
}
err = -EINVAL;
if (!sctp_sstate(sk, LISTENING))
break;
err = 0;
if (!list_empty(&ep->asocs))
break;
err = sock_intr_errno(timeo);
if (signal_pending(current))
break;
err = -EAGAIN;
if (!timeo)
break;
}
finish_wait(sk_sleep(sk), &wait);
return err;
}
static void sctp_wait_for_close(struct sock *sk, long timeout)
{
DEFINE_WAIT(wait);
do {
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
if (list_empty(&sctp_sk(sk)->ep->asocs))
break;
release_sock(sk);
timeout = schedule_timeout(timeout);
lock_sock(sk);
} while (!signal_pending(current) && timeout);
finish_wait(sk_sleep(sk), &wait);
}
static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
{
struct sk_buff *frag;
if (!skb->data_len)
goto done;
/* Don't forget the fragments. */
skb_walk_frags(skb, frag)
sctp_skb_set_owner_r_frag(frag, sk);
done:
sctp_skb_set_owner_r(skb, sk);
}
void sctp_copy_sock(struct sock *newsk, struct sock *sk,
struct sctp_association *asoc)
{
struct inet_sock *inet = inet_sk(sk);
struct inet_sock *newinet;
struct sctp_sock *sp = sctp_sk(sk);
newsk->sk_type = sk->sk_type;
newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
newsk->sk_flags = sk->sk_flags;
newsk->sk_tsflags = sk->sk_tsflags;
newsk->sk_no_check_tx = sk->sk_no_check_tx;
newsk->sk_no_check_rx = sk->sk_no_check_rx;
newsk->sk_reuse = sk->sk_reuse;
sctp_sk(newsk)->reuse = sp->reuse;
newsk->sk_shutdown = sk->sk_shutdown;
newsk->sk_destruct = sctp_destruct_sock;
newsk->sk_family = sk->sk_family;
newsk->sk_protocol = IPPROTO_SCTP;
newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
newsk->sk_sndbuf = sk->sk_sndbuf;
newsk->sk_rcvbuf = sk->sk_rcvbuf;
newsk->sk_lingertime = sk->sk_lingertime;
newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
newsk->sk_sndtimeo = sk->sk_sndtimeo;
newsk->sk_rxhash = sk->sk_rxhash;
newinet = inet_sk(newsk);
/* Initialize sk's sport, dport, rcv_saddr and daddr for
* getsockname() and getpeername()
*/
newinet->inet_sport = inet->inet_sport;
newinet->inet_saddr = inet->inet_saddr;
newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
newinet->inet_dport = htons(asoc->peer.port);
newinet->pmtudisc = inet->pmtudisc;
newinet->inet_id = prandom_u32();
newinet->uc_ttl = inet->uc_ttl;
newinet->mc_loop = 1;
newinet->mc_ttl = 1;
newinet->mc_index = 0;
newinet->mc_list = NULL;
if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
net_enable_timestamp();
/* Set newsk security attributes from original sk and connection
* security attribute from asoc.
*/
security_sctp_sk_clone(asoc, sk, newsk);
}
static inline void sctp_copy_descendant(struct sock *sk_to,
const struct sock *sk_from)
{
size_t ancestor_size = sizeof(struct inet_sock);
ancestor_size += sk_from->sk_prot->obj_size;
ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
}
/* Populate the fields of the newsk from the oldsk and migrate the assoc
* and its messages to the newsk.
*/
static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
struct sctp_association *assoc,
enum sctp_socket_type type)
{
struct sctp_sock *oldsp = sctp_sk(oldsk);
struct sctp_sock *newsp = sctp_sk(newsk);
struct sctp_bind_bucket *pp; /* hash list port iterator */
struct sctp_endpoint *newep = newsp->ep;
struct sk_buff *skb, *tmp;
struct sctp_ulpevent *event;
struct sctp_bind_hashbucket *head;
int err;
/* Migrate socket buffer sizes and all the socket level options to the
* new socket.
*/
newsk->sk_sndbuf = oldsk->sk_sndbuf;
newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
/* Brute force copy old sctp opt. */
sctp_copy_descendant(newsk, oldsk);
/* Restore the ep value that was overwritten with the above structure
* copy.
*/
newsp->ep = newep;
newsp->hmac = NULL;
/* Hook this new socket in to the bind_hash list. */
head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
inet_sk(oldsk)->inet_num)];
spin_lock_bh(&head->lock);
pp = sctp_sk(oldsk)->bind_hash;
sk_add_bind_node(newsk, &pp->owner);
sctp_sk(newsk)->bind_hash = pp;
inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
spin_unlock_bh(&head->lock);
/* Copy the bind_addr list from the original endpoint to the new
* endpoint so that we can handle restarts properly
*/
err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
&oldsp->ep->base.bind_addr, GFP_KERNEL);
if (err)
return err;
/* New ep's auth_hmacs should be set if old ep's is set, in case
* that net->sctp.auth_enable has been changed to 0 by users and
* new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
*/
if (oldsp->ep->auth_hmacs) {
err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
if (err)
return err;
}
sctp_auto_asconf_init(newsp);
/* Move any messages in the old socket's receive queue that are for the
* peeled off association to the new socket's receive queue.
*/
sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
event = sctp_skb2event(skb);
if (event->asoc == assoc) {
__skb_unlink(skb, &oldsk->sk_receive_queue);
__skb_queue_tail(&newsk->sk_receive_queue, skb);
sctp_skb_set_owner_r_frag(skb, newsk);
}
}
/* Clean up any messages pending delivery due to partial
* delivery. Three cases:
* 1) No partial deliver; no work.
* 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
* 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
*/
atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
struct sk_buff_head *queue;
/* Decide which queue to move pd_lobby skbs to. */
if (assoc->ulpq.pd_mode) {
queue = &newsp->pd_lobby;
} else
queue = &newsk->sk_receive_queue;
/* Walk through the pd_lobby, looking for skbs that
* need moved to the new socket.
*/
sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
event = sctp_skb2event(skb);
if (event->asoc == assoc) {
__skb_unlink(skb, &oldsp->pd_lobby);
__skb_queue_tail(queue, skb);
sctp_skb_set_owner_r_frag(skb, newsk);
}
}
/* Clear up any skbs waiting for the partial
* delivery to finish.
*/
if (assoc->ulpq.pd_mode)
sctp_clear_pd(oldsk, NULL);
}
sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
/* Set the type of socket to indicate that it is peeled off from the
* original UDP-style socket or created with the accept() call on a
* TCP-style socket..
*/
newsp->type = type;
/* Mark the new socket "in-use" by the user so that any packets
* that may arrive on the association after we've moved it are
* queued to the backlog. This prevents a potential race between
* backlog processing on the old socket and new-packet processing
* on the new socket.
*
* The caller has just allocated newsk so we can guarantee that other
* paths won't try to lock it and then oldsk.
*/
lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
sctp_assoc_migrate(assoc, newsk);
sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
/* If the association on the newsk is already closed before accept()
* is called, set RCV_SHUTDOWN flag.
*/
if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
inet_sk_set_state(newsk, SCTP_SS_CLOSED);
newsk->sk_shutdown |= RCV_SHUTDOWN;
} else {
inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
}
release_sock(newsk);
return 0;
}
/* This proto struct describes the ULP interface for SCTP. */
struct proto sctp_prot = {
.name = "SCTP",
.owner = THIS_MODULE,
.close = sctp_close,
.disconnect = sctp_disconnect,
.accept = sctp_accept,
.ioctl = sctp_ioctl,
.init = sctp_init_sock,
.destroy = sctp_destroy_sock,
.shutdown = sctp_shutdown,
.setsockopt = sctp_setsockopt,
.getsockopt = sctp_getsockopt,
.sendmsg = sctp_sendmsg,
.recvmsg = sctp_recvmsg,
.bind = sctp_bind,
.bind_add = sctp_bind_add,
.backlog_rcv = sctp_backlog_rcv,
.hash = sctp_hash,
.unhash = sctp_unhash,
.no_autobind = true,
.obj_size = sizeof(struct sctp_sock),
.useroffset = offsetof(struct sctp_sock, subscribe),
.usersize = offsetof(struct sctp_sock, initmsg) -
offsetof(struct sctp_sock, subscribe) +
sizeof_field(struct sctp_sock, initmsg),
.sysctl_mem = sysctl_sctp_mem,
.sysctl_rmem = sysctl_sctp_rmem,
.sysctl_wmem = sysctl_sctp_wmem,
.memory_pressure = &sctp_memory_pressure,
.enter_memory_pressure = sctp_enter_memory_pressure,
.memory_allocated = &sctp_memory_allocated,
.sockets_allocated = &sctp_sockets_allocated,
};
#if IS_ENABLED(CONFIG_IPV6)
#include <net/transp_v6.h>
static void sctp_v6_destroy_sock(struct sock *sk)
{
sctp_destroy_sock(sk);
inet6_destroy_sock(sk);
}
struct proto sctpv6_prot = {
.name = "SCTPv6",
.owner = THIS_MODULE,
.close = sctp_close,
.disconnect = sctp_disconnect,
.accept = sctp_accept,
.ioctl = sctp_ioctl,
.init = sctp_init_sock,
.destroy = sctp_v6_destroy_sock,
.shutdown = sctp_shutdown,
.setsockopt = sctp_setsockopt,
.getsockopt = sctp_getsockopt,
.sendmsg = sctp_sendmsg,
.recvmsg = sctp_recvmsg,
.bind = sctp_bind,
.bind_add = sctp_bind_add,
.backlog_rcv = sctp_backlog_rcv,
.hash = sctp_hash,
.unhash = sctp_unhash,
.no_autobind = true,
.obj_size = sizeof(struct sctp6_sock),
.useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
.usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
offsetof(struct sctp6_sock, sctp.subscribe) +
sizeof_field(struct sctp6_sock, sctp.initmsg),
.sysctl_mem = sysctl_sctp_mem,
.sysctl_rmem = sysctl_sctp_rmem,
.sysctl_wmem = sysctl_sctp_wmem,
.memory_pressure = &sctp_memory_pressure,
.enter_memory_pressure = sctp_enter_memory_pressure,
.memory_allocated = &sctp_memory_allocated,
.sockets_allocated = &sctp_sockets_allocated,
};
#endif /* IS_ENABLED(CONFIG_IPV6) */