mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 13:43:51 +00:00
58100c34f7
In drivers/clocksource/, 3 drivers use "TIMER_CTRL_IE" with 3 different
values. Two of them (mps2-timer.c and timer-sp804.c/timer-sp.h) are
localized and left unmodifed.
One of them uses a shared header file (<soc/arc/timers.h>), which is
what is causing the "redefined" warnings, so change the macro name in
that driver only. Also change the TIMER_CTRL_NH macro name.
Both macro names are prefixed with "ARC_" to reduce the likelihood
of future name collisions.
In file included from ../drivers/clocksource/timer-sp804.c:24:
../drivers/clocksource/timer-sp.h:25: error: "TIMER_CTRL_IE" redefined [-Werror]
25 | #define TIMER_CTRL_IE (1 << 5) /* VR */
../include/soc/arc/timers.h:20: note: this is the location of the previous definition
20 | #define TIMER_CTRL_IE (1 << 0) /* Interrupt when Count reaches limit */
Fixes: b26c2e3823
("ARC: breakout timer include code into separate header")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: linux-snps-arc@lists.infradead.org
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com>
Acked-by: Vineet Gupta <vgupta@kernel.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20210924020825.20317-1-rdunlap@infradead.org
374 lines
9.0 KiB
C
374 lines
9.0 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
|
|
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
|
|
*/
|
|
|
|
/* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
|
|
* programmed to go from @count to @limit and optionally interrupt.
|
|
* We've designated TIMER0 for clockevents and TIMER1 for clocksource
|
|
*
|
|
* ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
|
|
* which are suitable for UP and SMP based clocksources respectively
|
|
*/
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/bits.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/sched_clock.h>
|
|
|
|
#include <soc/arc/timers.h>
|
|
#include <soc/arc/mcip.h>
|
|
|
|
|
|
static unsigned long arc_timer_freq;
|
|
|
|
static int noinline arc_get_timer_clk(struct device_node *node)
|
|
{
|
|
struct clk *clk;
|
|
int ret;
|
|
|
|
clk = of_clk_get(node, 0);
|
|
if (IS_ERR(clk)) {
|
|
pr_err("timer missing clk\n");
|
|
return PTR_ERR(clk);
|
|
}
|
|
|
|
ret = clk_prepare_enable(clk);
|
|
if (ret) {
|
|
pr_err("Couldn't enable parent clk\n");
|
|
return ret;
|
|
}
|
|
|
|
arc_timer_freq = clk_get_rate(clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/********** Clock Source Device *********/
|
|
|
|
#ifdef CONFIG_ARC_TIMERS_64BIT
|
|
|
|
static u64 arc_read_gfrc(struct clocksource *cs)
|
|
{
|
|
unsigned long flags;
|
|
u32 l, h;
|
|
|
|
/*
|
|
* From a programming model pov, there seems to be just one instance of
|
|
* MCIP_CMD/MCIP_READBACK however micro-architecturally there's
|
|
* an instance PER ARC CORE (not per cluster), and there are dedicated
|
|
* hardware decode logic (per core) inside ARConnect to handle
|
|
* simultaneous read/write accesses from cores via those two registers.
|
|
* So several concurrent commands to ARConnect are OK if they are
|
|
* trying to access two different sub-components (like GFRC,
|
|
* inter-core interrupt, etc...). HW also supports simultaneously
|
|
* accessing GFRC by multiple cores.
|
|
* That's why it is safe to disable hard interrupts on the local CPU
|
|
* before access to GFRC instead of taking global MCIP spinlock
|
|
* defined in arch/arc/kernel/mcip.c
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
__mcip_cmd(CMD_GFRC_READ_LO, 0);
|
|
l = read_aux_reg(ARC_REG_MCIP_READBACK);
|
|
|
|
__mcip_cmd(CMD_GFRC_READ_HI, 0);
|
|
h = read_aux_reg(ARC_REG_MCIP_READBACK);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return (((u64)h) << 32) | l;
|
|
}
|
|
|
|
static notrace u64 arc_gfrc_clock_read(void)
|
|
{
|
|
return arc_read_gfrc(NULL);
|
|
}
|
|
|
|
static struct clocksource arc_counter_gfrc = {
|
|
.name = "ARConnect GFRC",
|
|
.rating = 400,
|
|
.read = arc_read_gfrc,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static int __init arc_cs_setup_gfrc(struct device_node *node)
|
|
{
|
|
struct mcip_bcr mp;
|
|
int ret;
|
|
|
|
READ_BCR(ARC_REG_MCIP_BCR, mp);
|
|
if (!mp.gfrc) {
|
|
pr_warn("Global-64-bit-Ctr clocksource not detected\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
ret = arc_get_timer_clk(node);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);
|
|
|
|
return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
|
|
}
|
|
TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
|
|
|
|
#define AUX_RTC_CTRL 0x103
|
|
#define AUX_RTC_LOW 0x104
|
|
#define AUX_RTC_HIGH 0x105
|
|
|
|
static u64 arc_read_rtc(struct clocksource *cs)
|
|
{
|
|
unsigned long status;
|
|
u32 l, h;
|
|
|
|
/*
|
|
* hardware has an internal state machine which tracks readout of
|
|
* low/high and updates the CTRL.status if
|
|
* - interrupt/exception taken between the two reads
|
|
* - high increments after low has been read
|
|
*/
|
|
do {
|
|
l = read_aux_reg(AUX_RTC_LOW);
|
|
h = read_aux_reg(AUX_RTC_HIGH);
|
|
status = read_aux_reg(AUX_RTC_CTRL);
|
|
} while (!(status & BIT(31)));
|
|
|
|
return (((u64)h) << 32) | l;
|
|
}
|
|
|
|
static notrace u64 arc_rtc_clock_read(void)
|
|
{
|
|
return arc_read_rtc(NULL);
|
|
}
|
|
|
|
static struct clocksource arc_counter_rtc = {
|
|
.name = "ARCv2 RTC",
|
|
.rating = 350,
|
|
.read = arc_read_rtc,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static int __init arc_cs_setup_rtc(struct device_node *node)
|
|
{
|
|
struct bcr_timer timer;
|
|
int ret;
|
|
|
|
READ_BCR(ARC_REG_TIMERS_BCR, timer);
|
|
if (!timer.rtc) {
|
|
pr_warn("Local-64-bit-Ctr clocksource not detected\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Local to CPU hence not usable in SMP */
|
|
if (IS_ENABLED(CONFIG_SMP)) {
|
|
pr_warn("Local-64-bit-Ctr not usable in SMP\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = arc_get_timer_clk(node);
|
|
if (ret)
|
|
return ret;
|
|
|
|
write_aux_reg(AUX_RTC_CTRL, 1);
|
|
|
|
sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);
|
|
|
|
return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
|
|
}
|
|
TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
|
|
|
|
#endif
|
|
|
|
/*
|
|
* 32bit TIMER1 to keep counting monotonically and wraparound
|
|
*/
|
|
|
|
static u64 arc_read_timer1(struct clocksource *cs)
|
|
{
|
|
return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
|
|
}
|
|
|
|
static notrace u64 arc_timer1_clock_read(void)
|
|
{
|
|
return arc_read_timer1(NULL);
|
|
}
|
|
|
|
static struct clocksource arc_counter_timer1 = {
|
|
.name = "ARC Timer1",
|
|
.rating = 300,
|
|
.read = arc_read_timer1,
|
|
.mask = CLOCKSOURCE_MASK(32),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static int __init arc_cs_setup_timer1(struct device_node *node)
|
|
{
|
|
int ret;
|
|
|
|
/* Local to CPU hence not usable in SMP */
|
|
if (IS_ENABLED(CONFIG_SMP))
|
|
return -EINVAL;
|
|
|
|
ret = arc_get_timer_clk(node);
|
|
if (ret)
|
|
return ret;
|
|
|
|
write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
|
|
write_aux_reg(ARC_REG_TIMER1_CNT, 0);
|
|
write_aux_reg(ARC_REG_TIMER1_CTRL, ARC_TIMER_CTRL_NH);
|
|
|
|
sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);
|
|
|
|
return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
|
|
}
|
|
|
|
/********** Clock Event Device *********/
|
|
|
|
static int arc_timer_irq;
|
|
|
|
/*
|
|
* Arm the timer to interrupt after @cycles
|
|
* The distinction for oneshot/periodic is done in arc_event_timer_ack() below
|
|
*/
|
|
static void arc_timer_event_setup(unsigned int cycles)
|
|
{
|
|
write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
|
|
write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */
|
|
|
|
write_aux_reg(ARC_REG_TIMER0_CTRL, ARC_TIMER_CTRL_IE | ARC_TIMER_CTRL_NH);
|
|
}
|
|
|
|
|
|
static int arc_clkevent_set_next_event(unsigned long delta,
|
|
struct clock_event_device *dev)
|
|
{
|
|
arc_timer_event_setup(delta);
|
|
return 0;
|
|
}
|
|
|
|
static int arc_clkevent_set_periodic(struct clock_event_device *dev)
|
|
{
|
|
/*
|
|
* At X Hz, 1 sec = 1000ms -> X cycles;
|
|
* 10ms -> X / 100 cycles
|
|
*/
|
|
arc_timer_event_setup(arc_timer_freq / HZ);
|
|
return 0;
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
|
|
.name = "ARC Timer0",
|
|
.features = CLOCK_EVT_FEAT_ONESHOT |
|
|
CLOCK_EVT_FEAT_PERIODIC,
|
|
.rating = 300,
|
|
.set_next_event = arc_clkevent_set_next_event,
|
|
.set_state_periodic = arc_clkevent_set_periodic,
|
|
};
|
|
|
|
static irqreturn_t timer_irq_handler(int irq, void *dev_id)
|
|
{
|
|
/*
|
|
* Note that generic IRQ core could have passed @evt for @dev_id if
|
|
* irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
|
|
*/
|
|
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
|
|
int irq_reenable = clockevent_state_periodic(evt);
|
|
|
|
/*
|
|
* 1. ACK the interrupt
|
|
* - For ARC700, any write to CTRL reg ACKs it, so just rewrite
|
|
* Count when [N]ot [H]alted bit.
|
|
* - For HS3x, it is a bit subtle. On taken count-down interrupt,
|
|
* IP bit [3] is set, which needs to be cleared for ACK'ing.
|
|
* The write below can only update the other two bits, hence
|
|
* explicitly clears IP bit
|
|
* 2. Re-arm interrupt if periodic by writing to IE bit [0]
|
|
*/
|
|
write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | ARC_TIMER_CTRL_NH);
|
|
|
|
evt->event_handler(evt);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
static int arc_timer_starting_cpu(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
|
|
|
|
evt->cpumask = cpumask_of(smp_processor_id());
|
|
|
|
clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
|
|
enable_percpu_irq(arc_timer_irq, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int arc_timer_dying_cpu(unsigned int cpu)
|
|
{
|
|
disable_percpu_irq(arc_timer_irq);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* clockevent setup for boot CPU
|
|
*/
|
|
static int __init arc_clockevent_setup(struct device_node *node)
|
|
{
|
|
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
|
|
int ret;
|
|
|
|
arc_timer_irq = irq_of_parse_and_map(node, 0);
|
|
if (arc_timer_irq <= 0) {
|
|
pr_err("clockevent: missing irq\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = arc_get_timer_clk(node);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Needs apriori irq_set_percpu_devid() done in intc map function */
|
|
ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
|
|
"Timer0 (per-cpu-tick)", evt);
|
|
if (ret) {
|
|
pr_err("clockevent: unable to request irq\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
|
|
"clockevents/arc/timer:starting",
|
|
arc_timer_starting_cpu,
|
|
arc_timer_dying_cpu);
|
|
if (ret) {
|
|
pr_err("Failed to setup hotplug state\n");
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __init arc_of_timer_init(struct device_node *np)
|
|
{
|
|
static int init_count = 0;
|
|
int ret;
|
|
|
|
if (!init_count) {
|
|
init_count = 1;
|
|
ret = arc_clockevent_setup(np);
|
|
} else {
|
|
ret = arc_cs_setup_timer1(np);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);
|