Andy Lutomirski b956575bed x86/mm: Flush more aggressively in lazy TLB mode
Since commit:

  94b1b03b519b ("x86/mm: Rework lazy TLB mode and TLB freshness tracking")

x86's lazy TLB mode has been all the way lazy: when running a kernel thread
(including the idle thread), the kernel keeps using the last user mm's
page tables without attempting to maintain user TLB coherence at all.

From a pure semantic perspective, this is fine -- kernel threads won't
attempt to access user pages, so having stale TLB entries doesn't matter.

Unfortunately, I forgot about a subtlety.  By skipping TLB flushes,
we also allow any paging-structure caches that may exist on the CPU
to become incoherent.  This means that we can have a
paging-structure cache entry that references a freed page table, and
the CPU is within its rights to do a speculative page walk starting
at the freed page table.

I can imagine this causing two different problems:

 - A speculative page walk starting from a bogus page table could read
   IO addresses.  I haven't seen any reports of this causing problems.

 - A speculative page walk that involves a bogus page table can install
   garbage in the TLB.  Such garbage would always be at a user VA, but
   some AMD CPUs have logic that triggers a machine check when it notices
   these bogus entries.  I've seen a couple reports of this.

Boris further explains the failure mode:

> It is actually more of an optimization which assumes that paging-structure
> entries are in WB DRAM:
>
> "TlbCacheDis: cacheable memory disable. Read-write. 0=Enables
> performance optimization that assumes PML4, PDP, PDE, and PTE entries
> are in cacheable WB-DRAM; memory type checks may be bypassed, and
> addresses outside of WB-DRAM may result in undefined behavior or NB
> protocol errors. 1=Disables performance optimization and allows PML4,
> PDP, PDE and PTE entries to be in any memory type. Operating systems
> that maintain page tables in memory types other than WB- DRAM must set
> TlbCacheDis to insure proper operation."
>
> The MCE generated is an NB protocol error to signal that
>
> "Link: A specific coherent-only packet from a CPU was issued to an
> IO link. This may be caused by software which addresses page table
> structures in a memory type other than cacheable WB-DRAM without
> properly configuring MSRC001_0015[TlbCacheDis]. This may occur, for
> example, when page table structure addresses are above top of memory. In
> such cases, the NB will generate an MCE if it sees a mismatch between
> the memory operation generated by the core and the link type."
>
> I'm assuming coherent-only packets don't go out on IO links, thus the
> error.

To fix this, reinstate TLB coherence in lazy mode.  With this patch
applied, we do it in one of two ways:

 - If we have PCID, we simply switch back to init_mm's page tables
   when we enter a kernel thread -- this seems to be quite cheap
   except for the cost of serializing the CPU.

 - If we don't have PCID, then we set a flag and switch to init_mm
   the first time we would otherwise need to flush the TLB.

The /sys/kernel/debug/x86/tlb_use_lazy_mode debug switch can be changed
to override the default mode for benchmarking.

In theory, we could optimize this better by only flushing the TLB in
lazy CPUs when a page table is freed.  Doing that would require
auditing the mm code to make sure that all page table freeing goes
through tlb_remove_page() as well as reworking some data structures
to implement the improved flush logic.

Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Reported-by: Adam Borowski <kilobyte@angband.pl>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Johannes Hirte <johannes.hirte@datenkhaos.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 94b1b03b519b ("x86/mm: Rework lazy TLB mode and TLB freshness tracking")
Link: http://lkml.kernel.org/r/20171009170231.fkpraqokz6e4zeco@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-14 09:21:24 +02:00
2017-09-29 19:33:32 -07:00
2017-09-25 20:41:46 -04:00
2017-09-07 12:53:14 -07:00
2005-09-10 10:06:29 -07:00
2017-09-12 13:21:00 -07:00
2017-09-29 19:33:32 -07:00
2017-10-01 14:54:54 -07:00

Linux kernel
============

This file was moved to Documentation/admin-guide/README.rst

Please notice that there are several guides for kernel developers and users.
These guides can be rendered in a number of formats, like HTML and PDF.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.
See Documentation/00-INDEX for a list of what is contained in each file.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
Linux kernel stable tree
Readme
Languages
C 97.5%
Assembly 1%
Shell 0.6%
Python 0.3%
Makefile 0.3%