linux-stable/fs/gfs2/glops.c
Andreas Gruenbacher 2129b42888 gfs2: Per-revoke accounting in transactions
In the log, revokes are stored as a revoke descriptor (struct
gfs2_log_descriptor), followed by zero or more additional revoke blocks
(struct gfs2_meta_header).  On filesystems with a blocksize of 4k, the
revoke descriptor contains up to 503 revokes, and the metadata blocks
contain up to 509 revokes each.  We've so far been reserving space for
revokes in transactions in block granularity, so a lot more space than
necessary was being allocated and then released again.

This patch switches to assigning revokes to transactions individually
instead.  Initially, space for the revoke descriptor is reserved and
handed out to transactions.  When more revokes than that are reserved,
additional revoke blocks are added.  When the log is flushed, the space
for the additional revoke blocks is released, but we keep the space for
the revoke descriptor block allocated.

Transactions may still reserve more revokes than they will actually need
in the end, but now we won't overshoot the target as much, and by only
returning the space for excess revokes at log flush time, we further
reduce the amount of contention between processes.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
2021-02-22 21:16:23 +01:00

806 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
*/
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/gfs2_ondisk.h>
#include <linux/bio.h>
#include <linux/posix_acl.h>
#include <linux/security.h>
#include "gfs2.h"
#include "incore.h"
#include "bmap.h"
#include "glock.h"
#include "glops.h"
#include "inode.h"
#include "log.h"
#include "meta_io.h"
#include "recovery.h"
#include "rgrp.h"
#include "util.h"
#include "trans.h"
#include "dir.h"
#include "lops.h"
struct workqueue_struct *gfs2_freeze_wq;
extern struct workqueue_struct *gfs2_control_wq;
static void gfs2_ail_error(struct gfs2_glock *gl, const struct buffer_head *bh)
{
fs_err(gl->gl_name.ln_sbd,
"AIL buffer %p: blocknr %llu state 0x%08lx mapping %p page "
"state 0x%lx\n",
bh, (unsigned long long)bh->b_blocknr, bh->b_state,
bh->b_page->mapping, bh->b_page->flags);
fs_err(gl->gl_name.ln_sbd, "AIL glock %u:%llu mapping %p\n",
gl->gl_name.ln_type, gl->gl_name.ln_number,
gfs2_glock2aspace(gl));
gfs2_lm(gl->gl_name.ln_sbd, "AIL error\n");
gfs2_withdraw(gl->gl_name.ln_sbd);
}
/**
* __gfs2_ail_flush - remove all buffers for a given lock from the AIL
* @gl: the glock
* @fsync: set when called from fsync (not all buffers will be clean)
*
* None of the buffers should be dirty, locked, or pinned.
*/
static void __gfs2_ail_flush(struct gfs2_glock *gl, bool fsync,
unsigned int nr_revokes)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct list_head *head = &gl->gl_ail_list;
struct gfs2_bufdata *bd, *tmp;
struct buffer_head *bh;
const unsigned long b_state = (1UL << BH_Dirty)|(1UL << BH_Pinned)|(1UL << BH_Lock);
gfs2_log_lock(sdp);
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry_safe_reverse(bd, tmp, head, bd_ail_gl_list) {
if (nr_revokes == 0)
break;
bh = bd->bd_bh;
if (bh->b_state & b_state) {
if (fsync)
continue;
gfs2_ail_error(gl, bh);
}
gfs2_trans_add_revoke(sdp, bd);
nr_revokes--;
}
GLOCK_BUG_ON(gl, !fsync && atomic_read(&gl->gl_ail_count));
spin_unlock(&sdp->sd_ail_lock);
gfs2_log_unlock(sdp);
}
static int gfs2_ail_empty_gl(struct gfs2_glock *gl)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct gfs2_trans tr;
unsigned int revokes;
int ret;
revokes = atomic_read(&gl->gl_ail_count);
if (!revokes) {
bool have_revokes;
bool log_in_flight;
/*
* We have nothing on the ail, but there could be revokes on
* the sdp revoke queue, in which case, we still want to flush
* the log and wait for it to finish.
*
* If the sdp revoke list is empty too, we might still have an
* io outstanding for writing revokes, so we should wait for
* it before returning.
*
* If none of these conditions are true, our revokes are all
* flushed and we can return.
*/
gfs2_log_lock(sdp);
have_revokes = !list_empty(&sdp->sd_log_revokes);
log_in_flight = atomic_read(&sdp->sd_log_in_flight);
gfs2_log_unlock(sdp);
if (have_revokes)
goto flush;
if (log_in_flight)
log_flush_wait(sdp);
return 0;
}
memset(&tr, 0, sizeof(tr));
set_bit(TR_ONSTACK, &tr.tr_flags);
ret = __gfs2_trans_begin(&tr, sdp, 0, revokes, _RET_IP_);
if (ret)
goto flush;
__gfs2_ail_flush(gl, 0, revokes);
gfs2_trans_end(sdp);
flush:
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_AIL_EMPTY_GL);
return 0;
}
void gfs2_ail_flush(struct gfs2_glock *gl, bool fsync)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
unsigned int revokes = atomic_read(&gl->gl_ail_count);
int ret;
if (!revokes)
return;
ret = gfs2_trans_begin(sdp, 0, revokes);
if (ret)
return;
__gfs2_ail_flush(gl, fsync, revokes);
gfs2_trans_end(sdp);
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_AIL_FLUSH);
}
/**
* gfs2_rgrp_metasync - sync out the metadata of a resource group
* @gl: the glock protecting the resource group
*
*/
static int gfs2_rgrp_metasync(struct gfs2_glock *gl)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct address_space *metamapping = &sdp->sd_aspace;
struct gfs2_rgrpd *rgd = gfs2_glock2rgrp(gl);
const unsigned bsize = sdp->sd_sb.sb_bsize;
loff_t start = (rgd->rd_addr * bsize) & PAGE_MASK;
loff_t end = PAGE_ALIGN((rgd->rd_addr + rgd->rd_length) * bsize) - 1;
int error;
filemap_fdatawrite_range(metamapping, start, end);
error = filemap_fdatawait_range(metamapping, start, end);
WARN_ON_ONCE(error && !gfs2_withdrawn(sdp));
mapping_set_error(metamapping, error);
if (error)
gfs2_io_error(sdp);
return error;
}
/**
* rgrp_go_sync - sync out the metadata for this glock
* @gl: the glock
*
* Called when demoting or unlocking an EX glock. We must flush
* to disk all dirty buffers/pages relating to this glock, and must not
* return to caller to demote/unlock the glock until I/O is complete.
*/
static int rgrp_go_sync(struct gfs2_glock *gl)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct gfs2_rgrpd *rgd = gfs2_glock2rgrp(gl);
int error;
if (!test_and_clear_bit(GLF_DIRTY, &gl->gl_flags))
return 0;
GLOCK_BUG_ON(gl, gl->gl_state != LM_ST_EXCLUSIVE);
gfs2_log_flush(sdp, gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_RGRP_GO_SYNC);
error = gfs2_rgrp_metasync(gl);
if (!error)
error = gfs2_ail_empty_gl(gl);
gfs2_free_clones(rgd);
return error;
}
/**
* rgrp_go_inval - invalidate the metadata for this glock
* @gl: the glock
* @flags:
*
* We never used LM_ST_DEFERRED with resource groups, so that we
* should always see the metadata flag set here.
*
*/
static void rgrp_go_inval(struct gfs2_glock *gl, int flags)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct address_space *mapping = &sdp->sd_aspace;
struct gfs2_rgrpd *rgd = gfs2_glock2rgrp(gl);
const unsigned bsize = sdp->sd_sb.sb_bsize;
loff_t start = (rgd->rd_addr * bsize) & PAGE_MASK;
loff_t end = PAGE_ALIGN((rgd->rd_addr + rgd->rd_length) * bsize) - 1;
gfs2_rgrp_brelse(rgd);
WARN_ON_ONCE(!(flags & DIO_METADATA));
truncate_inode_pages_range(mapping, start, end);
rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
}
static void gfs2_rgrp_go_dump(struct seq_file *seq, struct gfs2_glock *gl,
const char *fs_id_buf)
{
struct gfs2_rgrpd *rgd = gl->gl_object;
if (rgd)
gfs2_rgrp_dump(seq, rgd, fs_id_buf);
}
static struct gfs2_inode *gfs2_glock2inode(struct gfs2_glock *gl)
{
struct gfs2_inode *ip;
spin_lock(&gl->gl_lockref.lock);
ip = gl->gl_object;
if (ip)
set_bit(GIF_GLOP_PENDING, &ip->i_flags);
spin_unlock(&gl->gl_lockref.lock);
return ip;
}
struct gfs2_rgrpd *gfs2_glock2rgrp(struct gfs2_glock *gl)
{
struct gfs2_rgrpd *rgd;
spin_lock(&gl->gl_lockref.lock);
rgd = gl->gl_object;
spin_unlock(&gl->gl_lockref.lock);
return rgd;
}
static void gfs2_clear_glop_pending(struct gfs2_inode *ip)
{
if (!ip)
return;
clear_bit_unlock(GIF_GLOP_PENDING, &ip->i_flags);
wake_up_bit(&ip->i_flags, GIF_GLOP_PENDING);
}
/**
* gfs2_inode_metasync - sync out the metadata of an inode
* @gl: the glock protecting the inode
*
*/
int gfs2_inode_metasync(struct gfs2_glock *gl)
{
struct address_space *metamapping = gfs2_glock2aspace(gl);
int error;
filemap_fdatawrite(metamapping);
error = filemap_fdatawait(metamapping);
if (error)
gfs2_io_error(gl->gl_name.ln_sbd);
return error;
}
/**
* inode_go_sync - Sync the dirty metadata of an inode
* @gl: the glock protecting the inode
*
*/
static int inode_go_sync(struct gfs2_glock *gl)
{
struct gfs2_inode *ip = gfs2_glock2inode(gl);
int isreg = ip && S_ISREG(ip->i_inode.i_mode);
struct address_space *metamapping = gfs2_glock2aspace(gl);
int error = 0, ret;
if (isreg) {
if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
unmap_shared_mapping_range(ip->i_inode.i_mapping, 0, 0);
inode_dio_wait(&ip->i_inode);
}
if (!test_and_clear_bit(GLF_DIRTY, &gl->gl_flags))
goto out;
GLOCK_BUG_ON(gl, gl->gl_state != LM_ST_EXCLUSIVE);
gfs2_log_flush(gl->gl_name.ln_sbd, gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_INODE_GO_SYNC);
filemap_fdatawrite(metamapping);
if (isreg) {
struct address_space *mapping = ip->i_inode.i_mapping;
filemap_fdatawrite(mapping);
error = filemap_fdatawait(mapping);
mapping_set_error(mapping, error);
}
ret = gfs2_inode_metasync(gl);
if (!error)
error = ret;
gfs2_ail_empty_gl(gl);
/*
* Writeback of the data mapping may cause the dirty flag to be set
* so we have to clear it again here.
*/
smp_mb__before_atomic();
clear_bit(GLF_DIRTY, &gl->gl_flags);
out:
gfs2_clear_glop_pending(ip);
return error;
}
/**
* inode_go_inval - prepare a inode glock to be released
* @gl: the glock
* @flags:
*
* Normally we invalidate everything, but if we are moving into
* LM_ST_DEFERRED from LM_ST_SHARED or LM_ST_EXCLUSIVE then we
* can keep hold of the metadata, since it won't have changed.
*
*/
static void inode_go_inval(struct gfs2_glock *gl, int flags)
{
struct gfs2_inode *ip = gfs2_glock2inode(gl);
if (flags & DIO_METADATA) {
struct address_space *mapping = gfs2_glock2aspace(gl);
truncate_inode_pages(mapping, 0);
if (ip) {
set_bit(GIF_INVALID, &ip->i_flags);
forget_all_cached_acls(&ip->i_inode);
security_inode_invalidate_secctx(&ip->i_inode);
gfs2_dir_hash_inval(ip);
}
}
if (ip == GFS2_I(gl->gl_name.ln_sbd->sd_rindex)) {
gfs2_log_flush(gl->gl_name.ln_sbd, NULL,
GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_INODE_GO_INVAL);
gl->gl_name.ln_sbd->sd_rindex_uptodate = 0;
}
if (ip && S_ISREG(ip->i_inode.i_mode))
truncate_inode_pages(ip->i_inode.i_mapping, 0);
gfs2_clear_glop_pending(ip);
}
/**
* inode_go_demote_ok - Check to see if it's ok to unlock an inode glock
* @gl: the glock
*
* Returns: 1 if it's ok
*/
static int inode_go_demote_ok(const struct gfs2_glock *gl)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
if (sdp->sd_jindex == gl->gl_object || sdp->sd_rindex == gl->gl_object)
return 0;
return 1;
}
static int gfs2_dinode_in(struct gfs2_inode *ip, const void *buf)
{
const struct gfs2_dinode *str = buf;
struct timespec64 atime;
u16 height, depth;
if (unlikely(ip->i_no_addr != be64_to_cpu(str->di_num.no_addr)))
goto corrupt;
ip->i_no_formal_ino = be64_to_cpu(str->di_num.no_formal_ino);
ip->i_inode.i_mode = be32_to_cpu(str->di_mode);
ip->i_inode.i_rdev = 0;
switch (ip->i_inode.i_mode & S_IFMT) {
case S_IFBLK:
case S_IFCHR:
ip->i_inode.i_rdev = MKDEV(be32_to_cpu(str->di_major),
be32_to_cpu(str->di_minor));
break;
}
i_uid_write(&ip->i_inode, be32_to_cpu(str->di_uid));
i_gid_write(&ip->i_inode, be32_to_cpu(str->di_gid));
set_nlink(&ip->i_inode, be32_to_cpu(str->di_nlink));
i_size_write(&ip->i_inode, be64_to_cpu(str->di_size));
gfs2_set_inode_blocks(&ip->i_inode, be64_to_cpu(str->di_blocks));
atime.tv_sec = be64_to_cpu(str->di_atime);
atime.tv_nsec = be32_to_cpu(str->di_atime_nsec);
if (timespec64_compare(&ip->i_inode.i_atime, &atime) < 0)
ip->i_inode.i_atime = atime;
ip->i_inode.i_mtime.tv_sec = be64_to_cpu(str->di_mtime);
ip->i_inode.i_mtime.tv_nsec = be32_to_cpu(str->di_mtime_nsec);
ip->i_inode.i_ctime.tv_sec = be64_to_cpu(str->di_ctime);
ip->i_inode.i_ctime.tv_nsec = be32_to_cpu(str->di_ctime_nsec);
ip->i_goal = be64_to_cpu(str->di_goal_meta);
ip->i_generation = be64_to_cpu(str->di_generation);
ip->i_diskflags = be32_to_cpu(str->di_flags);
ip->i_eattr = be64_to_cpu(str->di_eattr);
/* i_diskflags and i_eattr must be set before gfs2_set_inode_flags() */
gfs2_set_inode_flags(&ip->i_inode);
height = be16_to_cpu(str->di_height);
if (unlikely(height > GFS2_MAX_META_HEIGHT))
goto corrupt;
ip->i_height = (u8)height;
depth = be16_to_cpu(str->di_depth);
if (unlikely(depth > GFS2_DIR_MAX_DEPTH))
goto corrupt;
ip->i_depth = (u8)depth;
ip->i_entries = be32_to_cpu(str->di_entries);
if (S_ISREG(ip->i_inode.i_mode))
gfs2_set_aops(&ip->i_inode);
return 0;
corrupt:
gfs2_consist_inode(ip);
return -EIO;
}
/**
* gfs2_inode_refresh - Refresh the incore copy of the dinode
* @ip: The GFS2 inode
*
* Returns: errno
*/
int gfs2_inode_refresh(struct gfs2_inode *ip)
{
struct buffer_head *dibh;
int error;
error = gfs2_meta_inode_buffer(ip, &dibh);
if (error)
return error;
error = gfs2_dinode_in(ip, dibh->b_data);
brelse(dibh);
clear_bit(GIF_INVALID, &ip->i_flags);
return error;
}
/**
* inode_go_lock - operation done after an inode lock is locked by a process
* @gl: the glock
* @flags:
*
* Returns: errno
*/
static int inode_go_lock(struct gfs2_holder *gh)
{
struct gfs2_glock *gl = gh->gh_gl;
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct gfs2_inode *ip = gl->gl_object;
int error = 0;
if (!ip || (gh->gh_flags & GL_SKIP))
return 0;
if (test_bit(GIF_INVALID, &ip->i_flags)) {
error = gfs2_inode_refresh(ip);
if (error)
return error;
}
if (gh->gh_state != LM_ST_DEFERRED)
inode_dio_wait(&ip->i_inode);
if ((ip->i_diskflags & GFS2_DIF_TRUNC_IN_PROG) &&
(gl->gl_state == LM_ST_EXCLUSIVE) &&
(gh->gh_state == LM_ST_EXCLUSIVE)) {
spin_lock(&sdp->sd_trunc_lock);
if (list_empty(&ip->i_trunc_list))
list_add(&ip->i_trunc_list, &sdp->sd_trunc_list);
spin_unlock(&sdp->sd_trunc_lock);
wake_up(&sdp->sd_quota_wait);
return 1;
}
return error;
}
/**
* inode_go_dump - print information about an inode
* @seq: The iterator
* @ip: the inode
* @fs_id_buf: file system id (may be empty)
*
*/
static void inode_go_dump(struct seq_file *seq, struct gfs2_glock *gl,
const char *fs_id_buf)
{
struct gfs2_inode *ip = gl->gl_object;
struct inode *inode = &ip->i_inode;
unsigned long nrpages;
if (ip == NULL)
return;
xa_lock_irq(&inode->i_data.i_pages);
nrpages = inode->i_data.nrpages;
xa_unlock_irq(&inode->i_data.i_pages);
gfs2_print_dbg(seq, "%s I: n:%llu/%llu t:%u f:0x%02lx d:0x%08x s:%llu "
"p:%lu\n", fs_id_buf,
(unsigned long long)ip->i_no_formal_ino,
(unsigned long long)ip->i_no_addr,
IF2DT(ip->i_inode.i_mode), ip->i_flags,
(unsigned int)ip->i_diskflags,
(unsigned long long)i_size_read(inode), nrpages);
}
/**
* freeze_go_sync - promote/demote the freeze glock
* @gl: the glock
* @state: the requested state
* @flags:
*
*/
static int freeze_go_sync(struct gfs2_glock *gl)
{
int error = 0;
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
/*
* We need to check gl_state == LM_ST_SHARED here and not gl_req ==
* LM_ST_EXCLUSIVE. That's because when any node does a freeze,
* all the nodes should have the freeze glock in SH mode and they all
* call do_xmote: One for EX and the others for UN. They ALL must
* freeze locally, and they ALL must queue freeze work. The freeze_work
* calls freeze_func, which tries to reacquire the freeze glock in SH,
* effectively waiting for the thaw on the node who holds it in EX.
* Once thawed, the work func acquires the freeze glock in
* SH and everybody goes back to thawed.
*/
if (gl->gl_state == LM_ST_SHARED && !gfs2_withdrawn(sdp) &&
!test_bit(SDF_NORECOVERY, &sdp->sd_flags)) {
atomic_set(&sdp->sd_freeze_state, SFS_STARTING_FREEZE);
error = freeze_super(sdp->sd_vfs);
if (error) {
fs_info(sdp, "GFS2: couldn't freeze filesystem: %d\n",
error);
if (gfs2_withdrawn(sdp)) {
atomic_set(&sdp->sd_freeze_state, SFS_UNFROZEN);
return 0;
}
gfs2_assert_withdraw(sdp, 0);
}
queue_work(gfs2_freeze_wq, &sdp->sd_freeze_work);
if (test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_FREEZE |
GFS2_LFC_FREEZE_GO_SYNC);
else /* read-only mounts */
atomic_set(&sdp->sd_freeze_state, SFS_FROZEN);
}
return 0;
}
/**
* freeze_go_xmote_bh - After promoting/demoting the freeze glock
* @gl: the glock
*
*/
static int freeze_go_xmote_bh(struct gfs2_glock *gl, struct gfs2_holder *gh)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct gfs2_inode *ip = GFS2_I(sdp->sd_jdesc->jd_inode);
struct gfs2_glock *j_gl = ip->i_gl;
struct gfs2_log_header_host head;
int error;
if (test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) {
j_gl->gl_ops->go_inval(j_gl, DIO_METADATA);
error = gfs2_find_jhead(sdp->sd_jdesc, &head, false);
if (error)
gfs2_consist(sdp);
if (!(head.lh_flags & GFS2_LOG_HEAD_UNMOUNT))
gfs2_consist(sdp);
/* Initialize some head of the log stuff */
if (!gfs2_withdrawn(sdp)) {
sdp->sd_log_sequence = head.lh_sequence + 1;
gfs2_log_pointers_init(sdp, head.lh_blkno);
}
}
return 0;
}
/**
* trans_go_demote_ok
* @gl: the glock
*
* Always returns 0
*/
static int freeze_go_demote_ok(const struct gfs2_glock *gl)
{
return 0;
}
/**
* iopen_go_callback - schedule the dcache entry for the inode to be deleted
* @gl: the glock
*
* gl_lockref.lock lock is held while calling this
*/
static void iopen_go_callback(struct gfs2_glock *gl, bool remote)
{
struct gfs2_inode *ip = gl->gl_object;
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
if (!remote || sb_rdonly(sdp->sd_vfs))
return;
if (gl->gl_demote_state == LM_ST_UNLOCKED &&
gl->gl_state == LM_ST_SHARED && ip) {
gl->gl_lockref.count++;
if (!queue_delayed_work(gfs2_delete_workqueue,
&gl->gl_delete, 0))
gl->gl_lockref.count--;
}
}
static int iopen_go_demote_ok(const struct gfs2_glock *gl)
{
return !gfs2_delete_work_queued(gl);
}
/**
* inode_go_free - wake up anyone waiting for dlm's unlock ast to free it
* @gl: glock being freed
*
* For now, this is only used for the journal inode glock. In withdraw
* situations, we need to wait for the glock to be freed so that we know
* other nodes may proceed with recovery / journal replay.
*/
static void inode_go_free(struct gfs2_glock *gl)
{
/* Note that we cannot reference gl_object because it's already set
* to NULL by this point in its lifecycle. */
if (!test_bit(GLF_FREEING, &gl->gl_flags))
return;
clear_bit_unlock(GLF_FREEING, &gl->gl_flags);
wake_up_bit(&gl->gl_flags, GLF_FREEING);
}
/**
* nondisk_go_callback - used to signal when a node did a withdraw
* @gl: the nondisk glock
* @remote: true if this came from a different cluster node
*
*/
static void nondisk_go_callback(struct gfs2_glock *gl, bool remote)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
/* Ignore the callback unless it's from another node, and it's the
live lock. */
if (!remote || gl->gl_name.ln_number != GFS2_LIVE_LOCK)
return;
/* First order of business is to cancel the demote request. We don't
* really want to demote a nondisk glock. At best it's just to inform
* us of another node's withdraw. We'll keep it in SH mode. */
clear_bit(GLF_DEMOTE, &gl->gl_flags);
clear_bit(GLF_PENDING_DEMOTE, &gl->gl_flags);
/* Ignore the unlock if we're withdrawn, unmounting, or in recovery. */
if (test_bit(SDF_NORECOVERY, &sdp->sd_flags) ||
test_bit(SDF_WITHDRAWN, &sdp->sd_flags) ||
test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags))
return;
/* We only care when a node wants us to unlock, because that means
* they want a journal recovered. */
if (gl->gl_demote_state != LM_ST_UNLOCKED)
return;
if (sdp->sd_args.ar_spectator) {
fs_warn(sdp, "Spectator node cannot recover journals.\n");
return;
}
fs_warn(sdp, "Some node has withdrawn; checking for recovery.\n");
set_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
/*
* We can't call remote_withdraw directly here or gfs2_recover_journal
* because this is called from the glock unlock function and the
* remote_withdraw needs to enqueue and dequeue the same "live" glock
* we were called from. So we queue it to the control work queue in
* lock_dlm.
*/
queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
}
const struct gfs2_glock_operations gfs2_meta_glops = {
.go_type = LM_TYPE_META,
.go_flags = GLOF_NONDISK,
};
const struct gfs2_glock_operations gfs2_inode_glops = {
.go_sync = inode_go_sync,
.go_inval = inode_go_inval,
.go_demote_ok = inode_go_demote_ok,
.go_lock = inode_go_lock,
.go_dump = inode_go_dump,
.go_type = LM_TYPE_INODE,
.go_flags = GLOF_ASPACE | GLOF_LRU | GLOF_LVB,
.go_free = inode_go_free,
};
const struct gfs2_glock_operations gfs2_rgrp_glops = {
.go_sync = rgrp_go_sync,
.go_inval = rgrp_go_inval,
.go_lock = gfs2_rgrp_go_lock,
.go_dump = gfs2_rgrp_go_dump,
.go_type = LM_TYPE_RGRP,
.go_flags = GLOF_LVB,
};
const struct gfs2_glock_operations gfs2_freeze_glops = {
.go_sync = freeze_go_sync,
.go_xmote_bh = freeze_go_xmote_bh,
.go_demote_ok = freeze_go_demote_ok,
.go_type = LM_TYPE_NONDISK,
.go_flags = GLOF_NONDISK,
};
const struct gfs2_glock_operations gfs2_iopen_glops = {
.go_type = LM_TYPE_IOPEN,
.go_callback = iopen_go_callback,
.go_demote_ok = iopen_go_demote_ok,
.go_flags = GLOF_LRU | GLOF_NONDISK,
.go_subclass = 1,
};
const struct gfs2_glock_operations gfs2_flock_glops = {
.go_type = LM_TYPE_FLOCK,
.go_flags = GLOF_LRU | GLOF_NONDISK,
};
const struct gfs2_glock_operations gfs2_nondisk_glops = {
.go_type = LM_TYPE_NONDISK,
.go_flags = GLOF_NONDISK,
.go_callback = nondisk_go_callback,
};
const struct gfs2_glock_operations gfs2_quota_glops = {
.go_type = LM_TYPE_QUOTA,
.go_flags = GLOF_LVB | GLOF_LRU | GLOF_NONDISK,
};
const struct gfs2_glock_operations gfs2_journal_glops = {
.go_type = LM_TYPE_JOURNAL,
.go_flags = GLOF_NONDISK,
};
const struct gfs2_glock_operations *gfs2_glops_list[] = {
[LM_TYPE_META] = &gfs2_meta_glops,
[LM_TYPE_INODE] = &gfs2_inode_glops,
[LM_TYPE_RGRP] = &gfs2_rgrp_glops,
[LM_TYPE_IOPEN] = &gfs2_iopen_glops,
[LM_TYPE_FLOCK] = &gfs2_flock_glops,
[LM_TYPE_NONDISK] = &gfs2_nondisk_glops,
[LM_TYPE_QUOTA] = &gfs2_quota_glops,
[LM_TYPE_JOURNAL] = &gfs2_journal_glops,
};