linux-stable/fs/bcachefs/alloc_background.c
Kent Overstreet bfcf840ddf bcachefs: Mark superblocks transactionally
More work towards getting rid of the in memory struct bucket: this path
adds code for marking superblock and journal buckets via the btree, and
uses it in the device add and journal resize paths.

Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:52 -04:00

1463 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "btree_cache.h"
#include "btree_io.h"
#include "btree_key_cache.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_gc.h"
#include "buckets.h"
#include "clock.h"
#include "debug.h"
#include "ec.h"
#include "error.h"
#include "recovery.h"
#include "trace.h"
#include <linux/kthread.h>
#include <linux/math64.h>
#include <linux/random.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <linux/sched/task.h>
#include <linux/sort.h>
static const char * const bch2_alloc_field_names[] = {
#define x(name, bytes) #name,
BCH_ALLOC_FIELDS()
#undef x
NULL
};
static void bch2_recalc_oldest_io(struct bch_fs *, struct bch_dev *, int);
/* Ratelimiting/PD controllers */
static void pd_controllers_update(struct work_struct *work)
{
struct bch_fs *c = container_of(to_delayed_work(work),
struct bch_fs,
pd_controllers_update);
struct bch_dev *ca;
s64 free = 0, fragmented = 0;
unsigned i;
for_each_member_device(ca, c, i) {
struct bch_dev_usage stats = bch2_dev_usage_read(ca);
free += bucket_to_sector(ca,
__dev_buckets_free(ca, stats)) << 9;
/*
* Bytes of internal fragmentation, which can be
* reclaimed by copy GC
*/
fragmented += max_t(s64, 0, (bucket_to_sector(ca,
stats.d[BCH_DATA_user].buckets +
stats.d[BCH_DATA_cached].buckets) -
(stats.d[BCH_DATA_user].sectors +
stats.d[BCH_DATA_cached].sectors)) << 9);
}
bch2_pd_controller_update(&c->copygc_pd, free, fragmented, -1);
schedule_delayed_work(&c->pd_controllers_update,
c->pd_controllers_update_seconds * HZ);
}
/* Persistent alloc info: */
static inline u64 get_alloc_field(const struct bch_alloc *a,
const void **p, unsigned field)
{
unsigned bytes = BCH_ALLOC_FIELD_BYTES[field];
u64 v;
if (!(a->fields & (1 << field)))
return 0;
switch (bytes) {
case 1:
v = *((const u8 *) *p);
break;
case 2:
v = le16_to_cpup(*p);
break;
case 4:
v = le32_to_cpup(*p);
break;
case 8:
v = le64_to_cpup(*p);
break;
default:
BUG();
}
*p += bytes;
return v;
}
static inline void put_alloc_field(struct bkey_i_alloc *a, void **p,
unsigned field, u64 v)
{
unsigned bytes = BCH_ALLOC_FIELD_BYTES[field];
if (!v)
return;
a->v.fields |= 1 << field;
switch (bytes) {
case 1:
*((u8 *) *p) = v;
break;
case 2:
*((__le16 *) *p) = cpu_to_le16(v);
break;
case 4:
*((__le32 *) *p) = cpu_to_le32(v);
break;
case 8:
*((__le64 *) *p) = cpu_to_le64(v);
break;
default:
BUG();
}
*p += bytes;
}
struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k)
{
struct bkey_alloc_unpacked ret = { .gen = 0 };
if (k.k->type == KEY_TYPE_alloc) {
const struct bch_alloc *a = bkey_s_c_to_alloc(k).v;
const void *d = a->data;
unsigned idx = 0;
ret.gen = a->gen;
#define x(_name, _bits) ret._name = get_alloc_field(a, &d, idx++);
BCH_ALLOC_FIELDS()
#undef x
}
return ret;
}
void bch2_alloc_pack(struct bkey_i_alloc *dst,
const struct bkey_alloc_unpacked src)
{
unsigned idx = 0;
void *d = dst->v.data;
unsigned bytes;
dst->v.fields = 0;
dst->v.gen = src.gen;
#define x(_name, _bits) put_alloc_field(dst, &d, idx++, src._name);
BCH_ALLOC_FIELDS()
#undef x
bytes = (void *) d - (void *) &dst->v;
set_bkey_val_bytes(&dst->k, bytes);
memset_u64s_tail(&dst->v, 0, bytes);
}
static unsigned bch_alloc_val_u64s(const struct bch_alloc *a)
{
unsigned i, bytes = offsetof(struct bch_alloc, data);
for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_FIELD_BYTES); i++)
if (a->fields & (1 << i))
bytes += BCH_ALLOC_FIELD_BYTES[i];
return DIV_ROUND_UP(bytes, sizeof(u64));
}
const char *bch2_alloc_invalid(const struct bch_fs *c, struct bkey_s_c k)
{
struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
if (k.k->p.inode >= c->sb.nr_devices ||
!c->devs[k.k->p.inode])
return "invalid device";
/* allow for unknown fields */
if (bkey_val_u64s(a.k) < bch_alloc_val_u64s(a.v))
return "incorrect value size";
return NULL;
}
void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c,
struct bkey_s_c k)
{
struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
const void *d = a.v->data;
unsigned i;
pr_buf(out, "gen %u", a.v->gen);
for (i = 0; i < BCH_ALLOC_FIELD_NR; i++)
if (a.v->fields & (1 << i))
pr_buf(out, " %s %llu",
bch2_alloc_field_names[i],
get_alloc_field(a.v, &d, i));
}
static int bch2_alloc_read_fn(struct bch_fs *c, enum btree_id id,
unsigned level, struct bkey_s_c k)
{
struct bch_dev *ca;
struct bucket *g;
struct bkey_alloc_unpacked u;
if (level || k.k->type != KEY_TYPE_alloc)
return 0;
ca = bch_dev_bkey_exists(c, k.k->p.inode);
g = bucket(ca, k.k->p.offset);
u = bch2_alloc_unpack(k);
g->_mark.gen = u.gen;
g->_mark.data_type = u.data_type;
g->_mark.dirty_sectors = u.dirty_sectors;
g->_mark.cached_sectors = u.cached_sectors;
g->io_time[READ] = u.read_time;
g->io_time[WRITE] = u.write_time;
g->oldest_gen = u.oldest_gen;
g->gen_valid = 1;
return 0;
}
int bch2_alloc_read(struct bch_fs *c, struct journal_keys *journal_keys)
{
struct bch_dev *ca;
unsigned i;
int ret = 0;
down_read(&c->gc_lock);
ret = bch2_btree_and_journal_walk(c, journal_keys, BTREE_ID_ALLOC,
NULL, bch2_alloc_read_fn);
up_read(&c->gc_lock);
if (ret) {
bch_err(c, "error reading alloc info: %i", ret);
return ret;
}
percpu_down_write(&c->mark_lock);
bch2_dev_usage_from_buckets(c);
percpu_up_write(&c->mark_lock);
mutex_lock(&c->bucket_clock[READ].lock);
for_each_member_device(ca, c, i) {
down_read(&ca->bucket_lock);
bch2_recalc_oldest_io(c, ca, READ);
up_read(&ca->bucket_lock);
}
mutex_unlock(&c->bucket_clock[READ].lock);
mutex_lock(&c->bucket_clock[WRITE].lock);
for_each_member_device(ca, c, i) {
down_read(&ca->bucket_lock);
bch2_recalc_oldest_io(c, ca, WRITE);
up_read(&ca->bucket_lock);
}
mutex_unlock(&c->bucket_clock[WRITE].lock);
return 0;
}
static int bch2_alloc_write_key(struct btree_trans *trans,
struct btree_iter *iter,
unsigned flags)
{
struct bch_fs *c = trans->c;
struct bkey_s_c k;
struct bch_dev *ca;
struct bucket *g;
struct bucket_mark m;
struct bkey_alloc_unpacked old_u, new_u;
__BKEY_PADDED(k, 8) alloc_key; /* hack: */
struct bkey_i_alloc *a;
int ret;
retry:
bch2_trans_begin(trans);
ret = bch2_btree_key_cache_flush(trans,
BTREE_ID_ALLOC, iter->pos);
if (ret)
goto err;
k = bch2_btree_iter_peek_slot(iter);
ret = bkey_err(k);
if (ret)
goto err;
old_u = bch2_alloc_unpack(k);
percpu_down_read(&c->mark_lock);
ca = bch_dev_bkey_exists(c, iter->pos.inode);
g = bucket(ca, iter->pos.offset);
m = READ_ONCE(g->mark);
new_u = alloc_mem_to_key(g, m);
percpu_up_read(&c->mark_lock);
if (!bkey_alloc_unpacked_cmp(old_u, new_u))
return 0;
a = bkey_alloc_init(&alloc_key.k);
a->k.p = iter->pos;
bch2_alloc_pack(a, new_u);
bch2_trans_update(trans, iter, &a->k_i,
BTREE_TRIGGER_NORUN);
ret = bch2_trans_commit(trans, NULL, NULL,
BTREE_INSERT_NOFAIL|flags);
err:
if (ret == -EINTR)
goto retry;
return ret;
}
int bch2_alloc_write(struct bch_fs *c, unsigned flags)
{
struct btree_trans trans;
struct btree_iter *iter;
struct bch_dev *ca;
unsigned i;
int ret = 0;
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0);
iter = bch2_trans_get_iter(&trans, BTREE_ID_ALLOC, POS_MIN,
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
for_each_member_device(ca, c, i) {
bch2_btree_iter_set_pos(iter,
POS(ca->dev_idx, ca->mi.first_bucket));
while (iter->pos.offset < ca->mi.nbuckets) {
bch2_trans_cond_resched(&trans);
ret = bch2_alloc_write_key(&trans, iter, flags);
if (ret) {
percpu_ref_put(&ca->io_ref);
goto err;
}
bch2_btree_iter_next_slot(iter);
}
}
err:
bch2_trans_exit(&trans);
return ret;
}
/* Bucket IO clocks: */
static void bch2_recalc_oldest_io(struct bch_fs *c, struct bch_dev *ca, int rw)
{
struct bucket_clock *clock = &c->bucket_clock[rw];
struct bucket_array *buckets = bucket_array(ca);
struct bucket *g;
u16 max_last_io = 0;
unsigned i;
lockdep_assert_held(&c->bucket_clock[rw].lock);
/* Recalculate max_last_io for this device: */
for_each_bucket(g, buckets)
max_last_io = max(max_last_io, bucket_last_io(c, g, rw));
ca->max_last_bucket_io[rw] = max_last_io;
/* Recalculate global max_last_io: */
max_last_io = 0;
for_each_member_device(ca, c, i)
max_last_io = max(max_last_io, ca->max_last_bucket_io[rw]);
clock->max_last_io = max_last_io;
}
static void bch2_rescale_bucket_io_times(struct bch_fs *c, int rw)
{
struct bucket_clock *clock = &c->bucket_clock[rw];
struct bucket_array *buckets;
struct bch_dev *ca;
struct bucket *g;
unsigned i;
trace_rescale_prios(c);
for_each_member_device(ca, c, i) {
down_read(&ca->bucket_lock);
buckets = bucket_array(ca);
for_each_bucket(g, buckets)
g->io_time[rw] = clock->hand -
bucket_last_io(c, g, rw) / 2;
bch2_recalc_oldest_io(c, ca, rw);
up_read(&ca->bucket_lock);
}
}
static inline u64 bucket_clock_freq(u64 capacity)
{
return max(capacity >> 10, 2028ULL);
}
static void bch2_inc_clock_hand(struct io_timer *timer)
{
struct bucket_clock *clock = container_of(timer,
struct bucket_clock, rescale);
struct bch_fs *c = container_of(clock,
struct bch_fs, bucket_clock[clock->rw]);
struct bch_dev *ca;
u64 capacity;
unsigned i;
mutex_lock(&clock->lock);
/* if clock cannot be advanced more, rescale prio */
if (clock->max_last_io >= U16_MAX - 2)
bch2_rescale_bucket_io_times(c, clock->rw);
BUG_ON(clock->max_last_io >= U16_MAX - 2);
for_each_member_device(ca, c, i)
ca->max_last_bucket_io[clock->rw]++;
clock->max_last_io++;
clock->hand++;
mutex_unlock(&clock->lock);
capacity = READ_ONCE(c->capacity);
if (!capacity)
return;
/*
* we only increment when 0.1% of the filesystem capacity has been read
* or written too, this determines if it's time
*
* XXX: we shouldn't really be going off of the capacity of devices in
* RW mode (that will be 0 when we're RO, yet we can still service
* reads)
*/
timer->expire += bucket_clock_freq(capacity);
bch2_io_timer_add(&c->io_clock[clock->rw], timer);
}
static void bch2_bucket_clock_init(struct bch_fs *c, int rw)
{
struct bucket_clock *clock = &c->bucket_clock[rw];
clock->hand = 1;
clock->rw = rw;
clock->rescale.fn = bch2_inc_clock_hand;
clock->rescale.expire = bucket_clock_freq(c->capacity);
mutex_init(&clock->lock);
}
int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev,
size_t bucket_nr, int rw)
{
struct bch_fs *c = trans->c;
struct bch_dev *ca = bch_dev_bkey_exists(c, dev);
struct btree_iter *iter;
struct bucket *g;
struct bkey_i_alloc *a;
struct bkey_alloc_unpacked u;
u16 *time;
int ret = 0;
iter = bch2_trans_get_iter(trans, BTREE_ID_ALLOC, POS(dev, bucket_nr),
BTREE_ITER_CACHED|
BTREE_ITER_CACHED_NOFILL|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(iter);
if (ret)
goto out;
a = bch2_trans_kmalloc(trans, BKEY_ALLOC_U64s_MAX * 8);
ret = PTR_ERR_OR_ZERO(a);
if (ret)
goto out;
percpu_down_read(&c->mark_lock);
g = bucket(ca, bucket_nr);
u = alloc_mem_to_key(g, READ_ONCE(g->mark));
percpu_up_read(&c->mark_lock);
bkey_alloc_init(&a->k_i);
a->k.p = iter->pos;
time = rw == READ ? &u.read_time : &u.write_time;
if (*time == c->bucket_clock[rw].hand)
goto out;
*time = c->bucket_clock[rw].hand;
bch2_alloc_pack(a, u);
ret = bch2_trans_update(trans, iter, &a->k_i, 0) ?:
bch2_trans_commit(trans, NULL, NULL, 0);
out:
bch2_trans_iter_put(trans, iter);
return ret;
}
/* Background allocator thread: */
/*
* Scans for buckets to be invalidated, invalidates them, rewrites prios/gens
* (marking them as invalidated on disk), then optionally issues discard
* commands to the newly free buckets, then puts them on the various freelists.
*/
/**
* wait_buckets_available - wait on reclaimable buckets
*
* If there aren't enough available buckets to fill up free_inc, wait until
* there are.
*/
static int wait_buckets_available(struct bch_fs *c, struct bch_dev *ca)
{
unsigned long gc_count = c->gc_count;
s64 available;
unsigned i;
int ret = 0;
ca->allocator_state = ALLOCATOR_BLOCKED;
closure_wake_up(&c->freelist_wait);
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop()) {
ret = 1;
break;
}
if (gc_count != c->gc_count)
ca->inc_gen_really_needs_gc = 0;
available = dev_buckets_available(ca);
available -= ca->inc_gen_really_needs_gc;
spin_lock(&c->freelist_lock);
for (i = 0; i < RESERVE_NR; i++)
available -= fifo_used(&ca->free[i]);
spin_unlock(&c->freelist_lock);
available = max(available, 0LL);
if (available > fifo_free(&ca->free_inc) ||
(available &&
!fifo_full(&ca->free[RESERVE_MOVINGGC])))
break;
up_read(&c->gc_lock);
schedule();
try_to_freeze();
down_read(&c->gc_lock);
}
__set_current_state(TASK_RUNNING);
ca->allocator_state = ALLOCATOR_RUNNING;
closure_wake_up(&c->freelist_wait);
return ret;
}
static bool bch2_can_invalidate_bucket(struct bch_dev *ca,
size_t bucket,
struct bucket_mark mark)
{
u8 gc_gen;
if (!is_available_bucket(mark))
return false;
if (mark.owned_by_allocator)
return false;
if (ca->buckets_nouse &&
test_bit(bucket, ca->buckets_nouse))
return false;
gc_gen = bucket_gc_gen(ca, bucket);
if (gc_gen >= BUCKET_GC_GEN_MAX / 2)
ca->inc_gen_needs_gc++;
if (gc_gen >= BUCKET_GC_GEN_MAX)
ca->inc_gen_really_needs_gc++;
return gc_gen < BUCKET_GC_GEN_MAX;
}
/*
* Determines what order we're going to reuse buckets, smallest bucket_key()
* first.
*
*
* - We take into account the read prio of the bucket, which gives us an
* indication of how hot the data is -- we scale the prio so that the prio
* farthest from the clock is worth 1/8th of the closest.
*
* - The number of sectors of cached data in the bucket, which gives us an
* indication of the cost in cache misses this eviction will cause.
*
* - If hotness * sectors used compares equal, we pick the bucket with the
* smallest bucket_gc_gen() - since incrementing the same bucket's generation
* number repeatedly forces us to run mark and sweep gc to avoid generation
* number wraparound.
*/
static unsigned long bucket_sort_key(struct bch_fs *c, struct bch_dev *ca,
size_t b, struct bucket_mark m)
{
unsigned last_io = bucket_last_io(c, bucket(ca, b), READ);
unsigned max_last_io = ca->max_last_bucket_io[READ];
/*
* Time since last read, scaled to [0, 8) where larger value indicates
* more recently read data:
*/
unsigned long hotness = (max_last_io - last_io) * 7 / max_last_io;
/* How much we want to keep the data in this bucket: */
unsigned long data_wantness =
(hotness + 1) * bucket_sectors_used(m);
unsigned long needs_journal_commit =
bucket_needs_journal_commit(m, c->journal.last_seq_ondisk);
return (data_wantness << 9) |
(needs_journal_commit << 8) |
(bucket_gc_gen(ca, b) / 16);
}
static inline int bucket_alloc_cmp(alloc_heap *h,
struct alloc_heap_entry l,
struct alloc_heap_entry r)
{
return cmp_int(l.key, r.key) ?:
cmp_int(r.nr, l.nr) ?:
cmp_int(l.bucket, r.bucket);
}
static inline int bucket_idx_cmp(const void *_l, const void *_r)
{
const struct alloc_heap_entry *l = _l, *r = _r;
return cmp_int(l->bucket, r->bucket);
}
static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca)
{
struct bucket_array *buckets;
struct alloc_heap_entry e = { 0 };
size_t b, i, nr = 0;
ca->alloc_heap.used = 0;
mutex_lock(&c->bucket_clock[READ].lock);
down_read(&ca->bucket_lock);
buckets = bucket_array(ca);
bch2_recalc_oldest_io(c, ca, READ);
/*
* Find buckets with lowest read priority, by building a maxheap sorted
* by read priority and repeatedly replacing the maximum element until
* all buckets have been visited.
*/
for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) {
struct bucket_mark m = READ_ONCE(buckets->b[b].mark);
unsigned long key = bucket_sort_key(c, ca, b, m);
if (!bch2_can_invalidate_bucket(ca, b, m))
continue;
if (e.nr && e.bucket + e.nr == b && e.key == key) {
e.nr++;
} else {
if (e.nr)
heap_add_or_replace(&ca->alloc_heap, e,
-bucket_alloc_cmp, NULL);
e = (struct alloc_heap_entry) {
.bucket = b,
.nr = 1,
.key = key,
};
}
cond_resched();
}
if (e.nr)
heap_add_or_replace(&ca->alloc_heap, e,
-bucket_alloc_cmp, NULL);
for (i = 0; i < ca->alloc_heap.used; i++)
nr += ca->alloc_heap.data[i].nr;
while (nr - ca->alloc_heap.data[0].nr >= ALLOC_SCAN_BATCH(ca)) {
nr -= ca->alloc_heap.data[0].nr;
heap_pop(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL);
}
up_read(&ca->bucket_lock);
mutex_unlock(&c->bucket_clock[READ].lock);
}
static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca)
{
struct bucket_array *buckets = bucket_array(ca);
struct bucket_mark m;
size_t b, start;
if (ca->fifo_last_bucket < ca->mi.first_bucket ||
ca->fifo_last_bucket >= ca->mi.nbuckets)
ca->fifo_last_bucket = ca->mi.first_bucket;
start = ca->fifo_last_bucket;
do {
ca->fifo_last_bucket++;
if (ca->fifo_last_bucket == ca->mi.nbuckets)
ca->fifo_last_bucket = ca->mi.first_bucket;
b = ca->fifo_last_bucket;
m = READ_ONCE(buckets->b[b].mark);
if (bch2_can_invalidate_bucket(ca, b, m)) {
struct alloc_heap_entry e = { .bucket = b, .nr = 1, };
heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
if (heap_full(&ca->alloc_heap))
break;
}
cond_resched();
} while (ca->fifo_last_bucket != start);
}
static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca)
{
struct bucket_array *buckets = bucket_array(ca);
struct bucket_mark m;
size_t checked, i;
for (checked = 0;
checked < ca->mi.nbuckets / 2;
checked++) {
size_t b = bch2_rand_range(ca->mi.nbuckets -
ca->mi.first_bucket) +
ca->mi.first_bucket;
m = READ_ONCE(buckets->b[b].mark);
if (bch2_can_invalidate_bucket(ca, b, m)) {
struct alloc_heap_entry e = { .bucket = b, .nr = 1, };
heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
if (heap_full(&ca->alloc_heap))
break;
}
cond_resched();
}
sort(ca->alloc_heap.data,
ca->alloc_heap.used,
sizeof(ca->alloc_heap.data[0]),
bucket_idx_cmp, NULL);
/* remove duplicates: */
for (i = 0; i + 1 < ca->alloc_heap.used; i++)
if (ca->alloc_heap.data[i].bucket ==
ca->alloc_heap.data[i + 1].bucket)
ca->alloc_heap.data[i].nr = 0;
}
static size_t find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca)
{
size_t i, nr = 0;
ca->inc_gen_needs_gc = 0;
switch (ca->mi.replacement) {
case CACHE_REPLACEMENT_LRU:
find_reclaimable_buckets_lru(c, ca);
break;
case CACHE_REPLACEMENT_FIFO:
find_reclaimable_buckets_fifo(c, ca);
break;
case CACHE_REPLACEMENT_RANDOM:
find_reclaimable_buckets_random(c, ca);
break;
}
heap_resort(&ca->alloc_heap, bucket_alloc_cmp, NULL);
for (i = 0; i < ca->alloc_heap.used; i++)
nr += ca->alloc_heap.data[i].nr;
return nr;
}
static inline long next_alloc_bucket(struct bch_dev *ca)
{
struct alloc_heap_entry e, *top = ca->alloc_heap.data;
while (ca->alloc_heap.used) {
if (top->nr) {
size_t b = top->bucket;
top->bucket++;
top->nr--;
return b;
}
heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
}
return -1;
}
/*
* returns sequence number of most recent journal entry that updated this
* bucket:
*/
static u64 bucket_journal_seq(struct bch_fs *c, struct bucket_mark m)
{
if (m.journal_seq_valid) {
u64 journal_seq = atomic64_read(&c->journal.seq);
u64 bucket_seq = journal_seq;
bucket_seq &= ~((u64) U16_MAX);
bucket_seq |= m.journal_seq;
if (bucket_seq > journal_seq)
bucket_seq -= 1 << 16;
return bucket_seq;
} else {
return 0;
}
}
static int bch2_invalidate_one_bucket2(struct btree_trans *trans,
struct bch_dev *ca,
struct btree_iter *iter,
u64 *journal_seq, unsigned flags)
{
#if 0
__BKEY_PADDED(k, BKEY_ALLOC_VAL_U64s_MAX) alloc_key;
#else
/* hack: */
__BKEY_PADDED(k, 8) alloc_key;
#endif
struct bch_fs *c = trans->c;
struct bkey_i_alloc *a;
struct bkey_alloc_unpacked u;
struct bucket *g;
struct bucket_mark m;
bool invalidating_cached_data;
size_t b;
int ret = 0;
BUG_ON(!ca->alloc_heap.used ||
!ca->alloc_heap.data[0].nr);
b = ca->alloc_heap.data[0].bucket;
/* first, put on free_inc and mark as owned by allocator: */
percpu_down_read(&c->mark_lock);
g = bucket(ca, b);
m = READ_ONCE(g->mark);
BUG_ON(m.data_type || m.dirty_sectors);
bch2_mark_alloc_bucket(c, ca, b, true, gc_pos_alloc(c, NULL), 0);
spin_lock(&c->freelist_lock);
verify_not_on_freelist(c, ca, b);
BUG_ON(!fifo_push(&ca->free_inc, b));
spin_unlock(&c->freelist_lock);
/*
* If we're not invalidating cached data, we only increment the bucket
* gen in memory here, the incremented gen will be updated in the btree
* by bch2_trans_mark_pointer():
*/
if (!m.cached_sectors &&
!bucket_needs_journal_commit(m, c->journal.last_seq_ondisk)) {
bucket_cmpxchg(g, m, m.gen++);
percpu_up_read(&c->mark_lock);
goto out;
}
percpu_up_read(&c->mark_lock);
/*
* If the read-only path is trying to shut down, we can't be generating
* new btree updates:
*/
if (test_bit(BCH_FS_ALLOCATOR_STOPPING, &c->flags)) {
ret = 1;
goto out;
}
BUG_ON(BKEY_ALLOC_VAL_U64s_MAX > 8);
bch2_btree_iter_set_pos(iter, POS(ca->dev_idx, b));
retry:
ret = bch2_btree_iter_traverse(iter);
if (ret)
return ret;
percpu_down_read(&c->mark_lock);
g = bucket(ca, iter->pos.offset);
m = READ_ONCE(g->mark);
u = alloc_mem_to_key(g, m);
percpu_up_read(&c->mark_lock);
invalidating_cached_data = u.cached_sectors != 0;
u.gen++;
u.data_type = 0;
u.dirty_sectors = 0;
u.cached_sectors = 0;
u.read_time = c->bucket_clock[READ].hand;
u.write_time = c->bucket_clock[WRITE].hand;
a = bkey_alloc_init(&alloc_key.k);
a->k.p = iter->pos;
bch2_alloc_pack(a, u);
bch2_trans_update(trans, iter, &a->k_i,
BTREE_TRIGGER_BUCKET_INVALIDATE);
/*
* XXX:
* when using deferred btree updates, we have journal reclaim doing
* btree updates and thus requiring the allocator to make forward
* progress, and here the allocator is requiring space in the journal -
* so we need a journal pre-reservation:
*/
ret = bch2_trans_commit(trans, NULL,
invalidating_cached_data ? journal_seq : NULL,
BTREE_INSERT_NOUNLOCK|
BTREE_INSERT_NOCHECK_RW|
BTREE_INSERT_NOFAIL|
BTREE_INSERT_JOURNAL_RESERVED|
flags);
if (ret == -EINTR)
goto retry;
out:
if (!ret) {
/* remove from alloc_heap: */
struct alloc_heap_entry e, *top = ca->alloc_heap.data;
top->bucket++;
top->nr--;
if (!top->nr)
heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
/*
* Make sure we flush the last journal entry that updated this
* bucket (i.e. deleting the last reference) before writing to
* this bucket again:
*/
*journal_seq = max(*journal_seq, bucket_journal_seq(c, m));
} else {
size_t b2;
/* remove from free_inc: */
percpu_down_read(&c->mark_lock);
spin_lock(&c->freelist_lock);
bch2_mark_alloc_bucket(c, ca, b, false,
gc_pos_alloc(c, NULL), 0);
BUG_ON(!fifo_pop_back(&ca->free_inc, b2));
BUG_ON(b != b2);
spin_unlock(&c->freelist_lock);
percpu_up_read(&c->mark_lock);
}
return ret < 0 ? ret : 0;
}
/*
* Pull buckets off ca->alloc_heap, invalidate them, move them to ca->free_inc:
*/
static int bch2_invalidate_buckets(struct bch_fs *c, struct bch_dev *ca)
{
struct btree_trans trans;
struct btree_iter *iter;
u64 journal_seq = 0;
int ret = 0;
bch2_trans_init(&trans, c, 0, 0);
iter = bch2_trans_get_iter(&trans, BTREE_ID_ALLOC,
POS(ca->dev_idx, 0),
BTREE_ITER_CACHED|
BTREE_ITER_CACHED_NOFILL|
BTREE_ITER_INTENT);
/* Only use nowait if we've already invalidated at least one bucket: */
while (!ret &&
!fifo_full(&ca->free_inc) &&
ca->alloc_heap.used)
ret = bch2_invalidate_one_bucket2(&trans, ca, iter, &journal_seq,
BTREE_INSERT_GC_LOCK_HELD|
(!fifo_empty(&ca->free_inc)
? BTREE_INSERT_NOWAIT : 0));
bch2_trans_exit(&trans);
/* If we used NOWAIT, don't return the error: */
if (!fifo_empty(&ca->free_inc))
ret = 0;
if (ret) {
bch_err(ca, "error invalidating buckets: %i", ret);
return ret;
}
if (journal_seq)
ret = bch2_journal_flush_seq(&c->journal, journal_seq);
if (ret) {
bch_err(ca, "journal error: %i", ret);
return ret;
}
return 0;
}
static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket)
{
unsigned i;
int ret = 0;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock(&c->freelist_lock);
for (i = 0; i < RESERVE_NR; i++) {
/*
* Don't strand buckets on the copygc freelist until
* after recovery is finished:
*/
if (!test_bit(BCH_FS_STARTED, &c->flags) &&
i == RESERVE_MOVINGGC)
continue;
if (fifo_push(&ca->free[i], bucket)) {
fifo_pop(&ca->free_inc, bucket);
closure_wake_up(&c->freelist_wait);
ca->allocator_state = ALLOCATOR_RUNNING;
spin_unlock(&c->freelist_lock);
goto out;
}
}
if (ca->allocator_state != ALLOCATOR_BLOCKED_FULL) {
ca->allocator_state = ALLOCATOR_BLOCKED_FULL;
closure_wake_up(&c->freelist_wait);
}
spin_unlock(&c->freelist_lock);
if ((current->flags & PF_KTHREAD) &&
kthread_should_stop()) {
ret = 1;
break;
}
schedule();
try_to_freeze();
}
out:
__set_current_state(TASK_RUNNING);
return ret;
}
/*
* Pulls buckets off free_inc, discards them (if enabled), then adds them to
* freelists, waiting until there's room if necessary:
*/
static int discard_invalidated_buckets(struct bch_fs *c, struct bch_dev *ca)
{
while (!fifo_empty(&ca->free_inc)) {
size_t bucket = fifo_peek(&ca->free_inc);
if (ca->mi.discard &&
bdev_max_discard_sectors(ca->disk_sb.bdev))
blkdev_issue_discard(ca->disk_sb.bdev,
bucket_to_sector(ca, bucket),
ca->mi.bucket_size, GFP_NOIO);
if (push_invalidated_bucket(c, ca, bucket))
return 1;
}
return 0;
}
/**
* bch_allocator_thread - move buckets from free_inc to reserves
*
* The free_inc FIFO is populated by find_reclaimable_buckets(), and
* the reserves are depleted by bucket allocation. When we run out
* of free_inc, try to invalidate some buckets and write out
* prios and gens.
*/
static int bch2_allocator_thread(void *arg)
{
struct bch_dev *ca = arg;
struct bch_fs *c = ca->fs;
size_t nr;
int ret;
set_freezable();
ca->allocator_state = ALLOCATOR_RUNNING;
while (1) {
cond_resched();
if (kthread_should_stop())
break;
pr_debug("discarding %zu invalidated buckets",
fifo_used(&ca->free_inc));
ret = discard_invalidated_buckets(c, ca);
if (ret)
goto stop;
down_read(&c->gc_lock);
ret = bch2_invalidate_buckets(c, ca);
if (ret) {
up_read(&c->gc_lock);
goto stop;
}
if (!fifo_empty(&ca->free_inc)) {
up_read(&c->gc_lock);
continue;
}
pr_debug("free_inc now empty");
do {
/*
* Find some buckets that we can invalidate, either
* they're completely unused, or only contain clean data
* that's been written back to the backing device or
* another cache tier
*/
pr_debug("scanning for reclaimable buckets");
nr = find_reclaimable_buckets(c, ca);
pr_debug("found %zu buckets", nr);
trace_alloc_batch(ca, nr, ca->alloc_heap.size);
if ((ca->inc_gen_needs_gc >= ALLOC_SCAN_BATCH(ca) ||
ca->inc_gen_really_needs_gc) &&
c->gc_thread) {
atomic_inc(&c->kick_gc);
wake_up_process(c->gc_thread);
}
/*
* If we found any buckets, we have to invalidate them
* before we scan for more - but if we didn't find very
* many we may want to wait on more buckets being
* available so we don't spin:
*/
if (!nr ||
(nr < ALLOC_SCAN_BATCH(ca) &&
!fifo_empty(&ca->free[RESERVE_NONE]))) {
ret = wait_buckets_available(c, ca);
if (ret) {
up_read(&c->gc_lock);
goto stop;
}
}
} while (!nr);
up_read(&c->gc_lock);
pr_debug("%zu buckets to invalidate", nr);
/*
* alloc_heap is now full of newly-invalidated buckets: next,
* write out the new bucket gens:
*/
}
stop:
pr_debug("alloc thread stopping (ret %i)", ret);
ca->allocator_state = ALLOCATOR_STOPPED;
closure_wake_up(&c->freelist_wait);
return 0;
}
/* Startup/shutdown (ro/rw): */
void bch2_recalc_capacity(struct bch_fs *c)
{
struct bch_dev *ca;
u64 capacity = 0, reserved_sectors = 0, gc_reserve, copygc_threshold = 0;
unsigned bucket_size_max = 0;
unsigned long ra_pages = 0;
unsigned i, j;
lockdep_assert_held(&c->state_lock);
for_each_online_member(ca, c, i) {
struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi;
ra_pages += bdi->ra_pages;
}
bch2_set_ra_pages(c, ra_pages);
for_each_rw_member(ca, c, i) {
u64 dev_reserve = 0;
/*
* We need to reserve buckets (from the number
* of currently available buckets) against
* foreground writes so that mainly copygc can
* make forward progress.
*
* We need enough to refill the various reserves
* from scratch - copygc will use its entire
* reserve all at once, then run against when
* its reserve is refilled (from the formerly
* available buckets).
*
* This reserve is just used when considering if
* allocations for foreground writes must wait -
* not -ENOSPC calculations.
*/
for (j = 0; j < RESERVE_NONE; j++)
dev_reserve += ca->free[j].size;
dev_reserve += 1; /* btree write point */
dev_reserve += 1; /* copygc write point */
dev_reserve += 1; /* rebalance write point */
dev_reserve *= ca->mi.bucket_size;
copygc_threshold += dev_reserve;
capacity += bucket_to_sector(ca, ca->mi.nbuckets -
ca->mi.first_bucket);
reserved_sectors += dev_reserve * 2;
bucket_size_max = max_t(unsigned, bucket_size_max,
ca->mi.bucket_size);
}
gc_reserve = c->opts.gc_reserve_bytes
? c->opts.gc_reserve_bytes >> 9
: div64_u64(capacity * c->opts.gc_reserve_percent, 100);
reserved_sectors = max(gc_reserve, reserved_sectors);
reserved_sectors = min(reserved_sectors, capacity);
c->copygc_threshold = copygc_threshold;
c->capacity = capacity - reserved_sectors;
c->bucket_size_max = bucket_size_max;
/* Wake up case someone was waiting for buckets */
closure_wake_up(&c->freelist_wait);
}
static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca)
{
struct open_bucket *ob;
bool ret = false;
for (ob = c->open_buckets;
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
ob++) {
spin_lock(&ob->lock);
if (ob->valid && !ob->on_partial_list &&
ob->ptr.dev == ca->dev_idx)
ret = true;
spin_unlock(&ob->lock);
}
return ret;
}
/* device goes ro: */
void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca)
{
unsigned i;
BUG_ON(ca->alloc_thread);
/* First, remove device from allocation groups: */
for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
clear_bit(ca->dev_idx, c->rw_devs[i].d);
/*
* Capacity is calculated based off of devices in allocation groups:
*/
bch2_recalc_capacity(c);
/* Next, close write points that point to this device... */
for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
bch2_writepoint_stop(c, ca, &c->write_points[i]);
bch2_writepoint_stop(c, ca, &c->copygc_write_point);
bch2_writepoint_stop(c, ca, &c->rebalance_write_point);
bch2_writepoint_stop(c, ca, &c->btree_write_point);
mutex_lock(&c->btree_reserve_cache_lock);
while (c->btree_reserve_cache_nr) {
struct btree_alloc *a =
&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
bch2_open_buckets_put(c, &a->ob);
}
mutex_unlock(&c->btree_reserve_cache_lock);
while (1) {
struct open_bucket *ob;
spin_lock(&c->freelist_lock);
if (!ca->open_buckets_partial_nr) {
spin_unlock(&c->freelist_lock);
break;
}
ob = c->open_buckets +
ca->open_buckets_partial[--ca->open_buckets_partial_nr];
ob->on_partial_list = false;
spin_unlock(&c->freelist_lock);
bch2_open_bucket_put(c, ob);
}
bch2_ec_stop_dev(c, ca);
/*
* Wake up threads that were blocked on allocation, so they can notice
* the device can no longer be removed and the capacity has changed:
*/
closure_wake_up(&c->freelist_wait);
/*
* journal_res_get() can block waiting for free space in the journal -
* it needs to notice there may not be devices to allocate from anymore:
*/
wake_up(&c->journal.wait);
/* Now wait for any in flight writes: */
closure_wait_event(&c->open_buckets_wait,
!bch2_dev_has_open_write_point(c, ca));
}
/* device goes rw: */
void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca)
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
if (ca->mi.data_allowed & (1 << i))
set_bit(ca->dev_idx, c->rw_devs[i].d);
}
void bch2_dev_allocator_quiesce(struct bch_fs *c, struct bch_dev *ca)
{
if (ca->alloc_thread)
closure_wait_event(&c->freelist_wait,
ca->allocator_state != ALLOCATOR_RUNNING);
}
/* stop allocator thread: */
void bch2_dev_allocator_stop(struct bch_dev *ca)
{
struct task_struct *p;
p = rcu_dereference_protected(ca->alloc_thread, 1);
ca->alloc_thread = NULL;
/*
* We need an rcu barrier between setting ca->alloc_thread = NULL and
* the thread shutting down to avoid bch2_wake_allocator() racing:
*
* XXX: it would be better to have the rcu barrier be asynchronous
* instead of blocking us here
*/
synchronize_rcu();
if (p) {
kthread_stop(p);
put_task_struct(p);
}
}
/* start allocator thread: */
int bch2_dev_allocator_start(struct bch_dev *ca)
{
struct task_struct *p;
/*
* allocator thread already started?
*/
if (ca->alloc_thread)
return 0;
p = kthread_create(bch2_allocator_thread, ca,
"bch-alloc/%s", ca->name);
if (IS_ERR(p))
return PTR_ERR(p);
get_task_struct(p);
rcu_assign_pointer(ca->alloc_thread, p);
wake_up_process(p);
return 0;
}
void bch2_fs_allocator_background_init(struct bch_fs *c)
{
spin_lock_init(&c->freelist_lock);
bch2_bucket_clock_init(c, READ);
bch2_bucket_clock_init(c, WRITE);
c->pd_controllers_update_seconds = 5;
INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update);
}