linux-stable/net/bpf/test_run.c
Paolo Abeni 7b769adc26 bpf-next-for-netdev
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZoxN0AAKCRDbK58LschI
 g0c5AQDa3ZV9gfbN42y1zSDoM1uOgO60fb+ydxyOYh8l3+OiQQD/fLfpTY3gBFSY
 9yi/pZhw/QdNzQskHNIBrHFGtJbMxgs=
 =p1Zz
 -----END PGP SIGNATURE-----

Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next

Daniel Borkmann says:

====================
pull-request: bpf-next 2024-07-08

The following pull-request contains BPF updates for your *net-next* tree.

We've added 102 non-merge commits during the last 28 day(s) which contain
a total of 127 files changed, 4606 insertions(+), 980 deletions(-).

The main changes are:

1) Support resilient split BTF which cuts down on duplication and makes BTF
   as compact as possible wrt BTF from modules, from Alan Maguire & Eduard Zingerman.

2) Add support for dumping kfunc prototypes from BTF which enables both detecting
   as well as dumping compilable prototypes for kfuncs, from Daniel Xu.

3) Batch of s390x BPF JIT improvements to add support for BPF arena and to implement
   support for BPF exceptions, from Ilya Leoshkevich.

4) Batch of riscv64 BPF JIT improvements in particular to add 12-argument support
   for BPF trampolines and to utilize bpf_prog_pack for the latter, from Pu Lehui.

5) Extend BPF test infrastructure to add a CHECKSUM_COMPLETE validation option
   for skbs and add coverage along with it, from Vadim Fedorenko.

6) Inline bpf_get_current_task/_btf() helpers in the arm64 BPF JIT which gives
   a small 1% performance improvement in micro-benchmarks, from Puranjay Mohan.

7) Extend the BPF verifier to track the delta between linked registers in order
   to better deal with recent LLVM code optimizations, from Alexei Starovoitov.

8) Fix bpf_wq_set_callback_impl() kfunc signature where the third argument should
   have been a pointer to the map value, from Benjamin Tissoires.

9) Extend BPF selftests to add regular expression support for test output matching
   and adjust some of the selftest when compiled under gcc, from Cupertino Miranda.

10) Simplify task_file_seq_get_next() and remove an unnecessary loop which always
    iterates exactly once anyway, from Dan Carpenter.

11) Add the capability to offload the netfilter flowtable in XDP layer through
    kfuncs, from Florian Westphal & Lorenzo Bianconi.

12) Various cleanups in networking helpers in BPF selftests to shave off a few
    lines of open-coded functions on client/server handling, from Geliang Tang.

13) Properly propagate prog->aux->tail_call_reachable out of BPF verifier, so
    that x86 JIT does not need to implement detection, from Leon Hwang.

14) Fix BPF verifier to add a missing check_func_arg_reg_off() to prevent an
    out-of-bounds memory access for dynpointers, from Matt Bobrowski.

15) Fix bpf_session_cookie() kfunc to return __u64 instead of long pointer as
    it might lead to problems on 32-bit archs, from Jiri Olsa.

16) Enhance traffic validation and dynamic batch size support in xsk selftests,
    from Tushar Vyavahare.

bpf-next-for-netdev

* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (102 commits)
  selftests/bpf: DENYLIST.aarch64: Remove fexit_sleep
  selftests/bpf: amend for wrong bpf_wq_set_callback_impl signature
  bpf: helpers: fix bpf_wq_set_callback_impl signature
  libbpf: Add NULL checks to bpf_object__{prev_map,next_map}
  selftests/bpf: Remove exceptions tests from DENYLIST.s390x
  s390/bpf: Implement exceptions
  s390/bpf: Change seen_reg to a mask
  bpf: Remove unnecessary loop in task_file_seq_get_next()
  riscv, bpf: Optimize stack usage of trampoline
  bpf, devmap: Add .map_alloc_check
  selftests/bpf: Remove arena tests from DENYLIST.s390x
  selftests/bpf: Add UAF tests for arena atomics
  selftests/bpf: Introduce __arena_global
  s390/bpf: Support arena atomics
  s390/bpf: Enable arena
  s390/bpf: Support address space cast instruction
  s390/bpf: Support BPF_PROBE_MEM32
  s390/bpf: Land on the next JITed instruction after exception
  s390/bpf: Introduce pre- and post- probe functions
  s390/bpf: Get rid of get_probe_mem_regno()
  ...
====================

Link: https://patch.msgid.link/20240708221438.10974-1-daniel@iogearbox.net
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2024-07-09 17:01:46 +02:00

1764 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2017 Facebook
*/
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/etherdevice.h>
#include <linux/filter.h>
#include <linux/rcupdate_trace.h>
#include <linux/sched/signal.h>
#include <net/bpf_sk_storage.h>
#include <net/hotdata.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <net/net_namespace.h>
#include <net/page_pool/helpers.h>
#include <linux/error-injection.h>
#include <linux/smp.h>
#include <linux/sock_diag.h>
#include <linux/netfilter.h>
#include <net/netdev_rx_queue.h>
#include <net/xdp.h>
#include <net/netfilter/nf_bpf_link.h>
#define CREATE_TRACE_POINTS
#include <trace/events/bpf_test_run.h>
struct bpf_test_timer {
enum { NO_PREEMPT, NO_MIGRATE } mode;
u32 i;
u64 time_start, time_spent;
};
static void bpf_test_timer_enter(struct bpf_test_timer *t)
__acquires(rcu)
{
rcu_read_lock();
if (t->mode == NO_PREEMPT)
preempt_disable();
else
migrate_disable();
t->time_start = ktime_get_ns();
}
static void bpf_test_timer_leave(struct bpf_test_timer *t)
__releases(rcu)
{
t->time_start = 0;
if (t->mode == NO_PREEMPT)
preempt_enable();
else
migrate_enable();
rcu_read_unlock();
}
static bool bpf_test_timer_continue(struct bpf_test_timer *t, int iterations,
u32 repeat, int *err, u32 *duration)
__must_hold(rcu)
{
t->i += iterations;
if (t->i >= repeat) {
/* We're done. */
t->time_spent += ktime_get_ns() - t->time_start;
do_div(t->time_spent, t->i);
*duration = t->time_spent > U32_MAX ? U32_MAX : (u32)t->time_spent;
*err = 0;
goto reset;
}
if (signal_pending(current)) {
/* During iteration: we've been cancelled, abort. */
*err = -EINTR;
goto reset;
}
if (need_resched()) {
/* During iteration: we need to reschedule between runs. */
t->time_spent += ktime_get_ns() - t->time_start;
bpf_test_timer_leave(t);
cond_resched();
bpf_test_timer_enter(t);
}
/* Do another round. */
return true;
reset:
t->i = 0;
return false;
}
/* We put this struct at the head of each page with a context and frame
* initialised when the page is allocated, so we don't have to do this on each
* repetition of the test run.
*/
struct xdp_page_head {
struct xdp_buff orig_ctx;
struct xdp_buff ctx;
union {
/* ::data_hard_start starts here */
DECLARE_FLEX_ARRAY(struct xdp_frame, frame);
DECLARE_FLEX_ARRAY(u8, data);
};
};
struct xdp_test_data {
struct xdp_buff *orig_ctx;
struct xdp_rxq_info rxq;
struct net_device *dev;
struct page_pool *pp;
struct xdp_frame **frames;
struct sk_buff **skbs;
struct xdp_mem_info mem;
u32 batch_size;
u32 frame_cnt;
};
/* tools/testing/selftests/bpf/prog_tests/xdp_do_redirect.c:%MAX_PKT_SIZE
* must be updated accordingly this gets changed, otherwise BPF selftests
* will fail.
*/
#define TEST_XDP_FRAME_SIZE (PAGE_SIZE - sizeof(struct xdp_page_head))
#define TEST_XDP_MAX_BATCH 256
static void xdp_test_run_init_page(netmem_ref netmem, void *arg)
{
struct xdp_page_head *head =
phys_to_virt(page_to_phys(netmem_to_page(netmem)));
struct xdp_buff *new_ctx, *orig_ctx;
u32 headroom = XDP_PACKET_HEADROOM;
struct xdp_test_data *xdp = arg;
size_t frm_len, meta_len;
struct xdp_frame *frm;
void *data;
orig_ctx = xdp->orig_ctx;
frm_len = orig_ctx->data_end - orig_ctx->data_meta;
meta_len = orig_ctx->data - orig_ctx->data_meta;
headroom -= meta_len;
new_ctx = &head->ctx;
frm = head->frame;
data = head->data;
memcpy(data + headroom, orig_ctx->data_meta, frm_len);
xdp_init_buff(new_ctx, TEST_XDP_FRAME_SIZE, &xdp->rxq);
xdp_prepare_buff(new_ctx, data, headroom, frm_len, true);
new_ctx->data = new_ctx->data_meta + meta_len;
xdp_update_frame_from_buff(new_ctx, frm);
frm->mem = new_ctx->rxq->mem;
memcpy(&head->orig_ctx, new_ctx, sizeof(head->orig_ctx));
}
static int xdp_test_run_setup(struct xdp_test_data *xdp, struct xdp_buff *orig_ctx)
{
struct page_pool *pp;
int err = -ENOMEM;
struct page_pool_params pp_params = {
.order = 0,
.flags = 0,
.pool_size = xdp->batch_size,
.nid = NUMA_NO_NODE,
.init_callback = xdp_test_run_init_page,
.init_arg = xdp,
};
xdp->frames = kvmalloc_array(xdp->batch_size, sizeof(void *), GFP_KERNEL);
if (!xdp->frames)
return -ENOMEM;
xdp->skbs = kvmalloc_array(xdp->batch_size, sizeof(void *), GFP_KERNEL);
if (!xdp->skbs)
goto err_skbs;
pp = page_pool_create(&pp_params);
if (IS_ERR(pp)) {
err = PTR_ERR(pp);
goto err_pp;
}
/* will copy 'mem.id' into pp->xdp_mem_id */
err = xdp_reg_mem_model(&xdp->mem, MEM_TYPE_PAGE_POOL, pp);
if (err)
goto err_mmodel;
xdp->pp = pp;
/* We create a 'fake' RXQ referencing the original dev, but with an
* xdp_mem_info pointing to our page_pool
*/
xdp_rxq_info_reg(&xdp->rxq, orig_ctx->rxq->dev, 0, 0);
xdp->rxq.mem.type = MEM_TYPE_PAGE_POOL;
xdp->rxq.mem.id = pp->xdp_mem_id;
xdp->dev = orig_ctx->rxq->dev;
xdp->orig_ctx = orig_ctx;
return 0;
err_mmodel:
page_pool_destroy(pp);
err_pp:
kvfree(xdp->skbs);
err_skbs:
kvfree(xdp->frames);
return err;
}
static void xdp_test_run_teardown(struct xdp_test_data *xdp)
{
xdp_unreg_mem_model(&xdp->mem);
page_pool_destroy(xdp->pp);
kfree(xdp->frames);
kfree(xdp->skbs);
}
static bool frame_was_changed(const struct xdp_page_head *head)
{
/* xdp_scrub_frame() zeroes the data pointer, flags is the last field,
* i.e. has the highest chances to be overwritten. If those two are
* untouched, it's most likely safe to skip the context reset.
*/
return head->frame->data != head->orig_ctx.data ||
head->frame->flags != head->orig_ctx.flags;
}
static bool ctx_was_changed(struct xdp_page_head *head)
{
return head->orig_ctx.data != head->ctx.data ||
head->orig_ctx.data_meta != head->ctx.data_meta ||
head->orig_ctx.data_end != head->ctx.data_end;
}
static void reset_ctx(struct xdp_page_head *head)
{
if (likely(!frame_was_changed(head) && !ctx_was_changed(head)))
return;
head->ctx.data = head->orig_ctx.data;
head->ctx.data_meta = head->orig_ctx.data_meta;
head->ctx.data_end = head->orig_ctx.data_end;
xdp_update_frame_from_buff(&head->ctx, head->frame);
}
static int xdp_recv_frames(struct xdp_frame **frames, int nframes,
struct sk_buff **skbs,
struct net_device *dev)
{
gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
int i, n;
LIST_HEAD(list);
n = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, gfp, nframes,
(void **)skbs);
if (unlikely(n == 0)) {
for (i = 0; i < nframes; i++)
xdp_return_frame(frames[i]);
return -ENOMEM;
}
for (i = 0; i < nframes; i++) {
struct xdp_frame *xdpf = frames[i];
struct sk_buff *skb = skbs[i];
skb = __xdp_build_skb_from_frame(xdpf, skb, dev);
if (!skb) {
xdp_return_frame(xdpf);
continue;
}
list_add_tail(&skb->list, &list);
}
netif_receive_skb_list(&list);
return 0;
}
static int xdp_test_run_batch(struct xdp_test_data *xdp, struct bpf_prog *prog,
u32 repeat)
{
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
int err = 0, act, ret, i, nframes = 0, batch_sz;
struct xdp_frame **frames = xdp->frames;
struct bpf_redirect_info *ri;
struct xdp_page_head *head;
struct xdp_frame *frm;
bool redirect = false;
struct xdp_buff *ctx;
struct page *page;
batch_sz = min_t(u32, repeat, xdp->batch_size);
local_bh_disable();
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
ri = bpf_net_ctx_get_ri();
xdp_set_return_frame_no_direct();
for (i = 0; i < batch_sz; i++) {
page = page_pool_dev_alloc_pages(xdp->pp);
if (!page) {
err = -ENOMEM;
goto out;
}
head = phys_to_virt(page_to_phys(page));
reset_ctx(head);
ctx = &head->ctx;
frm = head->frame;
xdp->frame_cnt++;
act = bpf_prog_run_xdp(prog, ctx);
/* if program changed pkt bounds we need to update the xdp_frame */
if (unlikely(ctx_was_changed(head))) {
ret = xdp_update_frame_from_buff(ctx, frm);
if (ret) {
xdp_return_buff(ctx);
continue;
}
}
switch (act) {
case XDP_TX:
/* we can't do a real XDP_TX since we're not in the
* driver, so turn it into a REDIRECT back to the same
* index
*/
ri->tgt_index = xdp->dev->ifindex;
ri->map_id = INT_MAX;
ri->map_type = BPF_MAP_TYPE_UNSPEC;
fallthrough;
case XDP_REDIRECT:
redirect = true;
ret = xdp_do_redirect_frame(xdp->dev, ctx, frm, prog);
if (ret)
xdp_return_buff(ctx);
break;
case XDP_PASS:
frames[nframes++] = frm;
break;
default:
bpf_warn_invalid_xdp_action(NULL, prog, act);
fallthrough;
case XDP_DROP:
xdp_return_buff(ctx);
break;
}
}
out:
if (redirect)
xdp_do_flush();
if (nframes) {
ret = xdp_recv_frames(frames, nframes, xdp->skbs, xdp->dev);
if (ret)
err = ret;
}
xdp_clear_return_frame_no_direct();
bpf_net_ctx_clear(bpf_net_ctx);
local_bh_enable();
return err;
}
static int bpf_test_run_xdp_live(struct bpf_prog *prog, struct xdp_buff *ctx,
u32 repeat, u32 batch_size, u32 *time)
{
struct xdp_test_data xdp = { .batch_size = batch_size };
struct bpf_test_timer t = { .mode = NO_MIGRATE };
int ret;
if (!repeat)
repeat = 1;
ret = xdp_test_run_setup(&xdp, ctx);
if (ret)
return ret;
bpf_test_timer_enter(&t);
do {
xdp.frame_cnt = 0;
ret = xdp_test_run_batch(&xdp, prog, repeat - t.i);
if (unlikely(ret < 0))
break;
} while (bpf_test_timer_continue(&t, xdp.frame_cnt, repeat, &ret, time));
bpf_test_timer_leave(&t);
xdp_test_run_teardown(&xdp);
return ret;
}
static int bpf_test_run(struct bpf_prog *prog, void *ctx, u32 repeat,
u32 *retval, u32 *time, bool xdp)
{
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
struct bpf_prog_array_item item = {.prog = prog};
struct bpf_run_ctx *old_ctx;
struct bpf_cg_run_ctx run_ctx;
struct bpf_test_timer t = { NO_MIGRATE };
enum bpf_cgroup_storage_type stype;
int ret;
for_each_cgroup_storage_type(stype) {
item.cgroup_storage[stype] = bpf_cgroup_storage_alloc(prog, stype);
if (IS_ERR(item.cgroup_storage[stype])) {
item.cgroup_storage[stype] = NULL;
for_each_cgroup_storage_type(stype)
bpf_cgroup_storage_free(item.cgroup_storage[stype]);
return -ENOMEM;
}
}
if (!repeat)
repeat = 1;
bpf_test_timer_enter(&t);
old_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
do {
run_ctx.prog_item = &item;
local_bh_disable();
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
if (xdp)
*retval = bpf_prog_run_xdp(prog, ctx);
else
*retval = bpf_prog_run(prog, ctx);
bpf_net_ctx_clear(bpf_net_ctx);
local_bh_enable();
} while (bpf_test_timer_continue(&t, 1, repeat, &ret, time));
bpf_reset_run_ctx(old_ctx);
bpf_test_timer_leave(&t);
for_each_cgroup_storage_type(stype)
bpf_cgroup_storage_free(item.cgroup_storage[stype]);
return ret;
}
static int bpf_test_finish(const union bpf_attr *kattr,
union bpf_attr __user *uattr, const void *data,
struct skb_shared_info *sinfo, u32 size,
u32 retval, u32 duration)
{
void __user *data_out = u64_to_user_ptr(kattr->test.data_out);
int err = -EFAULT;
u32 copy_size = size;
/* Clamp copy if the user has provided a size hint, but copy the full
* buffer if not to retain old behaviour.
*/
if (kattr->test.data_size_out &&
copy_size > kattr->test.data_size_out) {
copy_size = kattr->test.data_size_out;
err = -ENOSPC;
}
if (data_out) {
int len = sinfo ? copy_size - sinfo->xdp_frags_size : copy_size;
if (len < 0) {
err = -ENOSPC;
goto out;
}
if (copy_to_user(data_out, data, len))
goto out;
if (sinfo) {
int i, offset = len;
u32 data_len;
for (i = 0; i < sinfo->nr_frags; i++) {
skb_frag_t *frag = &sinfo->frags[i];
if (offset >= copy_size) {
err = -ENOSPC;
break;
}
data_len = min_t(u32, copy_size - offset,
skb_frag_size(frag));
if (copy_to_user(data_out + offset,
skb_frag_address(frag),
data_len))
goto out;
offset += data_len;
}
}
}
if (copy_to_user(&uattr->test.data_size_out, &size, sizeof(size)))
goto out;
if (copy_to_user(&uattr->test.retval, &retval, sizeof(retval)))
goto out;
if (copy_to_user(&uattr->test.duration, &duration, sizeof(duration)))
goto out;
if (err != -ENOSPC)
err = 0;
out:
trace_bpf_test_finish(&err);
return err;
}
/* Integer types of various sizes and pointer combinations cover variety of
* architecture dependent calling conventions. 7+ can be supported in the
* future.
*/
__bpf_kfunc_start_defs();
__bpf_kfunc int bpf_fentry_test1(int a)
{
return a + 1;
}
EXPORT_SYMBOL_GPL(bpf_fentry_test1);
int noinline bpf_fentry_test2(int a, u64 b)
{
return a + b;
}
int noinline bpf_fentry_test3(char a, int b, u64 c)
{
return a + b + c;
}
int noinline bpf_fentry_test4(void *a, char b, int c, u64 d)
{
return (long)a + b + c + d;
}
int noinline bpf_fentry_test5(u64 a, void *b, short c, int d, u64 e)
{
return a + (long)b + c + d + e;
}
int noinline bpf_fentry_test6(u64 a, void *b, short c, int d, void *e, u64 f)
{
return a + (long)b + c + d + (long)e + f;
}
struct bpf_fentry_test_t {
struct bpf_fentry_test_t *a;
};
int noinline bpf_fentry_test7(struct bpf_fentry_test_t *arg)
{
asm volatile ("": "+r"(arg));
return (long)arg;
}
int noinline bpf_fentry_test8(struct bpf_fentry_test_t *arg)
{
return (long)arg->a;
}
__bpf_kfunc u32 bpf_fentry_test9(u32 *a)
{
return *a;
}
void noinline bpf_fentry_test_sinfo(struct skb_shared_info *sinfo)
{
}
__bpf_kfunc int bpf_modify_return_test(int a, int *b)
{
*b += 1;
return a + *b;
}
__bpf_kfunc int bpf_modify_return_test2(int a, int *b, short c, int d,
void *e, char f, int g)
{
*b += 1;
return a + *b + c + d + (long)e + f + g;
}
__bpf_kfunc int bpf_modify_return_test_tp(int nonce)
{
trace_bpf_trigger_tp(nonce);
return nonce;
}
int noinline bpf_fentry_shadow_test(int a)
{
return a + 1;
}
struct prog_test_member1 {
int a;
};
struct prog_test_member {
struct prog_test_member1 m;
int c;
};
struct prog_test_ref_kfunc {
int a;
int b;
struct prog_test_member memb;
struct prog_test_ref_kfunc *next;
refcount_t cnt;
};
__bpf_kfunc void bpf_kfunc_call_test_release(struct prog_test_ref_kfunc *p)
{
refcount_dec(&p->cnt);
}
__bpf_kfunc void bpf_kfunc_call_test_release_dtor(void *p)
{
bpf_kfunc_call_test_release(p);
}
CFI_NOSEAL(bpf_kfunc_call_test_release_dtor);
__bpf_kfunc void bpf_kfunc_call_memb_release(struct prog_test_member *p)
{
}
__bpf_kfunc void bpf_kfunc_call_memb_release_dtor(void *p)
{
}
CFI_NOSEAL(bpf_kfunc_call_memb_release_dtor);
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(bpf_test_modify_return_ids)
BTF_ID_FLAGS(func, bpf_modify_return_test)
BTF_ID_FLAGS(func, bpf_modify_return_test2)
BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
BTF_ID_FLAGS(func, bpf_fentry_test1, KF_SLEEPABLE)
BTF_KFUNCS_END(bpf_test_modify_return_ids)
static const struct btf_kfunc_id_set bpf_test_modify_return_set = {
.owner = THIS_MODULE,
.set = &bpf_test_modify_return_ids,
};
BTF_KFUNCS_START(test_sk_check_kfunc_ids)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_release, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_kfunc_call_memb_release, KF_RELEASE)
BTF_KFUNCS_END(test_sk_check_kfunc_ids)
static void *bpf_test_init(const union bpf_attr *kattr, u32 user_size,
u32 size, u32 headroom, u32 tailroom)
{
void __user *data_in = u64_to_user_ptr(kattr->test.data_in);
void *data;
if (size < ETH_HLEN || size > PAGE_SIZE - headroom - tailroom)
return ERR_PTR(-EINVAL);
if (user_size > size)
return ERR_PTR(-EMSGSIZE);
size = SKB_DATA_ALIGN(size);
data = kzalloc(size + headroom + tailroom, GFP_USER);
if (!data)
return ERR_PTR(-ENOMEM);
if (copy_from_user(data + headroom, data_in, user_size)) {
kfree(data);
return ERR_PTR(-EFAULT);
}
return data;
}
int bpf_prog_test_run_tracing(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
struct bpf_fentry_test_t arg = {};
u16 side_effect = 0, ret = 0;
int b = 2, err = -EFAULT;
u32 retval = 0;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
switch (prog->expected_attach_type) {
case BPF_TRACE_FENTRY:
case BPF_TRACE_FEXIT:
if (bpf_fentry_test1(1) != 2 ||
bpf_fentry_test2(2, 3) != 5 ||
bpf_fentry_test3(4, 5, 6) != 15 ||
bpf_fentry_test4((void *)7, 8, 9, 10) != 34 ||
bpf_fentry_test5(11, (void *)12, 13, 14, 15) != 65 ||
bpf_fentry_test6(16, (void *)17, 18, 19, (void *)20, 21) != 111 ||
bpf_fentry_test7((struct bpf_fentry_test_t *)0) != 0 ||
bpf_fentry_test8(&arg) != 0 ||
bpf_fentry_test9(&retval) != 0)
goto out;
break;
case BPF_MODIFY_RETURN:
ret = bpf_modify_return_test(1, &b);
if (b != 2)
side_effect++;
b = 2;
ret += bpf_modify_return_test2(1, &b, 3, 4, (void *)5, 6, 7);
if (b != 2)
side_effect++;
break;
default:
goto out;
}
retval = ((u32)side_effect << 16) | ret;
if (copy_to_user(&uattr->test.retval, &retval, sizeof(retval)))
goto out;
err = 0;
out:
trace_bpf_test_finish(&err);
return err;
}
struct bpf_raw_tp_test_run_info {
struct bpf_prog *prog;
void *ctx;
u32 retval;
};
static void
__bpf_prog_test_run_raw_tp(void *data)
{
struct bpf_raw_tp_test_run_info *info = data;
struct bpf_trace_run_ctx run_ctx = {};
struct bpf_run_ctx *old_run_ctx;
old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
rcu_read_lock();
info->retval = bpf_prog_run(info->prog, info->ctx);
rcu_read_unlock();
bpf_reset_run_ctx(old_run_ctx);
}
int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
void __user *ctx_in = u64_to_user_ptr(kattr->test.ctx_in);
__u32 ctx_size_in = kattr->test.ctx_size_in;
struct bpf_raw_tp_test_run_info info;
int cpu = kattr->test.cpu, err = 0;
int current_cpu;
/* doesn't support data_in/out, ctx_out, duration, or repeat */
if (kattr->test.data_in || kattr->test.data_out ||
kattr->test.ctx_out || kattr->test.duration ||
kattr->test.repeat || kattr->test.batch_size)
return -EINVAL;
if (ctx_size_in < prog->aux->max_ctx_offset ||
ctx_size_in > MAX_BPF_FUNC_ARGS * sizeof(u64))
return -EINVAL;
if ((kattr->test.flags & BPF_F_TEST_RUN_ON_CPU) == 0 && cpu != 0)
return -EINVAL;
if (ctx_size_in) {
info.ctx = memdup_user(ctx_in, ctx_size_in);
if (IS_ERR(info.ctx))
return PTR_ERR(info.ctx);
} else {
info.ctx = NULL;
}
info.prog = prog;
current_cpu = get_cpu();
if ((kattr->test.flags & BPF_F_TEST_RUN_ON_CPU) == 0 ||
cpu == current_cpu) {
__bpf_prog_test_run_raw_tp(&info);
} else if (cpu >= nr_cpu_ids || !cpu_online(cpu)) {
/* smp_call_function_single() also checks cpu_online()
* after csd_lock(). However, since cpu is from user
* space, let's do an extra quick check to filter out
* invalid value before smp_call_function_single().
*/
err = -ENXIO;
} else {
err = smp_call_function_single(cpu, __bpf_prog_test_run_raw_tp,
&info, 1);
}
put_cpu();
if (!err &&
copy_to_user(&uattr->test.retval, &info.retval, sizeof(u32)))
err = -EFAULT;
kfree(info.ctx);
return err;
}
static void *bpf_ctx_init(const union bpf_attr *kattr, u32 max_size)
{
void __user *data_in = u64_to_user_ptr(kattr->test.ctx_in);
void __user *data_out = u64_to_user_ptr(kattr->test.ctx_out);
u32 size = kattr->test.ctx_size_in;
void *data;
int err;
if (!data_in && !data_out)
return NULL;
data = kzalloc(max_size, GFP_USER);
if (!data)
return ERR_PTR(-ENOMEM);
if (data_in) {
err = bpf_check_uarg_tail_zero(USER_BPFPTR(data_in), max_size, size);
if (err) {
kfree(data);
return ERR_PTR(err);
}
size = min_t(u32, max_size, size);
if (copy_from_user(data, data_in, size)) {
kfree(data);
return ERR_PTR(-EFAULT);
}
}
return data;
}
static int bpf_ctx_finish(const union bpf_attr *kattr,
union bpf_attr __user *uattr, const void *data,
u32 size)
{
void __user *data_out = u64_to_user_ptr(kattr->test.ctx_out);
int err = -EFAULT;
u32 copy_size = size;
if (!data || !data_out)
return 0;
if (copy_size > kattr->test.ctx_size_out) {
copy_size = kattr->test.ctx_size_out;
err = -ENOSPC;
}
if (copy_to_user(data_out, data, copy_size))
goto out;
if (copy_to_user(&uattr->test.ctx_size_out, &size, sizeof(size)))
goto out;
if (err != -ENOSPC)
err = 0;
out:
return err;
}
/**
* range_is_zero - test whether buffer is initialized
* @buf: buffer to check
* @from: check from this position
* @to: check up until (excluding) this position
*
* This function returns true if the there is a non-zero byte
* in the buf in the range [from,to).
*/
static inline bool range_is_zero(void *buf, size_t from, size_t to)
{
return !memchr_inv((u8 *)buf + from, 0, to - from);
}
static int convert___skb_to_skb(struct sk_buff *skb, struct __sk_buff *__skb)
{
struct qdisc_skb_cb *cb = (struct qdisc_skb_cb *)skb->cb;
if (!__skb)
return 0;
/* make sure the fields we don't use are zeroed */
if (!range_is_zero(__skb, 0, offsetof(struct __sk_buff, mark)))
return -EINVAL;
/* mark is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, mark),
offsetof(struct __sk_buff, priority)))
return -EINVAL;
/* priority is allowed */
/* ingress_ifindex is allowed */
/* ifindex is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, ifindex),
offsetof(struct __sk_buff, cb)))
return -EINVAL;
/* cb is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, cb),
offsetof(struct __sk_buff, tstamp)))
return -EINVAL;
/* tstamp is allowed */
/* wire_len is allowed */
/* gso_segs is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, gso_segs),
offsetof(struct __sk_buff, gso_size)))
return -EINVAL;
/* gso_size is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, gso_size),
offsetof(struct __sk_buff, hwtstamp)))
return -EINVAL;
/* hwtstamp is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, hwtstamp),
sizeof(struct __sk_buff)))
return -EINVAL;
skb->mark = __skb->mark;
skb->priority = __skb->priority;
skb->skb_iif = __skb->ingress_ifindex;
skb->tstamp = __skb->tstamp;
memcpy(&cb->data, __skb->cb, QDISC_CB_PRIV_LEN);
if (__skb->wire_len == 0) {
cb->pkt_len = skb->len;
} else {
if (__skb->wire_len < skb->len ||
__skb->wire_len > GSO_LEGACY_MAX_SIZE)
return -EINVAL;
cb->pkt_len = __skb->wire_len;
}
if (__skb->gso_segs > GSO_MAX_SEGS)
return -EINVAL;
skb_shinfo(skb)->gso_segs = __skb->gso_segs;
skb_shinfo(skb)->gso_size = __skb->gso_size;
skb_shinfo(skb)->hwtstamps.hwtstamp = __skb->hwtstamp;
return 0;
}
static void convert_skb_to___skb(struct sk_buff *skb, struct __sk_buff *__skb)
{
struct qdisc_skb_cb *cb = (struct qdisc_skb_cb *)skb->cb;
if (!__skb)
return;
__skb->mark = skb->mark;
__skb->priority = skb->priority;
__skb->ingress_ifindex = skb->skb_iif;
__skb->ifindex = skb->dev->ifindex;
__skb->tstamp = skb->tstamp;
memcpy(__skb->cb, &cb->data, QDISC_CB_PRIV_LEN);
__skb->wire_len = cb->pkt_len;
__skb->gso_segs = skb_shinfo(skb)->gso_segs;
__skb->hwtstamp = skb_shinfo(skb)->hwtstamps.hwtstamp;
}
static struct proto bpf_dummy_proto = {
.name = "bpf_dummy",
.owner = THIS_MODULE,
.obj_size = sizeof(struct sock),
};
int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
bool is_l2 = false, is_direct_pkt_access = false;
struct net *net = current->nsproxy->net_ns;
struct net_device *dev = net->loopback_dev;
u32 size = kattr->test.data_size_in;
u32 repeat = kattr->test.repeat;
struct __sk_buff *ctx = NULL;
u32 retval, duration;
int hh_len = ETH_HLEN;
struct sk_buff *skb;
struct sock *sk;
void *data;
int ret;
if ((kattr->test.flags & ~BPF_F_TEST_SKB_CHECKSUM_COMPLETE) ||
kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
data = bpf_test_init(kattr, kattr->test.data_size_in,
size, NET_SKB_PAD + NET_IP_ALIGN,
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
if (IS_ERR(data))
return PTR_ERR(data);
ctx = bpf_ctx_init(kattr, sizeof(struct __sk_buff));
if (IS_ERR(ctx)) {
kfree(data);
return PTR_ERR(ctx);
}
switch (prog->type) {
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
is_l2 = true;
fallthrough;
case BPF_PROG_TYPE_LWT_IN:
case BPF_PROG_TYPE_LWT_OUT:
case BPF_PROG_TYPE_LWT_XMIT:
is_direct_pkt_access = true;
break;
default:
break;
}
sk = sk_alloc(net, AF_UNSPEC, GFP_USER, &bpf_dummy_proto, 1);
if (!sk) {
kfree(data);
kfree(ctx);
return -ENOMEM;
}
sock_init_data(NULL, sk);
skb = slab_build_skb(data);
if (!skb) {
kfree(data);
kfree(ctx);
sk_free(sk);
return -ENOMEM;
}
skb->sk = sk;
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
__skb_put(skb, size);
if (ctx && ctx->ifindex > 1) {
dev = dev_get_by_index(net, ctx->ifindex);
if (!dev) {
ret = -ENODEV;
goto out;
}
}
skb->protocol = eth_type_trans(skb, dev);
skb_reset_network_header(skb);
switch (skb->protocol) {
case htons(ETH_P_IP):
sk->sk_family = AF_INET;
if (sizeof(struct iphdr) <= skb_headlen(skb)) {
sk->sk_rcv_saddr = ip_hdr(skb)->saddr;
sk->sk_daddr = ip_hdr(skb)->daddr;
}
break;
#if IS_ENABLED(CONFIG_IPV6)
case htons(ETH_P_IPV6):
sk->sk_family = AF_INET6;
if (sizeof(struct ipv6hdr) <= skb_headlen(skb)) {
sk->sk_v6_rcv_saddr = ipv6_hdr(skb)->saddr;
sk->sk_v6_daddr = ipv6_hdr(skb)->daddr;
}
break;
#endif
default:
break;
}
if (is_l2)
__skb_push(skb, hh_len);
if (is_direct_pkt_access)
bpf_compute_data_pointers(skb);
ret = convert___skb_to_skb(skb, ctx);
if (ret)
goto out;
if (kattr->test.flags & BPF_F_TEST_SKB_CHECKSUM_COMPLETE) {
const int off = skb_network_offset(skb);
int len = skb->len - off;
skb->csum = skb_checksum(skb, off, len, 0);
skb->ip_summed = CHECKSUM_COMPLETE;
}
ret = bpf_test_run(prog, skb, repeat, &retval, &duration, false);
if (ret)
goto out;
if (!is_l2) {
if (skb_headroom(skb) < hh_len) {
int nhead = HH_DATA_ALIGN(hh_len - skb_headroom(skb));
if (pskb_expand_head(skb, nhead, 0, GFP_USER)) {
ret = -ENOMEM;
goto out;
}
}
memset(__skb_push(skb, hh_len), 0, hh_len);
}
if (kattr->test.flags & BPF_F_TEST_SKB_CHECKSUM_COMPLETE) {
const int off = skb_network_offset(skb);
int len = skb->len - off;
__wsum csum;
csum = skb_checksum(skb, off, len, 0);
if (csum_fold(skb->csum) != csum_fold(csum)) {
ret = -EBADMSG;
goto out;
}
}
convert_skb_to___skb(skb, ctx);
size = skb->len;
/* bpf program can never convert linear skb to non-linear */
if (WARN_ON_ONCE(skb_is_nonlinear(skb)))
size = skb_headlen(skb);
ret = bpf_test_finish(kattr, uattr, skb->data, NULL, size, retval,
duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, ctx,
sizeof(struct __sk_buff));
out:
if (dev && dev != net->loopback_dev)
dev_put(dev);
kfree_skb(skb);
sk_free(sk);
kfree(ctx);
return ret;
}
static int xdp_convert_md_to_buff(struct xdp_md *xdp_md, struct xdp_buff *xdp)
{
unsigned int ingress_ifindex, rx_queue_index;
struct netdev_rx_queue *rxqueue;
struct net_device *device;
if (!xdp_md)
return 0;
if (xdp_md->egress_ifindex != 0)
return -EINVAL;
ingress_ifindex = xdp_md->ingress_ifindex;
rx_queue_index = xdp_md->rx_queue_index;
if (!ingress_ifindex && rx_queue_index)
return -EINVAL;
if (ingress_ifindex) {
device = dev_get_by_index(current->nsproxy->net_ns,
ingress_ifindex);
if (!device)
return -ENODEV;
if (rx_queue_index >= device->real_num_rx_queues)
goto free_dev;
rxqueue = __netif_get_rx_queue(device, rx_queue_index);
if (!xdp_rxq_info_is_reg(&rxqueue->xdp_rxq))
goto free_dev;
xdp->rxq = &rxqueue->xdp_rxq;
/* The device is now tracked in the xdp->rxq for later
* dev_put()
*/
}
xdp->data = xdp->data_meta + xdp_md->data;
return 0;
free_dev:
dev_put(device);
return -EINVAL;
}
static void xdp_convert_buff_to_md(struct xdp_buff *xdp, struct xdp_md *xdp_md)
{
if (!xdp_md)
return;
xdp_md->data = xdp->data - xdp->data_meta;
xdp_md->data_end = xdp->data_end - xdp->data_meta;
if (xdp_md->ingress_ifindex)
dev_put(xdp->rxq->dev);
}
int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
bool do_live = (kattr->test.flags & BPF_F_TEST_XDP_LIVE_FRAMES);
u32 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
u32 batch_size = kattr->test.batch_size;
u32 retval = 0, duration, max_data_sz;
u32 size = kattr->test.data_size_in;
u32 headroom = XDP_PACKET_HEADROOM;
u32 repeat = kattr->test.repeat;
struct netdev_rx_queue *rxqueue;
struct skb_shared_info *sinfo;
struct xdp_buff xdp = {};
int i, ret = -EINVAL;
struct xdp_md *ctx;
void *data;
if (prog->expected_attach_type == BPF_XDP_DEVMAP ||
prog->expected_attach_type == BPF_XDP_CPUMAP)
return -EINVAL;
if (kattr->test.flags & ~BPF_F_TEST_XDP_LIVE_FRAMES)
return -EINVAL;
if (bpf_prog_is_dev_bound(prog->aux))
return -EINVAL;
if (do_live) {
if (!batch_size)
batch_size = NAPI_POLL_WEIGHT;
else if (batch_size > TEST_XDP_MAX_BATCH)
return -E2BIG;
headroom += sizeof(struct xdp_page_head);
} else if (batch_size) {
return -EINVAL;
}
ctx = bpf_ctx_init(kattr, sizeof(struct xdp_md));
if (IS_ERR(ctx))
return PTR_ERR(ctx);
if (ctx) {
/* There can't be user provided data before the meta data */
if (ctx->data_meta || ctx->data_end != size ||
ctx->data > ctx->data_end ||
unlikely(xdp_metalen_invalid(ctx->data)) ||
(do_live && (kattr->test.data_out || kattr->test.ctx_out)))
goto free_ctx;
/* Meta data is allocated from the headroom */
headroom -= ctx->data;
}
max_data_sz = 4096 - headroom - tailroom;
if (size > max_data_sz) {
/* disallow live data mode for jumbo frames */
if (do_live)
goto free_ctx;
size = max_data_sz;
}
data = bpf_test_init(kattr, size, max_data_sz, headroom, tailroom);
if (IS_ERR(data)) {
ret = PTR_ERR(data);
goto free_ctx;
}
rxqueue = __netif_get_rx_queue(current->nsproxy->net_ns->loopback_dev, 0);
rxqueue->xdp_rxq.frag_size = headroom + max_data_sz + tailroom;
xdp_init_buff(&xdp, rxqueue->xdp_rxq.frag_size, &rxqueue->xdp_rxq);
xdp_prepare_buff(&xdp, data, headroom, size, true);
sinfo = xdp_get_shared_info_from_buff(&xdp);
ret = xdp_convert_md_to_buff(ctx, &xdp);
if (ret)
goto free_data;
if (unlikely(kattr->test.data_size_in > size)) {
void __user *data_in = u64_to_user_ptr(kattr->test.data_in);
while (size < kattr->test.data_size_in) {
struct page *page;
skb_frag_t *frag;
u32 data_len;
if (sinfo->nr_frags == MAX_SKB_FRAGS) {
ret = -ENOMEM;
goto out;
}
page = alloc_page(GFP_KERNEL);
if (!page) {
ret = -ENOMEM;
goto out;
}
frag = &sinfo->frags[sinfo->nr_frags++];
data_len = min_t(u32, kattr->test.data_size_in - size,
PAGE_SIZE);
skb_frag_fill_page_desc(frag, page, 0, data_len);
if (copy_from_user(page_address(page), data_in + size,
data_len)) {
ret = -EFAULT;
goto out;
}
sinfo->xdp_frags_size += data_len;
size += data_len;
}
xdp_buff_set_frags_flag(&xdp);
}
if (repeat > 1)
bpf_prog_change_xdp(NULL, prog);
if (do_live)
ret = bpf_test_run_xdp_live(prog, &xdp, repeat, batch_size, &duration);
else
ret = bpf_test_run(prog, &xdp, repeat, &retval, &duration, true);
/* We convert the xdp_buff back to an xdp_md before checking the return
* code so the reference count of any held netdevice will be decremented
* even if the test run failed.
*/
xdp_convert_buff_to_md(&xdp, ctx);
if (ret)
goto out;
size = xdp.data_end - xdp.data_meta + sinfo->xdp_frags_size;
ret = bpf_test_finish(kattr, uattr, xdp.data_meta, sinfo, size,
retval, duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, ctx,
sizeof(struct xdp_md));
out:
if (repeat > 1)
bpf_prog_change_xdp(prog, NULL);
free_data:
for (i = 0; i < sinfo->nr_frags; i++)
__free_page(skb_frag_page(&sinfo->frags[i]));
kfree(data);
free_ctx:
kfree(ctx);
return ret;
}
static int verify_user_bpf_flow_keys(struct bpf_flow_keys *ctx)
{
/* make sure the fields we don't use are zeroed */
if (!range_is_zero(ctx, 0, offsetof(struct bpf_flow_keys, flags)))
return -EINVAL;
/* flags is allowed */
if (!range_is_zero(ctx, offsetofend(struct bpf_flow_keys, flags),
sizeof(struct bpf_flow_keys)))
return -EINVAL;
return 0;
}
int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
struct bpf_test_timer t = { NO_PREEMPT };
u32 size = kattr->test.data_size_in;
struct bpf_flow_dissector ctx = {};
u32 repeat = kattr->test.repeat;
struct bpf_flow_keys *user_ctx;
struct bpf_flow_keys flow_keys;
const struct ethhdr *eth;
unsigned int flags = 0;
u32 retval, duration;
void *data;
int ret;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
if (size < ETH_HLEN)
return -EINVAL;
data = bpf_test_init(kattr, kattr->test.data_size_in, size, 0, 0);
if (IS_ERR(data))
return PTR_ERR(data);
eth = (struct ethhdr *)data;
if (!repeat)
repeat = 1;
user_ctx = bpf_ctx_init(kattr, sizeof(struct bpf_flow_keys));
if (IS_ERR(user_ctx)) {
kfree(data);
return PTR_ERR(user_ctx);
}
if (user_ctx) {
ret = verify_user_bpf_flow_keys(user_ctx);
if (ret)
goto out;
flags = user_ctx->flags;
}
ctx.flow_keys = &flow_keys;
ctx.data = data;
ctx.data_end = (__u8 *)data + size;
bpf_test_timer_enter(&t);
do {
retval = bpf_flow_dissect(prog, &ctx, eth->h_proto, ETH_HLEN,
size, flags);
} while (bpf_test_timer_continue(&t, 1, repeat, &ret, &duration));
bpf_test_timer_leave(&t);
if (ret < 0)
goto out;
ret = bpf_test_finish(kattr, uattr, &flow_keys, NULL,
sizeof(flow_keys), retval, duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, user_ctx,
sizeof(struct bpf_flow_keys));
out:
kfree(user_ctx);
kfree(data);
return ret;
}
int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
struct bpf_test_timer t = { NO_PREEMPT };
struct bpf_prog_array *progs = NULL;
struct bpf_sk_lookup_kern ctx = {};
u32 repeat = kattr->test.repeat;
struct bpf_sk_lookup *user_ctx;
u32 retval, duration;
int ret = -EINVAL;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
if (kattr->test.data_in || kattr->test.data_size_in || kattr->test.data_out ||
kattr->test.data_size_out)
return -EINVAL;
if (!repeat)
repeat = 1;
user_ctx = bpf_ctx_init(kattr, sizeof(*user_ctx));
if (IS_ERR(user_ctx))
return PTR_ERR(user_ctx);
if (!user_ctx)
return -EINVAL;
if (user_ctx->sk)
goto out;
if (!range_is_zero(user_ctx, offsetofend(typeof(*user_ctx), local_port), sizeof(*user_ctx)))
goto out;
if (user_ctx->local_port > U16_MAX) {
ret = -ERANGE;
goto out;
}
ctx.family = (u16)user_ctx->family;
ctx.protocol = (u16)user_ctx->protocol;
ctx.dport = (u16)user_ctx->local_port;
ctx.sport = user_ctx->remote_port;
switch (ctx.family) {
case AF_INET:
ctx.v4.daddr = (__force __be32)user_ctx->local_ip4;
ctx.v4.saddr = (__force __be32)user_ctx->remote_ip4;
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
ctx.v6.daddr = (struct in6_addr *)user_ctx->local_ip6;
ctx.v6.saddr = (struct in6_addr *)user_ctx->remote_ip6;
break;
#endif
default:
ret = -EAFNOSUPPORT;
goto out;
}
progs = bpf_prog_array_alloc(1, GFP_KERNEL);
if (!progs) {
ret = -ENOMEM;
goto out;
}
progs->items[0].prog = prog;
bpf_test_timer_enter(&t);
do {
ctx.selected_sk = NULL;
retval = BPF_PROG_SK_LOOKUP_RUN_ARRAY(progs, ctx, bpf_prog_run);
} while (bpf_test_timer_continue(&t, 1, repeat, &ret, &duration));
bpf_test_timer_leave(&t);
if (ret < 0)
goto out;
user_ctx->cookie = 0;
if (ctx.selected_sk) {
if (ctx.selected_sk->sk_reuseport && !ctx.no_reuseport) {
ret = -EOPNOTSUPP;
goto out;
}
user_ctx->cookie = sock_gen_cookie(ctx.selected_sk);
}
ret = bpf_test_finish(kattr, uattr, NULL, NULL, 0, retval, duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, user_ctx, sizeof(*user_ctx));
out:
bpf_prog_array_free(progs);
kfree(user_ctx);
return ret;
}
int bpf_prog_test_run_syscall(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
void __user *ctx_in = u64_to_user_ptr(kattr->test.ctx_in);
__u32 ctx_size_in = kattr->test.ctx_size_in;
void *ctx = NULL;
u32 retval;
int err = 0;
/* doesn't support data_in/out, ctx_out, duration, or repeat or flags */
if (kattr->test.data_in || kattr->test.data_out ||
kattr->test.ctx_out || kattr->test.duration ||
kattr->test.repeat || kattr->test.flags ||
kattr->test.batch_size)
return -EINVAL;
if (ctx_size_in < prog->aux->max_ctx_offset ||
ctx_size_in > U16_MAX)
return -EINVAL;
if (ctx_size_in) {
ctx = memdup_user(ctx_in, ctx_size_in);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
}
rcu_read_lock_trace();
retval = bpf_prog_run_pin_on_cpu(prog, ctx);
rcu_read_unlock_trace();
if (copy_to_user(&uattr->test.retval, &retval, sizeof(u32))) {
err = -EFAULT;
goto out;
}
if (ctx_size_in)
if (copy_to_user(ctx_in, ctx, ctx_size_in))
err = -EFAULT;
out:
kfree(ctx);
return err;
}
static int verify_and_copy_hook_state(struct nf_hook_state *state,
const struct nf_hook_state *user,
struct net_device *dev)
{
if (user->in || user->out)
return -EINVAL;
if (user->net || user->sk || user->okfn)
return -EINVAL;
switch (user->pf) {
case NFPROTO_IPV4:
case NFPROTO_IPV6:
switch (state->hook) {
case NF_INET_PRE_ROUTING:
state->in = dev;
break;
case NF_INET_LOCAL_IN:
state->in = dev;
break;
case NF_INET_FORWARD:
state->in = dev;
state->out = dev;
break;
case NF_INET_LOCAL_OUT:
state->out = dev;
break;
case NF_INET_POST_ROUTING:
state->out = dev;
break;
}
break;
default:
return -EINVAL;
}
state->pf = user->pf;
state->hook = user->hook;
return 0;
}
static __be16 nfproto_eth(int nfproto)
{
switch (nfproto) {
case NFPROTO_IPV4:
return htons(ETH_P_IP);
case NFPROTO_IPV6:
break;
}
return htons(ETH_P_IPV6);
}
int bpf_prog_test_run_nf(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
struct net *net = current->nsproxy->net_ns;
struct net_device *dev = net->loopback_dev;
struct nf_hook_state *user_ctx, hook_state = {
.pf = NFPROTO_IPV4,
.hook = NF_INET_LOCAL_OUT,
};
u32 size = kattr->test.data_size_in;
u32 repeat = kattr->test.repeat;
struct bpf_nf_ctx ctx = {
.state = &hook_state,
};
struct sk_buff *skb = NULL;
u32 retval, duration;
void *data;
int ret;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
if (size < sizeof(struct iphdr))
return -EINVAL;
data = bpf_test_init(kattr, kattr->test.data_size_in, size,
NET_SKB_PAD + NET_IP_ALIGN,
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
if (IS_ERR(data))
return PTR_ERR(data);
if (!repeat)
repeat = 1;
user_ctx = bpf_ctx_init(kattr, sizeof(struct nf_hook_state));
if (IS_ERR(user_ctx)) {
kfree(data);
return PTR_ERR(user_ctx);
}
if (user_ctx) {
ret = verify_and_copy_hook_state(&hook_state, user_ctx, dev);
if (ret)
goto out;
}
skb = slab_build_skb(data);
if (!skb) {
ret = -ENOMEM;
goto out;
}
data = NULL; /* data released via kfree_skb */
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
__skb_put(skb, size);
ret = -EINVAL;
if (hook_state.hook != NF_INET_LOCAL_OUT) {
if (size < ETH_HLEN + sizeof(struct iphdr))
goto out;
skb->protocol = eth_type_trans(skb, dev);
switch (skb->protocol) {
case htons(ETH_P_IP):
if (hook_state.pf == NFPROTO_IPV4)
break;
goto out;
case htons(ETH_P_IPV6):
if (size < ETH_HLEN + sizeof(struct ipv6hdr))
goto out;
if (hook_state.pf == NFPROTO_IPV6)
break;
goto out;
default:
ret = -EPROTO;
goto out;
}
skb_reset_network_header(skb);
} else {
skb->protocol = nfproto_eth(hook_state.pf);
}
ctx.skb = skb;
ret = bpf_test_run(prog, &ctx, repeat, &retval, &duration, false);
if (ret)
goto out;
ret = bpf_test_finish(kattr, uattr, NULL, NULL, 0, retval, duration);
out:
kfree(user_ctx);
kfree_skb(skb);
kfree(data);
return ret;
}
static const struct btf_kfunc_id_set bpf_prog_test_kfunc_set = {
.owner = THIS_MODULE,
.set = &test_sk_check_kfunc_ids,
};
BTF_ID_LIST(bpf_prog_test_dtor_kfunc_ids)
BTF_ID(struct, prog_test_ref_kfunc)
BTF_ID(func, bpf_kfunc_call_test_release_dtor)
BTF_ID(struct, prog_test_member)
BTF_ID(func, bpf_kfunc_call_memb_release_dtor)
static int __init bpf_prog_test_run_init(void)
{
const struct btf_id_dtor_kfunc bpf_prog_test_dtor_kfunc[] = {
{
.btf_id = bpf_prog_test_dtor_kfunc_ids[0],
.kfunc_btf_id = bpf_prog_test_dtor_kfunc_ids[1]
},
{
.btf_id = bpf_prog_test_dtor_kfunc_ids[2],
.kfunc_btf_id = bpf_prog_test_dtor_kfunc_ids[3],
},
};
int ret;
ret = register_btf_fmodret_id_set(&bpf_test_modify_return_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_prog_test_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_prog_test_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &bpf_prog_test_kfunc_set);
return ret ?: register_btf_id_dtor_kfuncs(bpf_prog_test_dtor_kfunc,
ARRAY_SIZE(bpf_prog_test_dtor_kfunc),
THIS_MODULE);
}
late_initcall(bpf_prog_test_run_init);