mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-09 22:50:41 +00:00
475be4d85a
isdn source code uses a not-current coding style. Update the coding style used on a per-line basis so that git diff -w shows only elided blank lines at EOF. Done with emacs and some scripts and some typing. Built x86 allyesconfig. No detected change in objdump -d or size. Signed-off-by: Joe Perches <joe@perches.com>
659 lines
17 KiB
C
659 lines
17 KiB
C
/* $Id: elsa_ser.c,v 2.14.2.3 2004/02/11 13:21:33 keil Exp $
|
|
*
|
|
* stuff for the serial modem on ELSA cards
|
|
*
|
|
* This software may be used and distributed according to the terms
|
|
* of the GNU General Public License, incorporated herein by reference.
|
|
*
|
|
*/
|
|
|
|
#include <linux/serial.h>
|
|
#include <linux/serial_reg.h>
|
|
#include <linux/slab.h>
|
|
|
|
#define MAX_MODEM_BUF 256
|
|
#define WAKEUP_CHARS (MAX_MODEM_BUF / 2)
|
|
#define RS_ISR_PASS_LIMIT 256
|
|
#define BASE_BAUD (1843200 / 16)
|
|
|
|
//#define SERIAL_DEBUG_OPEN 1
|
|
//#define SERIAL_DEBUG_INTR 1
|
|
//#define SERIAL_DEBUG_FLOW 1
|
|
#undef SERIAL_DEBUG_OPEN
|
|
#undef SERIAL_DEBUG_INTR
|
|
#undef SERIAL_DEBUG_FLOW
|
|
#undef SERIAL_DEBUG_REG
|
|
//#define SERIAL_DEBUG_REG 1
|
|
|
|
#ifdef SERIAL_DEBUG_REG
|
|
static u_char deb[32];
|
|
const char *ModemIn[] = {"RBR", "IER", "IIR", "LCR", "MCR", "LSR", "MSR", "SCR"};
|
|
const char *ModemOut[] = {"THR", "IER", "FCR", "LCR", "MCR", "LSR", "MSR", "SCR"};
|
|
#endif
|
|
|
|
static char *MInit_1 = "AT&F&C1E0&D2\r\0";
|
|
static char *MInit_2 = "ATL2M1S64=13\r\0";
|
|
static char *MInit_3 = "AT+FCLASS=0\r\0";
|
|
static char *MInit_4 = "ATV1S2=128X1\r\0";
|
|
static char *MInit_5 = "AT\\V8\\N3\r\0";
|
|
static char *MInit_6 = "ATL0M0&G0%E1\r\0";
|
|
static char *MInit_7 = "AT%L1%M0%C3\r\0";
|
|
|
|
static char *MInit_speed28800 = "AT%G0%B28800\r\0";
|
|
|
|
static char *MInit_dialout = "ATs7=60 x1 d\r\0";
|
|
static char *MInit_dialin = "ATs7=60 x1 a\r\0";
|
|
|
|
|
|
static inline unsigned int serial_in(struct IsdnCardState *cs, int offset)
|
|
{
|
|
#ifdef SERIAL_DEBUG_REG
|
|
u_int val = inb(cs->hw.elsa.base + 8 + offset);
|
|
debugl1(cs, "in %s %02x", ModemIn[offset], val);
|
|
return (val);
|
|
#else
|
|
return inb(cs->hw.elsa.base + 8 + offset);
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned int serial_inp(struct IsdnCardState *cs, int offset)
|
|
{
|
|
#ifdef SERIAL_DEBUG_REG
|
|
#ifdef ELSA_SERIAL_NOPAUSE_IO
|
|
u_int val = inb(cs->hw.elsa.base + 8 + offset);
|
|
debugl1(cs, "inp %s %02x", ModemIn[offset], val);
|
|
#else
|
|
u_int val = inb_p(cs->hw.elsa.base + 8 + offset);
|
|
debugl1(cs, "inP %s %02x", ModemIn[offset], val);
|
|
#endif
|
|
return (val);
|
|
#else
|
|
#ifdef ELSA_SERIAL_NOPAUSE_IO
|
|
return inb(cs->hw.elsa.base + 8 + offset);
|
|
#else
|
|
return inb_p(cs->hw.elsa.base + 8 + offset);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static inline void serial_out(struct IsdnCardState *cs, int offset, int value)
|
|
{
|
|
#ifdef SERIAL_DEBUG_REG
|
|
debugl1(cs, "out %s %02x", ModemOut[offset], value);
|
|
#endif
|
|
outb(value, cs->hw.elsa.base + 8 + offset);
|
|
}
|
|
|
|
static inline void serial_outp(struct IsdnCardState *cs, int offset,
|
|
int value)
|
|
{
|
|
#ifdef SERIAL_DEBUG_REG
|
|
#ifdef ELSA_SERIAL_NOPAUSE_IO
|
|
debugl1(cs, "outp %s %02x", ModemOut[offset], value);
|
|
#else
|
|
debugl1(cs, "outP %s %02x", ModemOut[offset], value);
|
|
#endif
|
|
#endif
|
|
#ifdef ELSA_SERIAL_NOPAUSE_IO
|
|
outb(value, cs->hw.elsa.base + 8 + offset);
|
|
#else
|
|
outb_p(value, cs->hw.elsa.base + 8 + offset);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This routine is called to set the UART divisor registers to match
|
|
* the specified baud rate for a serial port.
|
|
*/
|
|
static void change_speed(struct IsdnCardState *cs, int baud)
|
|
{
|
|
int quot = 0, baud_base;
|
|
unsigned cval, fcr = 0;
|
|
|
|
|
|
/* byte size and parity */
|
|
cval = 0x03;
|
|
/* Determine divisor based on baud rate */
|
|
baud_base = BASE_BAUD;
|
|
quot = baud_base / baud;
|
|
/* If the quotient is ever zero, default to 9600 bps */
|
|
if (!quot)
|
|
quot = baud_base / 9600;
|
|
|
|
/* Set up FIFO's */
|
|
if ((baud_base / quot) < 2400)
|
|
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_1;
|
|
else
|
|
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_8;
|
|
serial_outp(cs, UART_FCR, fcr);
|
|
/* CTS flow control flag and modem status interrupts */
|
|
cs->hw.elsa.IER &= ~UART_IER_MSI;
|
|
cs->hw.elsa.IER |= UART_IER_MSI;
|
|
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
|
|
|
|
debugl1(cs, "modem quot=0x%x", quot);
|
|
serial_outp(cs, UART_LCR, cval | UART_LCR_DLAB);/* set DLAB */
|
|
serial_outp(cs, UART_DLL, quot & 0xff); /* LS of divisor */
|
|
serial_outp(cs, UART_DLM, quot >> 8); /* MS of divisor */
|
|
serial_outp(cs, UART_LCR, cval); /* reset DLAB */
|
|
serial_inp(cs, UART_RX);
|
|
}
|
|
|
|
static int mstartup(struct IsdnCardState *cs)
|
|
{
|
|
int retval = 0;
|
|
|
|
/*
|
|
* Clear the FIFO buffers and disable them
|
|
* (they will be reenabled in change_speed())
|
|
*/
|
|
serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT));
|
|
|
|
/*
|
|
* At this point there's no way the LSR could still be 0xFF;
|
|
* if it is, then bail out, because there's likely no UART
|
|
* here.
|
|
*/
|
|
if (serial_inp(cs, UART_LSR) == 0xff) {
|
|
retval = -ENODEV;
|
|
goto errout;
|
|
}
|
|
|
|
/*
|
|
* Clear the interrupt registers.
|
|
*/
|
|
(void) serial_inp(cs, UART_RX);
|
|
(void) serial_inp(cs, UART_IIR);
|
|
(void) serial_inp(cs, UART_MSR);
|
|
|
|
/*
|
|
* Now, initialize the UART
|
|
*/
|
|
serial_outp(cs, UART_LCR, UART_LCR_WLEN8); /* reset DLAB */
|
|
|
|
cs->hw.elsa.MCR = 0;
|
|
cs->hw.elsa.MCR = UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2;
|
|
serial_outp(cs, UART_MCR, cs->hw.elsa.MCR);
|
|
|
|
/*
|
|
* Finally, enable interrupts
|
|
*/
|
|
cs->hw.elsa.IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI;
|
|
serial_outp(cs, UART_IER, cs->hw.elsa.IER); /* enable interrupts */
|
|
|
|
/*
|
|
* And clear the interrupt registers again for luck.
|
|
*/
|
|
(void)serial_inp(cs, UART_LSR);
|
|
(void)serial_inp(cs, UART_RX);
|
|
(void)serial_inp(cs, UART_IIR);
|
|
(void)serial_inp(cs, UART_MSR);
|
|
|
|
cs->hw.elsa.transcnt = cs->hw.elsa.transp = 0;
|
|
cs->hw.elsa.rcvcnt = cs->hw.elsa.rcvp = 0;
|
|
|
|
/*
|
|
* and set the speed of the serial port
|
|
*/
|
|
change_speed(cs, BASE_BAUD);
|
|
cs->hw.elsa.MFlag = 1;
|
|
errout:
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* This routine will shutdown a serial port; interrupts are disabled, and
|
|
* DTR is dropped if the hangup on close termio flag is on.
|
|
*/
|
|
static void mshutdown(struct IsdnCardState *cs)
|
|
{
|
|
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk(KERN_DEBUG"Shutting down serial ....");
|
|
#endif
|
|
|
|
/*
|
|
* clear delta_msr_wait queue to avoid mem leaks: we may free the irq
|
|
* here so the queue might never be waken up
|
|
*/
|
|
|
|
cs->hw.elsa.IER = 0;
|
|
serial_outp(cs, UART_IER, 0x00); /* disable all intrs */
|
|
cs->hw.elsa.MCR &= ~UART_MCR_OUT2;
|
|
|
|
/* disable break condition */
|
|
serial_outp(cs, UART_LCR, serial_inp(cs, UART_LCR) & ~UART_LCR_SBC);
|
|
|
|
cs->hw.elsa.MCR &= ~(UART_MCR_DTR | UART_MCR_RTS);
|
|
serial_outp(cs, UART_MCR, cs->hw.elsa.MCR);
|
|
|
|
/* disable FIFO's */
|
|
serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT));
|
|
serial_inp(cs, UART_RX); /* read data port to reset things */
|
|
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk(" done\n");
|
|
#endif
|
|
}
|
|
|
|
static inline int
|
|
write_modem(struct BCState *bcs) {
|
|
int ret = 0;
|
|
struct IsdnCardState *cs = bcs->cs;
|
|
int count, len, fp;
|
|
|
|
if (!bcs->tx_skb)
|
|
return 0;
|
|
if (bcs->tx_skb->len <= 0)
|
|
return 0;
|
|
len = bcs->tx_skb->len;
|
|
if (len > MAX_MODEM_BUF - cs->hw.elsa.transcnt)
|
|
len = MAX_MODEM_BUF - cs->hw.elsa.transcnt;
|
|
fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp;
|
|
fp &= (MAX_MODEM_BUF - 1);
|
|
count = len;
|
|
if (count > MAX_MODEM_BUF - fp) {
|
|
count = MAX_MODEM_BUF - fp;
|
|
skb_copy_from_linear_data(bcs->tx_skb,
|
|
cs->hw.elsa.transbuf + fp, count);
|
|
skb_pull(bcs->tx_skb, count);
|
|
cs->hw.elsa.transcnt += count;
|
|
ret = count;
|
|
count = len - count;
|
|
fp = 0;
|
|
}
|
|
skb_copy_from_linear_data(bcs->tx_skb,
|
|
cs->hw.elsa.transbuf + fp, count);
|
|
skb_pull(bcs->tx_skb, count);
|
|
cs->hw.elsa.transcnt += count;
|
|
ret += count;
|
|
|
|
if (cs->hw.elsa.transcnt &&
|
|
!(cs->hw.elsa.IER & UART_IER_THRI)) {
|
|
cs->hw.elsa.IER |= UART_IER_THRI;
|
|
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
static inline void
|
|
modem_fill(struct BCState *bcs) {
|
|
|
|
if (bcs->tx_skb) {
|
|
if (bcs->tx_skb->len) {
|
|
write_modem(bcs);
|
|
return;
|
|
} else {
|
|
if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
|
|
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
|
|
u_long flags;
|
|
spin_lock_irqsave(&bcs->aclock, flags);
|
|
bcs->ackcnt += bcs->hw.hscx.count;
|
|
spin_unlock_irqrestore(&bcs->aclock, flags);
|
|
schedule_event(bcs, B_ACKPENDING);
|
|
}
|
|
dev_kfree_skb_any(bcs->tx_skb);
|
|
bcs->tx_skb = NULL;
|
|
}
|
|
}
|
|
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
|
|
bcs->hw.hscx.count = 0;
|
|
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
|
|
write_modem(bcs);
|
|
} else {
|
|
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
|
|
schedule_event(bcs, B_XMTBUFREADY);
|
|
}
|
|
}
|
|
|
|
static inline void receive_chars(struct IsdnCardState *cs,
|
|
int *status)
|
|
{
|
|
unsigned char ch;
|
|
struct sk_buff *skb;
|
|
|
|
do {
|
|
ch = serial_in(cs, UART_RX);
|
|
if (cs->hw.elsa.rcvcnt >= MAX_MODEM_BUF)
|
|
break;
|
|
cs->hw.elsa.rcvbuf[cs->hw.elsa.rcvcnt++] = ch;
|
|
#ifdef SERIAL_DEBUG_INTR
|
|
printk("DR%02x:%02x...", ch, *status);
|
|
#endif
|
|
if (*status & (UART_LSR_BI | UART_LSR_PE |
|
|
UART_LSR_FE | UART_LSR_OE)) {
|
|
|
|
#ifdef SERIAL_DEBUG_INTR
|
|
printk("handling exept....");
|
|
#endif
|
|
}
|
|
*status = serial_inp(cs, UART_LSR);
|
|
} while (*status & UART_LSR_DR);
|
|
if (cs->hw.elsa.MFlag == 2) {
|
|
if (!(skb = dev_alloc_skb(cs->hw.elsa.rcvcnt)))
|
|
printk(KERN_WARNING "ElsaSER: receive out of memory\n");
|
|
else {
|
|
memcpy(skb_put(skb, cs->hw.elsa.rcvcnt), cs->hw.elsa.rcvbuf,
|
|
cs->hw.elsa.rcvcnt);
|
|
skb_queue_tail(&cs->hw.elsa.bcs->rqueue, skb);
|
|
}
|
|
schedule_event(cs->hw.elsa.bcs, B_RCVBUFREADY);
|
|
} else {
|
|
char tmp[128];
|
|
char *t = tmp;
|
|
|
|
t += sprintf(t, "modem read cnt %d", cs->hw.elsa.rcvcnt);
|
|
QuickHex(t, cs->hw.elsa.rcvbuf, cs->hw.elsa.rcvcnt);
|
|
debugl1(cs, tmp);
|
|
}
|
|
cs->hw.elsa.rcvcnt = 0;
|
|
}
|
|
|
|
static inline void transmit_chars(struct IsdnCardState *cs, int *intr_done)
|
|
{
|
|
int count;
|
|
|
|
debugl1(cs, "transmit_chars: p(%x) cnt(%x)", cs->hw.elsa.transp,
|
|
cs->hw.elsa.transcnt);
|
|
|
|
if (cs->hw.elsa.transcnt <= 0) {
|
|
cs->hw.elsa.IER &= ~UART_IER_THRI;
|
|
serial_out(cs, UART_IER, cs->hw.elsa.IER);
|
|
return;
|
|
}
|
|
count = 16;
|
|
do {
|
|
serial_outp(cs, UART_TX, cs->hw.elsa.transbuf[cs->hw.elsa.transp++]);
|
|
if (cs->hw.elsa.transp >= MAX_MODEM_BUF)
|
|
cs->hw.elsa.transp = 0;
|
|
if (--cs->hw.elsa.transcnt <= 0)
|
|
break;
|
|
} while (--count > 0);
|
|
if ((cs->hw.elsa.transcnt < WAKEUP_CHARS) && (cs->hw.elsa.MFlag == 2))
|
|
modem_fill(cs->hw.elsa.bcs);
|
|
|
|
#ifdef SERIAL_DEBUG_INTR
|
|
printk("THRE...");
|
|
#endif
|
|
if (intr_done)
|
|
*intr_done = 0;
|
|
if (cs->hw.elsa.transcnt <= 0) {
|
|
cs->hw.elsa.IER &= ~UART_IER_THRI;
|
|
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
|
|
}
|
|
}
|
|
|
|
|
|
static void rs_interrupt_elsa(struct IsdnCardState *cs)
|
|
{
|
|
int status, iir, msr;
|
|
int pass_counter = 0;
|
|
|
|
#ifdef SERIAL_DEBUG_INTR
|
|
printk(KERN_DEBUG "rs_interrupt_single(%d)...", cs->irq);
|
|
#endif
|
|
|
|
do {
|
|
status = serial_inp(cs, UART_LSR);
|
|
debugl1(cs, "rs LSR %02x", status);
|
|
#ifdef SERIAL_DEBUG_INTR
|
|
printk("status = %x...", status);
|
|
#endif
|
|
if (status & UART_LSR_DR)
|
|
receive_chars(cs, &status);
|
|
if (status & UART_LSR_THRE)
|
|
transmit_chars(cs, NULL);
|
|
if (pass_counter++ > RS_ISR_PASS_LIMIT) {
|
|
printk("rs_single loop break.\n");
|
|
break;
|
|
}
|
|
iir = serial_inp(cs, UART_IIR);
|
|
debugl1(cs, "rs IIR %02x", iir);
|
|
if ((iir & 0xf) == 0) {
|
|
msr = serial_inp(cs, UART_MSR);
|
|
debugl1(cs, "rs MSR %02x", msr);
|
|
}
|
|
} while (!(iir & UART_IIR_NO_INT));
|
|
#ifdef SERIAL_DEBUG_INTR
|
|
printk("end.\n");
|
|
#endif
|
|
}
|
|
|
|
extern int open_hscxstate(struct IsdnCardState *cs, struct BCState *bcs);
|
|
extern void modehscx(struct BCState *bcs, int mode, int bc);
|
|
extern void hscx_l2l1(struct PStack *st, int pr, void *arg);
|
|
|
|
static void
|
|
close_elsastate(struct BCState *bcs)
|
|
{
|
|
modehscx(bcs, 0, bcs->channel);
|
|
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
|
|
if (bcs->hw.hscx.rcvbuf) {
|
|
if (bcs->mode != L1_MODE_MODEM)
|
|
kfree(bcs->hw.hscx.rcvbuf);
|
|
bcs->hw.hscx.rcvbuf = NULL;
|
|
}
|
|
skb_queue_purge(&bcs->rqueue);
|
|
skb_queue_purge(&bcs->squeue);
|
|
if (bcs->tx_skb) {
|
|
dev_kfree_skb_any(bcs->tx_skb);
|
|
bcs->tx_skb = NULL;
|
|
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
modem_write_cmd(struct IsdnCardState *cs, u_char *buf, int len) {
|
|
int count, fp;
|
|
u_char *msg = buf;
|
|
|
|
if (!len)
|
|
return;
|
|
if (len > (MAX_MODEM_BUF - cs->hw.elsa.transcnt)) {
|
|
return;
|
|
}
|
|
fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp;
|
|
fp &= (MAX_MODEM_BUF - 1);
|
|
count = len;
|
|
if (count > MAX_MODEM_BUF - fp) {
|
|
count = MAX_MODEM_BUF - fp;
|
|
memcpy(cs->hw.elsa.transbuf + fp, msg, count);
|
|
cs->hw.elsa.transcnt += count;
|
|
msg += count;
|
|
count = len - count;
|
|
fp = 0;
|
|
}
|
|
memcpy(cs->hw.elsa.transbuf + fp, msg, count);
|
|
cs->hw.elsa.transcnt += count;
|
|
if (cs->hw.elsa.transcnt &&
|
|
!(cs->hw.elsa.IER & UART_IER_THRI)) {
|
|
cs->hw.elsa.IER |= UART_IER_THRI;
|
|
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
|
|
}
|
|
}
|
|
|
|
static void
|
|
modem_set_init(struct IsdnCardState *cs) {
|
|
int timeout;
|
|
|
|
#define RCV_DELAY 20
|
|
modem_write_cmd(cs, MInit_1, strlen(MInit_1));
|
|
timeout = 1000;
|
|
while (timeout-- && cs->hw.elsa.transcnt)
|
|
udelay(1000);
|
|
debugl1(cs, "msi tout=%d", timeout);
|
|
mdelay(RCV_DELAY);
|
|
modem_write_cmd(cs, MInit_2, strlen(MInit_2));
|
|
timeout = 1000;
|
|
while (timeout-- && cs->hw.elsa.transcnt)
|
|
udelay(1000);
|
|
debugl1(cs, "msi tout=%d", timeout);
|
|
mdelay(RCV_DELAY);
|
|
modem_write_cmd(cs, MInit_3, strlen(MInit_3));
|
|
timeout = 1000;
|
|
while (timeout-- && cs->hw.elsa.transcnt)
|
|
udelay(1000);
|
|
debugl1(cs, "msi tout=%d", timeout);
|
|
mdelay(RCV_DELAY);
|
|
modem_write_cmd(cs, MInit_4, strlen(MInit_4));
|
|
timeout = 1000;
|
|
while (timeout-- && cs->hw.elsa.transcnt)
|
|
udelay(1000);
|
|
debugl1(cs, "msi tout=%d", timeout);
|
|
mdelay(RCV_DELAY);
|
|
modem_write_cmd(cs, MInit_5, strlen(MInit_5));
|
|
timeout = 1000;
|
|
while (timeout-- && cs->hw.elsa.transcnt)
|
|
udelay(1000);
|
|
debugl1(cs, "msi tout=%d", timeout);
|
|
mdelay(RCV_DELAY);
|
|
modem_write_cmd(cs, MInit_6, strlen(MInit_6));
|
|
timeout = 1000;
|
|
while (timeout-- && cs->hw.elsa.transcnt)
|
|
udelay(1000);
|
|
debugl1(cs, "msi tout=%d", timeout);
|
|
mdelay(RCV_DELAY);
|
|
modem_write_cmd(cs, MInit_7, strlen(MInit_7));
|
|
timeout = 1000;
|
|
while (timeout-- && cs->hw.elsa.transcnt)
|
|
udelay(1000);
|
|
debugl1(cs, "msi tout=%d", timeout);
|
|
mdelay(RCV_DELAY);
|
|
}
|
|
|
|
static void
|
|
modem_set_dial(struct IsdnCardState *cs, int outgoing) {
|
|
int timeout;
|
|
#define RCV_DELAY 20
|
|
|
|
modem_write_cmd(cs, MInit_speed28800, strlen(MInit_speed28800));
|
|
timeout = 1000;
|
|
while (timeout-- && cs->hw.elsa.transcnt)
|
|
udelay(1000);
|
|
debugl1(cs, "msi tout=%d", timeout);
|
|
mdelay(RCV_DELAY);
|
|
if (outgoing)
|
|
modem_write_cmd(cs, MInit_dialout, strlen(MInit_dialout));
|
|
else
|
|
modem_write_cmd(cs, MInit_dialin, strlen(MInit_dialin));
|
|
timeout = 1000;
|
|
while (timeout-- && cs->hw.elsa.transcnt)
|
|
udelay(1000);
|
|
debugl1(cs, "msi tout=%d", timeout);
|
|
mdelay(RCV_DELAY);
|
|
}
|
|
|
|
static void
|
|
modem_l2l1(struct PStack *st, int pr, void *arg)
|
|
{
|
|
struct BCState *bcs = st->l1.bcs;
|
|
struct sk_buff *skb = arg;
|
|
u_long flags;
|
|
|
|
if (pr == (PH_DATA | REQUEST)) {
|
|
spin_lock_irqsave(&bcs->cs->lock, flags);
|
|
if (bcs->tx_skb) {
|
|
skb_queue_tail(&bcs->squeue, skb);
|
|
} else {
|
|
bcs->tx_skb = skb;
|
|
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
|
|
bcs->hw.hscx.count = 0;
|
|
write_modem(bcs);
|
|
}
|
|
spin_unlock_irqrestore(&bcs->cs->lock, flags);
|
|
} else if (pr == (PH_ACTIVATE | REQUEST)) {
|
|
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
|
|
st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
|
|
set_arcofi(bcs->cs, st->l1.bc);
|
|
mstartup(bcs->cs);
|
|
modem_set_dial(bcs->cs, test_bit(FLG_ORIG, &st->l2.flag));
|
|
bcs->cs->hw.elsa.MFlag = 2;
|
|
} else if (pr == (PH_DEACTIVATE | REQUEST)) {
|
|
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
|
|
bcs->cs->dc.isac.arcofi_bc = st->l1.bc;
|
|
arcofi_fsm(bcs->cs, ARCOFI_START, &ARCOFI_XOP_0);
|
|
interruptible_sleep_on(&bcs->cs->dc.isac.arcofi_wait);
|
|
bcs->cs->hw.elsa.MFlag = 1;
|
|
} else {
|
|
printk(KERN_WARNING "ElsaSer: unknown pr %x\n", pr);
|
|
}
|
|
}
|
|
|
|
static int
|
|
setstack_elsa(struct PStack *st, struct BCState *bcs)
|
|
{
|
|
|
|
bcs->channel = st->l1.bc;
|
|
switch (st->l1.mode) {
|
|
case L1_MODE_HDLC:
|
|
case L1_MODE_TRANS:
|
|
if (open_hscxstate(st->l1.hardware, bcs))
|
|
return (-1);
|
|
st->l2.l2l1 = hscx_l2l1;
|
|
break;
|
|
case L1_MODE_MODEM:
|
|
bcs->mode = L1_MODE_MODEM;
|
|
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
|
|
bcs->hw.hscx.rcvbuf = bcs->cs->hw.elsa.rcvbuf;
|
|
skb_queue_head_init(&bcs->rqueue);
|
|
skb_queue_head_init(&bcs->squeue);
|
|
}
|
|
bcs->tx_skb = NULL;
|
|
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
|
|
bcs->event = 0;
|
|
bcs->hw.hscx.rcvidx = 0;
|
|
bcs->tx_cnt = 0;
|
|
bcs->cs->hw.elsa.bcs = bcs;
|
|
st->l2.l2l1 = modem_l2l1;
|
|
break;
|
|
}
|
|
st->l1.bcs = bcs;
|
|
setstack_manager(st);
|
|
bcs->st = st;
|
|
setstack_l1_B(st);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
init_modem(struct IsdnCardState *cs) {
|
|
|
|
cs->bcs[0].BC_SetStack = setstack_elsa;
|
|
cs->bcs[1].BC_SetStack = setstack_elsa;
|
|
cs->bcs[0].BC_Close = close_elsastate;
|
|
cs->bcs[1].BC_Close = close_elsastate;
|
|
if (!(cs->hw.elsa.rcvbuf = kmalloc(MAX_MODEM_BUF,
|
|
GFP_ATOMIC))) {
|
|
printk(KERN_WARNING
|
|
"Elsa: No modem mem hw.elsa.rcvbuf\n");
|
|
return;
|
|
}
|
|
if (!(cs->hw.elsa.transbuf = kmalloc(MAX_MODEM_BUF,
|
|
GFP_ATOMIC))) {
|
|
printk(KERN_WARNING
|
|
"Elsa: No modem mem hw.elsa.transbuf\n");
|
|
kfree(cs->hw.elsa.rcvbuf);
|
|
cs->hw.elsa.rcvbuf = NULL;
|
|
return;
|
|
}
|
|
if (mstartup(cs)) {
|
|
printk(KERN_WARNING "Elsa: problem startup modem\n");
|
|
}
|
|
modem_set_init(cs);
|
|
}
|
|
|
|
static void
|
|
release_modem(struct IsdnCardState *cs) {
|
|
|
|
cs->hw.elsa.MFlag = 0;
|
|
if (cs->hw.elsa.transbuf) {
|
|
if (cs->hw.elsa.rcvbuf) {
|
|
mshutdown(cs);
|
|
kfree(cs->hw.elsa.rcvbuf);
|
|
cs->hw.elsa.rcvbuf = NULL;
|
|
}
|
|
kfree(cs->hw.elsa.transbuf);
|
|
cs->hw.elsa.transbuf = NULL;
|
|
}
|
|
}
|