Linus Torvalds 45b583b10a Merge 'akpm' patch series
* Merge akpm patch series: (122 commits)
  drivers/connector/cn_proc.c: remove unused local
  Documentation/SubmitChecklist: add RCU debug config options
  reiserfs: use hweight_long()
  reiserfs: use proper little-endian bitops
  pnpacpi: register disabled resources
  drivers/rtc/rtc-tegra.c: properly initialize spinlock
  drivers/rtc/rtc-twl.c: check return value of twl_rtc_write_u8() in twl_rtc_set_time()
  drivers/rtc: add support for Qualcomm PMIC8xxx RTC
  drivers/rtc/rtc-s3c.c: support clock gating
  drivers/rtc/rtc-mpc5121.c: add support for RTC on MPC5200
  init: skip calibration delay if previously done
  misc/eeprom: add eeprom access driver for digsy_mtc board
  misc/eeprom: add driver for microwire 93xx46 EEPROMs
  checkpatch.pl: update $logFunctions
  checkpatch: make utf-8 test --strict
  checkpatch.pl: add ability to ignore various messages
  checkpatch: add a "prefer __aligned" check
  checkpatch: validate signature styles and To: and Cc: lines
  checkpatch: add __rcu as a sparse modifier
  checkpatch: suggest using min_t or max_t
  ...

Did this as a merge because of (trivial) conflicts in
 - Documentation/feature-removal-schedule.txt
 - arch/xtensa/include/asm/uaccess.h
that were just easier to fix up in the merge than in the patch series.
2011-07-25 21:00:19 -07:00

1042 lines
24 KiB
C

/*
* hugetlbpage-backed filesystem. Based on ramfs.
*
* William Irwin, 2002
*
* Copyright (C) 2002 Linus Torvalds.
*/
#include <linux/module.h>
#include <linux/thread_info.h>
#include <asm/current.h>
#include <linux/sched.h> /* remove ASAP */
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/file.h>
#include <linux/kernel.h>
#include <linux/writeback.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/capability.h>
#include <linux/ctype.h>
#include <linux/backing-dev.h>
#include <linux/hugetlb.h>
#include <linux/pagevec.h>
#include <linux/parser.h>
#include <linux/mman.h>
#include <linux/slab.h>
#include <linux/dnotify.h>
#include <linux/statfs.h>
#include <linux/security.h>
#include <linux/magic.h>
#include <linux/migrate.h>
#include <asm/uaccess.h>
static const struct super_operations hugetlbfs_ops;
static const struct address_space_operations hugetlbfs_aops;
const struct file_operations hugetlbfs_file_operations;
static const struct inode_operations hugetlbfs_dir_inode_operations;
static const struct inode_operations hugetlbfs_inode_operations;
static struct backing_dev_info hugetlbfs_backing_dev_info = {
.name = "hugetlbfs",
.ra_pages = 0, /* No readahead */
.capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
};
int sysctl_hugetlb_shm_group;
enum {
Opt_size, Opt_nr_inodes,
Opt_mode, Opt_uid, Opt_gid,
Opt_pagesize,
Opt_err,
};
static const match_table_t tokens = {
{Opt_size, "size=%s"},
{Opt_nr_inodes, "nr_inodes=%s"},
{Opt_mode, "mode=%o"},
{Opt_uid, "uid=%u"},
{Opt_gid, "gid=%u"},
{Opt_pagesize, "pagesize=%s"},
{Opt_err, NULL},
};
static void huge_pagevec_release(struct pagevec *pvec)
{
int i;
for (i = 0; i < pagevec_count(pvec); ++i)
put_page(pvec->pages[i]);
pagevec_reinit(pvec);
}
static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
struct inode *inode = file->f_path.dentry->d_inode;
loff_t len, vma_len;
int ret;
struct hstate *h = hstate_file(file);
/*
* vma address alignment (but not the pgoff alignment) has
* already been checked by prepare_hugepage_range. If you add
* any error returns here, do so after setting VM_HUGETLB, so
* is_vm_hugetlb_page tests below unmap_region go the right
* way when do_mmap_pgoff unwinds (may be important on powerpc
* and ia64).
*/
vma->vm_flags |= VM_HUGETLB | VM_RESERVED;
vma->vm_ops = &hugetlb_vm_ops;
if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
return -EINVAL;
vma_len = (loff_t)(vma->vm_end - vma->vm_start);
mutex_lock(&inode->i_mutex);
file_accessed(file);
ret = -ENOMEM;
len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
if (hugetlb_reserve_pages(inode,
vma->vm_pgoff >> huge_page_order(h),
len >> huge_page_shift(h), vma,
vma->vm_flags))
goto out;
ret = 0;
hugetlb_prefault_arch_hook(vma->vm_mm);
if (vma->vm_flags & VM_WRITE && inode->i_size < len)
inode->i_size = len;
out:
mutex_unlock(&inode->i_mutex);
return ret;
}
/*
* Called under down_write(mmap_sem).
*/
#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
static unsigned long
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long start_addr;
struct hstate *h = hstate_file(file);
if (len & ~huge_page_mask(h))
return -EINVAL;
if (len > TASK_SIZE)
return -ENOMEM;
if (flags & MAP_FIXED) {
if (prepare_hugepage_range(file, addr, len))
return -EINVAL;
return addr;
}
if (addr) {
addr = ALIGN(addr, huge_page_size(h));
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
start_addr = mm->free_area_cache;
if (len <= mm->cached_hole_size)
start_addr = TASK_UNMAPPED_BASE;
full_search:
addr = ALIGN(start_addr, huge_page_size(h));
for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
/* At this point: (!vma || addr < vma->vm_end). */
if (TASK_SIZE - len < addr) {
/*
* Start a new search - just in case we missed
* some holes.
*/
if (start_addr != TASK_UNMAPPED_BASE) {
start_addr = TASK_UNMAPPED_BASE;
goto full_search;
}
return -ENOMEM;
}
if (!vma || addr + len <= vma->vm_start)
return addr;
addr = ALIGN(vma->vm_end, huge_page_size(h));
}
}
#endif
static int
hugetlbfs_read_actor(struct page *page, unsigned long offset,
char __user *buf, unsigned long count,
unsigned long size)
{
char *kaddr;
unsigned long left, copied = 0;
int i, chunksize;
if (size > count)
size = count;
/* Find which 4k chunk and offset with in that chunk */
i = offset >> PAGE_CACHE_SHIFT;
offset = offset & ~PAGE_CACHE_MASK;
while (size) {
chunksize = PAGE_CACHE_SIZE;
if (offset)
chunksize -= offset;
if (chunksize > size)
chunksize = size;
kaddr = kmap(&page[i]);
left = __copy_to_user(buf, kaddr + offset, chunksize);
kunmap(&page[i]);
if (left) {
copied += (chunksize - left);
break;
}
offset = 0;
size -= chunksize;
buf += chunksize;
copied += chunksize;
i++;
}
return copied ? copied : -EFAULT;
}
/*
* Support for read() - Find the page attached to f_mapping and copy out the
* data. Its *very* similar to do_generic_mapping_read(), we can't use that
* since it has PAGE_CACHE_SIZE assumptions.
*/
static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
size_t len, loff_t *ppos)
{
struct hstate *h = hstate_file(filp);
struct address_space *mapping = filp->f_mapping;
struct inode *inode = mapping->host;
unsigned long index = *ppos >> huge_page_shift(h);
unsigned long offset = *ppos & ~huge_page_mask(h);
unsigned long end_index;
loff_t isize;
ssize_t retval = 0;
mutex_lock(&inode->i_mutex);
/* validate length */
if (len == 0)
goto out;
isize = i_size_read(inode);
if (!isize)
goto out;
end_index = (isize - 1) >> huge_page_shift(h);
for (;;) {
struct page *page;
unsigned long nr, ret;
int ra;
/* nr is the maximum number of bytes to copy from this page */
nr = huge_page_size(h);
if (index >= end_index) {
if (index > end_index)
goto out;
nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
if (nr <= offset) {
goto out;
}
}
nr = nr - offset;
/* Find the page */
page = find_get_page(mapping, index);
if (unlikely(page == NULL)) {
/*
* We have a HOLE, zero out the user-buffer for the
* length of the hole or request.
*/
ret = len < nr ? len : nr;
if (clear_user(buf, ret))
ra = -EFAULT;
else
ra = 0;
} else {
/*
* We have the page, copy it to user space buffer.
*/
ra = hugetlbfs_read_actor(page, offset, buf, len, nr);
ret = ra;
}
if (ra < 0) {
if (retval == 0)
retval = ra;
if (page)
page_cache_release(page);
goto out;
}
offset += ret;
retval += ret;
len -= ret;
index += offset >> huge_page_shift(h);
offset &= ~huge_page_mask(h);
if (page)
page_cache_release(page);
/* short read or no more work */
if ((ret != nr) || (len == 0))
break;
}
out:
*ppos = ((loff_t)index << huge_page_shift(h)) + offset;
mutex_unlock(&inode->i_mutex);
return retval;
}
static int hugetlbfs_write_begin(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
return -EINVAL;
}
static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
BUG();
return -EINVAL;
}
static void truncate_huge_page(struct page *page)
{
cancel_dirty_page(page, /* No IO accounting for huge pages? */0);
ClearPageUptodate(page);
delete_from_page_cache(page);
}
static void truncate_hugepages(struct inode *inode, loff_t lstart)
{
struct hstate *h = hstate_inode(inode);
struct address_space *mapping = &inode->i_data;
const pgoff_t start = lstart >> huge_page_shift(h);
struct pagevec pvec;
pgoff_t next;
int i, freed = 0;
pagevec_init(&pvec, 0);
next = start;
while (1) {
if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
if (next == start)
break;
next = start;
continue;
}
for (i = 0; i < pagevec_count(&pvec); ++i) {
struct page *page = pvec.pages[i];
lock_page(page);
if (page->index > next)
next = page->index;
++next;
truncate_huge_page(page);
unlock_page(page);
freed++;
}
huge_pagevec_release(&pvec);
}
BUG_ON(!lstart && mapping->nrpages);
hugetlb_unreserve_pages(inode, start, freed);
}
static void hugetlbfs_evict_inode(struct inode *inode)
{
truncate_hugepages(inode, 0);
end_writeback(inode);
}
static inline void
hugetlb_vmtruncate_list(struct prio_tree_root *root, pgoff_t pgoff)
{
struct vm_area_struct *vma;
struct prio_tree_iter iter;
vma_prio_tree_foreach(vma, &iter, root, pgoff, ULONG_MAX) {
unsigned long v_offset;
/*
* Can the expression below overflow on 32-bit arches?
* No, because the prio_tree returns us only those vmas
* which overlap the truncated area starting at pgoff,
* and no vma on a 32-bit arch can span beyond the 4GB.
*/
if (vma->vm_pgoff < pgoff)
v_offset = (pgoff - vma->vm_pgoff) << PAGE_SHIFT;
else
v_offset = 0;
__unmap_hugepage_range(vma,
vma->vm_start + v_offset, vma->vm_end, NULL);
}
}
static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
{
pgoff_t pgoff;
struct address_space *mapping = inode->i_mapping;
struct hstate *h = hstate_inode(inode);
BUG_ON(offset & ~huge_page_mask(h));
pgoff = offset >> PAGE_SHIFT;
i_size_write(inode, offset);
mutex_lock(&mapping->i_mmap_mutex);
if (!prio_tree_empty(&mapping->i_mmap))
hugetlb_vmtruncate_list(&mapping->i_mmap, pgoff);
mutex_unlock(&mapping->i_mmap_mutex);
truncate_hugepages(inode, offset);
return 0;
}
static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = dentry->d_inode;
struct hstate *h = hstate_inode(inode);
int error;
unsigned int ia_valid = attr->ia_valid;
BUG_ON(!inode);
error = inode_change_ok(inode, attr);
if (error)
return error;
if (ia_valid & ATTR_SIZE) {
error = -EINVAL;
if (attr->ia_size & ~huge_page_mask(h))
return -EINVAL;
error = hugetlb_vmtruncate(inode, attr->ia_size);
if (error)
return error;
}
setattr_copy(inode, attr);
mark_inode_dirty(inode);
return 0;
}
static struct inode *hugetlbfs_get_inode(struct super_block *sb, uid_t uid,
gid_t gid, int mode, dev_t dev)
{
struct inode *inode;
inode = new_inode(sb);
if (inode) {
struct hugetlbfs_inode_info *info;
inode->i_ino = get_next_ino();
inode->i_mode = mode;
inode->i_uid = uid;
inode->i_gid = gid;
inode->i_mapping->a_ops = &hugetlbfs_aops;
inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
INIT_LIST_HEAD(&inode->i_mapping->private_list);
info = HUGETLBFS_I(inode);
/*
* The policy is initialized here even if we are creating a
* private inode because initialization simply creates an
* an empty rb tree and calls spin_lock_init(), later when we
* call mpol_free_shared_policy() it will just return because
* the rb tree will still be empty.
*/
mpol_shared_policy_init(&info->policy, NULL);
switch (mode & S_IFMT) {
default:
init_special_inode(inode, mode, dev);
break;
case S_IFREG:
inode->i_op = &hugetlbfs_inode_operations;
inode->i_fop = &hugetlbfs_file_operations;
break;
case S_IFDIR:
inode->i_op = &hugetlbfs_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
/* directory inodes start off with i_nlink == 2 (for "." entry) */
inc_nlink(inode);
break;
case S_IFLNK:
inode->i_op = &page_symlink_inode_operations;
break;
}
}
return inode;
}
/*
* File creation. Allocate an inode, and we're done..
*/
static int hugetlbfs_mknod(struct inode *dir,
struct dentry *dentry, int mode, dev_t dev)
{
struct inode *inode;
int error = -ENOSPC;
gid_t gid;
if (dir->i_mode & S_ISGID) {
gid = dir->i_gid;
if (S_ISDIR(mode))
mode |= S_ISGID;
} else {
gid = current_fsgid();
}
inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(), gid, mode, dev);
if (inode) {
dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d_instantiate(dentry, inode);
dget(dentry); /* Extra count - pin the dentry in core */
error = 0;
}
return error;
}
static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
if (!retval)
inc_nlink(dir);
return retval;
}
static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)
{
return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
}
static int hugetlbfs_symlink(struct inode *dir,
struct dentry *dentry, const char *symname)
{
struct inode *inode;
int error = -ENOSPC;
gid_t gid;
if (dir->i_mode & S_ISGID)
gid = dir->i_gid;
else
gid = current_fsgid();
inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(),
gid, S_IFLNK|S_IRWXUGO, 0);
if (inode) {
int l = strlen(symname)+1;
error = page_symlink(inode, symname, l);
if (!error) {
d_instantiate(dentry, inode);
dget(dentry);
} else
iput(inode);
}
dir->i_ctime = dir->i_mtime = CURRENT_TIME;
return error;
}
/*
* mark the head page dirty
*/
static int hugetlbfs_set_page_dirty(struct page *page)
{
struct page *head = compound_head(page);
SetPageDirty(head);
return 0;
}
static int hugetlbfs_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page)
{
int rc;
rc = migrate_huge_page_move_mapping(mapping, newpage, page);
if (rc)
return rc;
migrate_page_copy(newpage, page);
return 0;
}
static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
struct hstate *h = hstate_inode(dentry->d_inode);
buf->f_type = HUGETLBFS_MAGIC;
buf->f_bsize = huge_page_size(h);
if (sbinfo) {
spin_lock(&sbinfo->stat_lock);
/* If no limits set, just report 0 for max/free/used
* blocks, like simple_statfs() */
if (sbinfo->max_blocks >= 0) {
buf->f_blocks = sbinfo->max_blocks;
buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
buf->f_files = sbinfo->max_inodes;
buf->f_ffree = sbinfo->free_inodes;
}
spin_unlock(&sbinfo->stat_lock);
}
buf->f_namelen = NAME_MAX;
return 0;
}
static void hugetlbfs_put_super(struct super_block *sb)
{
struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
if (sbi) {
sb->s_fs_info = NULL;
kfree(sbi);
}
}
static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
{
if (sbinfo->free_inodes >= 0) {
spin_lock(&sbinfo->stat_lock);
if (unlikely(!sbinfo->free_inodes)) {
spin_unlock(&sbinfo->stat_lock);
return 0;
}
sbinfo->free_inodes--;
spin_unlock(&sbinfo->stat_lock);
}
return 1;
}
static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
{
if (sbinfo->free_inodes >= 0) {
spin_lock(&sbinfo->stat_lock);
sbinfo->free_inodes++;
spin_unlock(&sbinfo->stat_lock);
}
}
static struct kmem_cache *hugetlbfs_inode_cachep;
static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
{
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
struct hugetlbfs_inode_info *p;
if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
return NULL;
p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
if (unlikely(!p)) {
hugetlbfs_inc_free_inodes(sbinfo);
return NULL;
}
return &p->vfs_inode;
}
static void hugetlbfs_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
INIT_LIST_HEAD(&inode->i_dentry);
kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
}
static void hugetlbfs_destroy_inode(struct inode *inode)
{
hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
}
static const struct address_space_operations hugetlbfs_aops = {
.write_begin = hugetlbfs_write_begin,
.write_end = hugetlbfs_write_end,
.set_page_dirty = hugetlbfs_set_page_dirty,
.migratepage = hugetlbfs_migrate_page,
};
static void init_once(void *foo)
{
struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
inode_init_once(&ei->vfs_inode);
}
const struct file_operations hugetlbfs_file_operations = {
.read = hugetlbfs_read,
.mmap = hugetlbfs_file_mmap,
.fsync = noop_fsync,
.get_unmapped_area = hugetlb_get_unmapped_area,
.llseek = default_llseek,
};
static const struct inode_operations hugetlbfs_dir_inode_operations = {
.create = hugetlbfs_create,
.lookup = simple_lookup,
.link = simple_link,
.unlink = simple_unlink,
.symlink = hugetlbfs_symlink,
.mkdir = hugetlbfs_mkdir,
.rmdir = simple_rmdir,
.mknod = hugetlbfs_mknod,
.rename = simple_rename,
.setattr = hugetlbfs_setattr,
};
static const struct inode_operations hugetlbfs_inode_operations = {
.setattr = hugetlbfs_setattr,
};
static const struct super_operations hugetlbfs_ops = {
.alloc_inode = hugetlbfs_alloc_inode,
.destroy_inode = hugetlbfs_destroy_inode,
.evict_inode = hugetlbfs_evict_inode,
.statfs = hugetlbfs_statfs,
.put_super = hugetlbfs_put_super,
.show_options = generic_show_options,
};
static int
hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
{
char *p, *rest;
substring_t args[MAX_OPT_ARGS];
int option;
unsigned long long size = 0;
enum { NO_SIZE, SIZE_STD, SIZE_PERCENT } setsize = NO_SIZE;
if (!options)
return 0;
while ((p = strsep(&options, ",")) != NULL) {
int token;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_uid:
if (match_int(&args[0], &option))
goto bad_val;
pconfig->uid = option;
break;
case Opt_gid:
if (match_int(&args[0], &option))
goto bad_val;
pconfig->gid = option;
break;
case Opt_mode:
if (match_octal(&args[0], &option))
goto bad_val;
pconfig->mode = option & 01777U;
break;
case Opt_size: {
/* memparse() will accept a K/M/G without a digit */
if (!isdigit(*args[0].from))
goto bad_val;
size = memparse(args[0].from, &rest);
setsize = SIZE_STD;
if (*rest == '%')
setsize = SIZE_PERCENT;
break;
}
case Opt_nr_inodes:
/* memparse() will accept a K/M/G without a digit */
if (!isdigit(*args[0].from))
goto bad_val;
pconfig->nr_inodes = memparse(args[0].from, &rest);
break;
case Opt_pagesize: {
unsigned long ps;
ps = memparse(args[0].from, &rest);
pconfig->hstate = size_to_hstate(ps);
if (!pconfig->hstate) {
printk(KERN_ERR
"hugetlbfs: Unsupported page size %lu MB\n",
ps >> 20);
return -EINVAL;
}
break;
}
default:
printk(KERN_ERR "hugetlbfs: Bad mount option: \"%s\"\n",
p);
return -EINVAL;
break;
}
}
/* Do size after hstate is set up */
if (setsize > NO_SIZE) {
struct hstate *h = pconfig->hstate;
if (setsize == SIZE_PERCENT) {
size <<= huge_page_shift(h);
size *= h->max_huge_pages;
do_div(size, 100);
}
pconfig->nr_blocks = (size >> huge_page_shift(h));
}
return 0;
bad_val:
printk(KERN_ERR "hugetlbfs: Bad value '%s' for mount option '%s'\n",
args[0].from, p);
return -EINVAL;
}
static int
hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
{
struct inode * inode;
struct dentry * root;
int ret;
struct hugetlbfs_config config;
struct hugetlbfs_sb_info *sbinfo;
save_mount_options(sb, data);
config.nr_blocks = -1; /* No limit on size by default */
config.nr_inodes = -1; /* No limit on number of inodes by default */
config.uid = current_fsuid();
config.gid = current_fsgid();
config.mode = 0755;
config.hstate = &default_hstate;
ret = hugetlbfs_parse_options(data, &config);
if (ret)
return ret;
sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
if (!sbinfo)
return -ENOMEM;
sb->s_fs_info = sbinfo;
sbinfo->hstate = config.hstate;
spin_lock_init(&sbinfo->stat_lock);
sbinfo->max_blocks = config.nr_blocks;
sbinfo->free_blocks = config.nr_blocks;
sbinfo->max_inodes = config.nr_inodes;
sbinfo->free_inodes = config.nr_inodes;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_blocksize = huge_page_size(config.hstate);
sb->s_blocksize_bits = huge_page_shift(config.hstate);
sb->s_magic = HUGETLBFS_MAGIC;
sb->s_op = &hugetlbfs_ops;
sb->s_time_gran = 1;
inode = hugetlbfs_get_inode(sb, config.uid, config.gid,
S_IFDIR | config.mode, 0);
if (!inode)
goto out_free;
root = d_alloc_root(inode);
if (!root) {
iput(inode);
goto out_free;
}
sb->s_root = root;
return 0;
out_free:
kfree(sbinfo);
return -ENOMEM;
}
int hugetlb_get_quota(struct address_space *mapping, long delta)
{
int ret = 0;
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
if (sbinfo->free_blocks > -1) {
spin_lock(&sbinfo->stat_lock);
if (sbinfo->free_blocks - delta >= 0)
sbinfo->free_blocks -= delta;
else
ret = -ENOMEM;
spin_unlock(&sbinfo->stat_lock);
}
return ret;
}
void hugetlb_put_quota(struct address_space *mapping, long delta)
{
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
if (sbinfo->free_blocks > -1) {
spin_lock(&sbinfo->stat_lock);
sbinfo->free_blocks += delta;
spin_unlock(&sbinfo->stat_lock);
}
}
static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
}
static struct file_system_type hugetlbfs_fs_type = {
.name = "hugetlbfs",
.mount = hugetlbfs_mount,
.kill_sb = kill_litter_super,
};
static struct vfsmount *hugetlbfs_vfsmount;
static int can_do_hugetlb_shm(void)
{
return capable(CAP_IPC_LOCK) || in_group_p(sysctl_hugetlb_shm_group);
}
struct file *hugetlb_file_setup(const char *name, size_t size,
vm_flags_t acctflag,
struct user_struct **user, int creat_flags)
{
int error = -ENOMEM;
struct file *file;
struct inode *inode;
struct path path;
struct dentry *root;
struct qstr quick_string;
*user = NULL;
if (!hugetlbfs_vfsmount)
return ERR_PTR(-ENOENT);
if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
*user = current_user();
if (user_shm_lock(size, *user)) {
printk_once(KERN_WARNING "Using mlock ulimits for SHM_HUGETLB is deprecated\n");
} else {
*user = NULL;
return ERR_PTR(-EPERM);
}
}
root = hugetlbfs_vfsmount->mnt_root;
quick_string.name = name;
quick_string.len = strlen(quick_string.name);
quick_string.hash = 0;
path.dentry = d_alloc(root, &quick_string);
if (!path.dentry)
goto out_shm_unlock;
path.mnt = mntget(hugetlbfs_vfsmount);
error = -ENOSPC;
inode = hugetlbfs_get_inode(root->d_sb, current_fsuid(),
current_fsgid(), S_IFREG | S_IRWXUGO, 0);
if (!inode)
goto out_dentry;
error = -ENOMEM;
if (hugetlb_reserve_pages(inode, 0,
size >> huge_page_shift(hstate_inode(inode)), NULL,
acctflag))
goto out_inode;
d_instantiate(path.dentry, inode);
inode->i_size = size;
inode->i_nlink = 0;
error = -ENFILE;
file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
&hugetlbfs_file_operations);
if (!file)
goto out_dentry; /* inode is already attached */
return file;
out_inode:
iput(inode);
out_dentry:
path_put(&path);
out_shm_unlock:
if (*user) {
user_shm_unlock(size, *user);
*user = NULL;
}
return ERR_PTR(error);
}
static int __init init_hugetlbfs_fs(void)
{
int error;
struct vfsmount *vfsmount;
error = bdi_init(&hugetlbfs_backing_dev_info);
if (error)
return error;
hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
sizeof(struct hugetlbfs_inode_info),
0, 0, init_once);
if (hugetlbfs_inode_cachep == NULL)
goto out2;
error = register_filesystem(&hugetlbfs_fs_type);
if (error)
goto out;
vfsmount = kern_mount(&hugetlbfs_fs_type);
if (!IS_ERR(vfsmount)) {
hugetlbfs_vfsmount = vfsmount;
return 0;
}
error = PTR_ERR(vfsmount);
out:
if (error)
kmem_cache_destroy(hugetlbfs_inode_cachep);
out2:
bdi_destroy(&hugetlbfs_backing_dev_info);
return error;
}
static void __exit exit_hugetlbfs_fs(void)
{
kmem_cache_destroy(hugetlbfs_inode_cachep);
kern_unmount(hugetlbfs_vfsmount);
unregister_filesystem(&hugetlbfs_fs_type);
bdi_destroy(&hugetlbfs_backing_dev_info);
}
module_init(init_hugetlbfs_fs)
module_exit(exit_hugetlbfs_fs)
MODULE_LICENSE("GPL");